
Received June 6, 2018, accepted July 16, 2018, date of publication July 25, 2018, date of current version August 20, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2859758

Efficient k-Nearest Neighbor Classification Over
Semantically Secure Hybrid Encrypted
Cloud Database
WEI WU , JIAN LIU, HONG RONG , HUIMEI WANG, AND MING XIAN
School of Electronic Science, National University of Defense Technology, Changsha 410073, China

Corresponding author: Wei Wu (goodwuwei18@163.com)

ABSTRACT Nowadays, individuals and companies increasingly tend to outsource their databases and
further data operations to cloud service provides. However, utilizing the cost-saving advantages of cloud
computing brings about the risk of violating database security and user’s privacy. In this paper, we focus
on the problem of privacy-preserving k-nearest neighbor (kNN) classification, in which a query user (QU)
submits an encrypted query point to a cloud server (CS) and asks for the kNN classification labels based
on the encrypted cloud database outsourced by a data owner (DO), without disclosing any privacy of
DO or QU to CS. Previous secure kNN query schemes either cannot fully achieve required security
properties or introduce heavy computation costs, making them not practical in real-world applications.
To better solve this problem, we propose a novel efficient privacy-preserving kNN classification protocol
over semantically secure hybrid encrypted cloud database using Paillier and ElGamal cryptosystems. The
proposed protocol protects both database security and query privacy and also hides data access patterns
from CS. We formally analyze the security of our protocol and evaluate the performance through extensive
experiments. The experiment results show that the computation cost of our protocol is about two orders of
magnitude lower than that of the state-of-the-art protocol while achieving the same security and privacy
properties.

INDEX TERMS Privacy-preserving, kNN classification, cloud computing, encryption.

I. INTRODUCTION
In recent years, an increasingly number of data owners are
motivated to utilize the powerful and flexible cloud com-
puting paradigm [2] in order to reduce their cost for local
data storages and operations. Generally, after outsourcing the
database, a data owner may also outsource the further data
analysis and computation tasks to cloud servers. Consider-
ing the security of its private database in the remote cloud,
a data owner usually chooses to encrypt it before outsourcing.
However, executing computations over encrypted databases
is a very challenging problem if cloud servers cannot perform
decryption.

As a fundamental database analysis operation, the
k-nearest neighbor (kNN) query can be used as a stan-
dalone database query or a basic module of common
data mining tasks [3]. Considering its significance in many
applications, to support kNN query over encrypted cloud
database, many works [1], [3]–[10] have been proposed in
recent years. In these works, performing kNN query over

encrypted database usually involves three different parties:
the data owner (DO), the query user (QU) and the cloud
server (CS). And the main goal of a secure kNN query
scheme is to preserve (1) database security, (2) query privacy
and also hide (3) data access patterns from the untrusted
CS [1]. Unfortunately, these existing schemes either can-
not simultaneously achieve the three security and privacy
requirements [3]–[7], [9] or introduce heavy computation
overheads [1], [10], making them not practical in real-world
scenarios.

Specifically,Wong et al. [3] propose an asymmetric scalar-
product-preserving encryption (ASPE) scheme, in which
both database security and query privacy are efficiently pro-
tected. Other works such as [4]–[6] present several meth-
ods to securely compute an approximate kNN query over
encrypted database. Although these works provide some
good ideas to solve the problem of secure kNN query, they
assume that all QUs can be trusted who have access to
DO’s secret key, which means an attacker can easily break

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

41771

https://orcid.org/0000-0003-1424-1414
https://orcid.org/0000-0002-5631-8128

W. Wu et al.: Efficient kNN Classification Over Semantically Secure Hybrid Encrypted Cloud Database

the security of these schemes by corrupting a single QU.
Considering the key confidentiality, Zhu et al. [7]–[9] pro-
pose some works in which DO stays on-line to protect its
secret key during the process of query encryption. However,
this DO-on-line requirement introduces extra computation
and communication cost after DO already outsourced its
database and query processes to CS. While none of the
aforementioned schemes [3]–[9] consider hiding data access
patterns during the query processes, Elmehdwi et al. [10]
and Samanthula et al. [1] present two schemes using Pail-
lier cryptosystem and two non-colluding clouds to achieve
this privacy property. Nevertheless, their secure protocols
are very complicated which results in a very high com-
putation cost for hiding data access patterns. In our pre-
vious work [11], we efficiently hide data access patterns
by using random permutation method and DO does not
need to participate in the on-line encrypted computation
processes. However, the scheme does not provide semantic
security for the outsourced database which is achieved in the
works [10] and [1].

In this paper, we propose a novel efficient privacy pre-
serving kNN classification scheme over semantically secure
hybrid encrypted database in outsourced cloud environments.
In our protocol, after outsourcing the encrypted database,
the data owner does not participate during the kNN classi-
fication process. Thus, no information is disclosed to the data
owner. Besides, the proposed scheme meets all the aforemen-
tioned privacy requirements:
• Database security - The plain database should not be

revealed to cloud servers.
• Query privacy - The plain query points and plain kNN

classification labels should not be revealed to cloud servers.
• Hiding data access patterns - The data access patterns,

such as the corresponding encrypted database tuples to the
kNN classification labels, should not be revealed to cloud
servers.

In our protocol, the intermediate computation values
obtained by the cloud servers are either newly generated ran-
domized (or re-encrypted) encryptions or random numbers.
By combining a implementation of random permutation,
we prevent cloud servers to derive out which database tuples
correspond to the kNN classification labels. In addition, after
submitting its encrypted query point to cloud server, QU does
not participate in any computations during the kNN classi-
fication process. Thus, data access patterns are also hidden
from QU (more details are given in Section IV). Our contri-
butions in this paper can be summarized as follows.

(1)We propose a novel secure inner Product (SIP) protocol
and analyze its security in Section III-A. In this protocol,
no information of the private points are revealed to cloud
servers. In addition, our SIP protocol has less computation
complexity than the SSED (Secure Squared Euclidean Dis-
tance) protocol in [1] (more details are given in Section IV).
(2) We propose a novel collusion resistant Re-encryption

key Generation (CRRKG) protocol and analyze its secu-
rity in Section III-D. In this protocol, DO’s secret ElGamal

classification labels decryption key is protected from cloud
servers even if they collude with QU.

(3) We propose a novel privacy preserving kNN classifica-
tion (PPKC) protocol in Section IV and analyze its security in
Section V. By using SIP and Proxy Re-encryption (PRE) as
sub-protocols, as well as utilizing random permutation, our
PPKC securely computes the encrypted kNN classification
labels in an efficient way.

(4) We analyze the cost of our PPKC protocol and evaluate
its performance with extensive experiments. The experiment
results show that the computation cost of our PPKC protocol
is about two orders of magnitude lower than the cost of the
state-of-the-art PPkNN protocol in [1], while achieving the
same security and privacy properties.

The rest of the paper is organized as follows. We introduce
the notations, system architecture, threat model and the Pail-
lier cryptosystem in Section II. The basic security primitives
are given in Section III. Our new privacy preserving kNN
classification (PPKC) protocol is proposed in Section IV. The
security analysis of our PPKC protocol is given in Section V.
We analyze the cost of our PPKC protocol and evaluate its
performance with experiments in Section VI. The related
work are discussed in Section VII. Lastly, we conclude the
paper along with the future work in Section VIII.

II. BACKGROUND
In this section, we introduce the notations, system architec-
ture, threat model and the Paillier cryptosystem.

A. NOTATIONS
We give the common notations used in this paper as follows.
n - The number of database tuples.
d - The dimension of plain database points and plain query

points.
D - DO’s private plain database, consisting of n data tuples

D = {t1, t2, . . . , tn}.
t i - A plain database tuple t i = {pi, ci}.
pi - A plain d-dimensional database point

pi = (pi1, pi2, . . . , pid).
ci - A plain numerical classification label.
D′ - The encrypted database of D, outsourced to CS,

D′ = {t ′1, t
′

2, . . . , t
′
n}.

t ′i - An encrypted database tuple t ′i = {p
′
i, c
′
i}.

p′i - An encrypted database point of pi.
c′i - An encrypted classification label of ci.
q - A private plain d-dimensional query point of QU,

q = (q1, q2, . . . , qd).
q′ - An encrypted query point of q.
{pkp, skp} - The public key and secret key of Paillier cryp-

tosystem, generated by DO and used for the encrption of
database points pi and query point q.
{pkc, skc} - The public key and secret key of ElGamal

cryptosystem, generated by DO and used for the encrption
of classification labels ci.
sku - An unique ElGamal classification labels decryption

key for a QU u.

41772 VOLUME 6, 2018

W. Wu et al.: Efficient kNN Classification Over Semantically Secure Hybrid Encrypted Cloud Database

rku1 , rku2 - Unique ElGamal classification labels
Re-encryption keys for a QU u.
C ′q - The set of ElGamal re-encrypted kNN classification

labels.
Cq - The set of plain kNN classification labels.
ZN - The Paillier cryptosystem plaintext space
ZN 2 - The Paillier cryptosystem ciphertext space
G - The ElGamal cryptosystem plaintext space
C - The ElGamal cryptosystem ciphertext space

B. SYSTEM ARCHITECTURE
In this paper, there are three different parties in the out-
sourced cloud environment: the data owner (DO), the query
user (QU) and two cloud servers C1 and C2, which are
shown in Figure 1. We assume that the two cloud servers are
non-colluding and this assumption has been used in recent
works [1], [10], [12]. It is reasonable because cloud service
providers are usually famous IT companies, considering their
reputation and revenues, they are very unlikely to collude.

FIGURE 1. System architecture.

As shown in the figure, DO outsources its private
database D to C1 in an encrypted form D′. The encrypted
database D′ consists of encrypted database points and
encrypted classification labels which are encrypted using
Paillier and ElGamal cryptosystems respectively. The Pail-
lier public-secret key pair for encryption and decryption
of database points is (pkp, skp) and the ElGamal key pair
for encryption and decryption of classification labels is
(pkc, skc). To enable the outsourced kNN classification,
DO also outsources its Paillier secret key skp to C2. After
outsourcing, DO does not keep the original plain database D
and all further operations are outsourced to the two cloud
servers.

When a QU wants to determine the classification label
of its private query point q based on the encrypted
database D′ according to the Euclidean distances, it uses
the Paillier public key pkp to encrypt q into q′ and sub-
mits q′ to C1 for kNN classification. After receiving
q′, C1 performs computations over D′ and obtains the
‘‘encrypted distances’’. Here, C1 cannot directly use these
‘‘distances’’ for comparison because they are in encrypted
form. Next, C1 re-encrypts the classification labels in D′

and randomly permutes both the ‘‘encrypted distances’’ and
re-encrypted labels, and sends these permuted intermediate
results to C2. Using the Paillier secret key skp, C2 decrypts
the received ‘‘encrypted distances’’ and gets the correct
plain values (corresponding to Euclidean distances) for kNN
search. Then, C2 performs a second round re-encryptions
and returns the new re-encrypted kNN classification labels
ReEnc(c1),. . . ,ReEnc(ck) to the corresponding QU. At last,
the QU performs decryption using its unique ElGamal
secret key sku and obtains the plain kNN classification
labels.

C. THREAT MODEL
Similar as the previous work [1], we use the
security definitions in the work of secure multi-party
computation [13], [14]. We assume that the parties in our
protocols are semi-honest. Briefly, we define the properties
of a secure protocol under the semi-honest model in the
following definition [15], [16].
Definition 1: Let ai be the input of party Pi, 5i(π) be

Pi’s execution image of the protocol π and bi be the output
for party Pi computed from π . Then, π is secure if 5i(π)
can be simulated from ai and bi such that distribution of the
simulated image is computationally indistinguishable from
5i(π).
In the definition, an execution image usually contains the

input, the output and the information exchanged during the
execution of a protocol. To prove a protocol is secure under
semi-honest model, we generally need to demonstrate there is
no information leakage from the execution image of a proto-
col respecting the private inputs of participating parties [16].

In our proposed scheme, as discussed in work [1],
we assume the two non-colluding clouds are the poten-
tial adversaries since they have accesses to the encrypted
database and the secret key. To clearly describe the ability of
adversaries, we give the following assumptions of collusion-
attack:
• The two clouds cannot collude with each other.
• The two clouds cannot collude with DO.
• The two clouds can collude with one QU or some QUs.
The first assumption is used in work [1] and has been

explained in Section II-B. The second assumption is reason-
able because DO has the secret key to decrypt the encrypted
query point. Once DO is corrupted, it will be easy to recover
the plain query point. For the third one, we assume that
some QUs may be corrupted by money or other benefits and
share their ElGamal classification labels decryption keys to
the clouds. However, we assume a QU will not disclose its
private query point to the clouds even if it is corrupted. This
is because the query point may contain much more private
information than its kNN classification labels.

D. PAILLIER CRYPTOSYSTEM
The Paillier cryptosystem is an additive homomorphic
and probabilistic asymmetric encryption scheme whose
security is based on the decisional composite residuosity

VOLUME 6, 2018 41773

W. Wu et al.: Efficient kNN Classification Over Semantically Secure Hybrid Encrypted Cloud Database

assumption [17]. Let Epk (·) be the encryption function with
public key pk given by (N , g), where N is a product of two
large primes and g is a generator in Z∗

N 2 . Let Dsk (·) be the
decryption fuction with secret key sk . For any given two
plaintexts m1,m2 ∈ ZN , the Paillier encryption scheme has
the following properties:

(1) Homomorphic addition.
Dsk (Epk (m1 + m2)) = Dsk (Epk (m1) ∗ Epk (m2) mod N 2).
(2) Homomorphic multiplication.
Dsk (Epk (m1 ∗ m2)) = Dsk (Epk (m1)m2 mod N 2).
(3) Semantic security. The encryption scheme is seman-

tically secure [16], [18]. Concisely, given a collection of
ciphertexts, an adversary cannot figure out any additional
information about the plaintext(s).

For conciseness, we drop the mod N 2 term during homo-
morphic operations in the rest of this paper.

III. BASIC SECURITY PRIMITIVES
In this section, we present a set of basic protocols that will
be applied as sub-protocols in our proposed privacy pre-
serving kNN classification (PPKC) protocol in Section IV.
All of the following protocols are considered under the
non-collusion assumption between the two cloud servers C1
and C2. As mentioned in Section II-B, only C2 knows DO’s
Paillier secret key skp, while pkp is the Paillier public key.
• Secure Inner Product (SIP) Protocol:
This protocol considers C1 with two Paillier encrypted

points a′ and b′ as inputs and outputs the encrypted inner
product Epkp (a · b) to C1, where the plain points a and b are
not known toC1 andC2. During this protocol, no information
about a and b is disclosed to C1 and C2. The output Epkp (a ·b)
is known only to C1. Here the jth dimension of a (resp., b) is
encrypted into Epkp (aj) (resp., Epkp (bj)).
• Proxy Re-encryption (PRE) Protocol:
This protocol considers a proxy (a third party) P1 with

ElGamal ciphertext m′i = Enc(pki,m) under the public
key pki and Re-encryption key rki→j as inputs and outputs
a new ElGamal ciphertext m′j = Enc(pkj,m) under the
public key pkj, where the plaintext m is not known to P1.
During this protocol, no information about m is disclosed
to P1.
• Secure Re-encryption Key Generation (SRKG) Protocol:
This protocol considers DO with ElGamal secret key skc

and QU with ElGamal secret key sku as inputs and outputs
a Re-encryption key rku = skc − sku to C1, where skc is
not known to C1 and QU, and sku is not known to C1 and
DO. During this protocol, no information about skc and sku is
disclosed to any other parties.
• Collusion Resistant Re-encryption Key Generation

(CRRKG) Protocol:
This protocol considers DO with ElGamal secret key skc

and QU with ElGamal secret key sku as inputs and outputs
two Re-encryption keys: rku1 to C1 and rku2 to C2, where skc
is not known to C1 and C2 even if they collude with QU (C1
and C2 cannot collude). During this protocol, no information
about skc and sku is disclosed to any other parties.

Algorithm 1 SIP(a′, b′)→ Epkp (a · b)

Require: C1 has a′ and b′; C2 has skp
1: C1:
(a). For j ∈ [d], generate 2d random numbers rj, ej ∈ ZN
(b). For j ∈ [d] do:
• a′′j ← Epkp (aj) ∗ Epkp (rj)
• b′′j ← Epkp (bj) ∗ Epkp (ej)

(c). Send a′′j , b
′′
j to C2, j ∈ [d]

2: C2:
(a). Receive a′′j , b

′′
j from C1, j ∈ [d]

(b). For j ∈ [d], ãj← Dskp (a
′′
j); b̃j← Dskp (b

′′
j)

(c). h←
∑d

j=1 ãj ∗ b̃j mod N
(d). h′← Epkp (h); send h

′ to C1
3: C1:
(a). Receive h′ from C2
(b). s1← Epkp (a1)

e1 ∗ Epkp (a2)
e2 ∗ · · · ∗ Epkp (ad)

ed

(c). s2← Epkp (b1)
r1 ∗ Epkp (b2)

r2 ∗ · · · ∗ Epkp (bd)
rd

(d). s3← Epkp (
∑d

j=1 rjej)
(e). s← s1 ∗ s2 ∗ s3
(f). Epkp (a · b)← h′ ∗ sN−1

We now discuss the detailed process for each of these
protocols. We either propose a new approach or refer to a
known efficient solution to each of them.

A. SECURE INNER Product (SIP) PROTOCOL
Consider C1 with two encrypted private points a′ =
(Epkp (a1), . . . ,Epkp (ad)) and b′ = (Epkp (b1), . . . ,Epkp (bd))
as input which are encrypted using the Paillier public key pkp,
andC2 with the Paillier secret key skp. The aim of secure inner
Product (SIP) protocol is to return the Paillier encryption of
a · b, i.e., Epkp (a · b) as output to C1, where a (resp., b) is the
plaintext of a′ (resp., b′). During this protocol, no information
regarding the private points a and b is disclosed to C1 and C2.
The main idea of SIP is based on the following property that
holds for any given a, b ∈ ZdN :

a · b = a1b1 + a2b2 + · · · + adbd

=

d∑
j=1

(aj + rj)(bj + ej)−
d∑
j=1

(ajej + bjrj + rjej) (1)

where all the arithmetic computations are performed
under ZN (the Paillier plaintext space). The overall steps of
SIP are shown in Algorithm 1. Concisely, C1 firstly random-
izes aj and bj by computing a′′j = Epkp (aj) ∗ Epkp (rj) and
b′′j = Epkp (bj) ∗Epkp (ej), and sends them to C2. Here rj and ej
are random numbers inZN known only toC1. After receiving,
C2 decrypts and computes h =

∑d
j=1(aj+rj)(bj+ej)mod N .

Then, C2 encrypts h and sends it to C1. After that, C1 elimi-
nates extra random factors from h′ = Epkp (

∑d
j=1(aj+rj)(bj+

ej)) based on Eq. (1) to get Epkp (a · b). To point out, for any
given m ∈ ZN , ‘‘N − m’’ is equal to ‘‘−m’’ under ZN .
• Proof of Security for SIP: As mentioned in Section II-C,

to formally prove the security of SIP under the semi-honest

41774 VOLUME 6, 2018

W. Wu et al.: Efficient kNN Classification Over Semantically Secure Hybrid Encrypted Cloud Database

model, we need to show that the simulated image of SIP
is computationally indistinguishable from the real execution
image of SIP.

Generally, an execution image consists of the messages
exchanged and the information derived out from these mes-
sages. Thus, according to Algorithm 1, let the execution
image of C2 be denoted by 5C2 (SIP) as below

{

〈
a′′j , aj + rj

〉
,
〈
b′′j , bj + ej

〉
| for j ∈ [d]}.

Note that aj + rj and bj + ej are the plaintexts of a′′j and b
′′
j

respectively. Without loss of generality, assume the simulated
image of C2 be 5S

C2
(SIP) as below

{
〈
δ1,j, δ2,j

〉
,
〈
δ3,j, δ4,j

〉
| for j ∈ [d]}.

Here δ1,j and δ3,j are randomly generated from ZN 2 (the
Paillier ciphertext space) while δ2,j and δ4,j are randomly
generated fromZN (the Paillier plaintext space). SinceEpkp (·)
is a semantically secure encryption scheme, a′′j and b′′j are
computationally indistinguishable from δ1,j and δ3,j, respec-
tively. Also, as rj and ej are randomly generated from ZN ,
aj+ rj and bj+ej are computationally indistinguishable from
δ2,j and δ4,j, respectively. Based on all these result, we can
conclude that 5C2 (SIP) is computationally indistinguishable
from 5S

C2
(SIP) according to Definition 1. This implies that

during the execution of SIP, C2 cannot figure out any infor-
mation regarding a and b. Actually, the information C2 has
during an execution of SIP is random, so this information
does not leak anything of a and b.

On the other hand, the execution image of C1, denoted by
5C1 (SIP) = {h

′,Epkp (a · b)}, where h
′ is the encrypted value

received from C2 at step 3(a) of Algorithm 1 and Epkp (a · b)
is the encrypted inner product computed by C1 at step 3(f).
Let the simulated image of C1 be 5S

C1
(SIP) = {δ5, δ6},

where δ5 and δ6 are randomly generated from ZN 2 . Since
Epkp (·) is a semantically secure encryption scheme, it implies
that h′ and Epkp (a · b) are computationally indistinguishable
from δ5 and δ6, respectively. Therefore, 5C1 (SIP) is com-
putationally indistinguishable from 5S

C1
(SIP) according to

Definition 1, which means C1 cannot learn any informa-
tion regarding a and b during the execution of SIP. Com-
bining everything together, we conclude the proposed SIP
protocol is secure under the semi-honest model according to
Definition 1.

B. PROXY Re-encryption (PRE) PROTOCOL
In a proxy Re-encryption (PRE) protocol [19], a proxy
(a third party) can use a Re-encryption key rki→j to transform
a ciphertext for one party under public key pki into a new
ciphertext of the same plaintext under another party’s public
key pkj. During the Re-encryption process, the proxy cannot
deduce any information of the corresponding plaintext.

In this paper, we use a PRE protocol in [20] which is
constructed on the ElGamal cryptosystem [21] with semantic
security. The PRE protocol consists of the following five
algorithms:

•KeyGen(G, p, g)→{pki, ski}: In the key generation algo-
rithm, G is a multiplicative cyclic group of a prime order
p with a generator g, such that discrete logarithm problem
over the group G is hard. Then, it randomly chooses a secret
key ski ∈ Z∗p and computes h = gski , then the public key
pki = (G, p, g, h).
• Enc(pki,m)→ {m′i}: The encryption algorithm takes the

public key pki and a message m ∈ G as inputs, then it
randomly chooses a number r ∈ Z∗p and outputs a ciphertext
m′i = Enc(pki,m) = (gr ,m · hr).
• ReEncKeyGen(ski, skj)→ {rki→j}: The algorithm of Re-

encryption key generation takes two secret keys ski and skj as
inputs, and outputs a Re-encryption key rki→j = ski − skj.
• ReEnc(rki→j,m′i)→ {m

′
j}: The Re-encryption algorithm

takes the Re-encryption key rki→j and the corresponding
ciphertext m′i as inputs, and outputs a new ciphertext m′j =
(gr ,m · hr/gr ·rki→j) = (gr ,m · gski·r/gr ·(ski−skj)) = (gr ,m ·
gskj·r) = Enc(pkj,m).
• Dec(skj,m′j) → {m}: The decryption algorithm takes

the secret key skj and a ciphertext m′j = Enc(pkj,m) =
(gr ,m · gskj·r) as inputs, then it outputs the plaintext m =
m · gskj·r/(gr)skj .

C. SECURE Re-encryption KEY GENERATION (SRKG)
PROTOCOL
As shown in the ReEncKeyGen(·) algorithm of PRE proto-
col, the re-encryption key for the proxy is rki→j = ski −
skj. Now, we first consider C1 to be the proxy with a
Re-encryption key rku = skc − sku, where skc is DO’s
ElGamal secret key and sku is the ElGamal secret key
of a QU u. To securely compute the Re-encryption key
rku, we introduce the secure Re-encryption key genera-
tion (SRKG) protocol [20] in Algorithm 2, which keeps skc
private to DO and sku private to QU.

Algorithm 2 SRKG(skc, sku)→ rku
Require: DO has skc; QU has sku
1: C1: Choose a random number α ∈ Z∗p ; send α to QU
2: QU: a← sku + α; send a to DO
3: DO: b← skc − a; send b to C1
4: C1: rku← b+ α

In Algorithm 2, C1 computes the Re-encryption key

rku = b+ α = skc − a+ α = skc − sku (2)

where the ElGamal secret keys skc and sku are preserved
from other parties by utilizing additive random perturbations.
Specifically, DO cannot deduce sku from a without knowing
the random number α ∈ Z∗p (here p is the prime order of group
G in ElGamal encryption). Similarly, C1 cannot figure out
skc and sku from rku = skc − sku without knowing either of
them. Obviously, QU cannot get skc because it only receives
the random number α. According to the ReEnc(·) algorithm
of PRE protocol, C1 can use rku to re-encrypt the origi-
nal encrypted classification labels c′i (whose decryption key

VOLUME 6, 2018 41775

W. Wu et al.: Efficient kNN Classification Over Semantically Secure Hybrid Encrypted Cloud Database

Algorithm 3 CRRKG(skc, sku)→ {rku1 , rku2}
Require: DO has skc; QU has sku
To generate rku1 :
1: DO : Choose a random number α1 ∈ Z∗p , a← skc+α1;

send a to C1
2: C1: Choose a random number α2 ∈ Z∗p , rku1 ← a−α2

To generate rku2 :
1: C2: Choose a random number β ∈ Z∗p ; send β to QU
2: QU: b1← β − sku; send b1 to C1
3: C1: b2← b1 + α2; send b2 to DO
4: DO: b3← b2 − α1; send b3 to C2
5: C2: rku2 ← b3 − β

is skc) into new ciphertexts which can be decrypted using
QU’s secret key sku.

This is a simple secure protocol under the assumption
that C1 cannot collude with QU. However, in real-world
situations, this assumption may not be reasonable because
there are many QUs and it is very possible that one QU
is corrupted for money or other benefits. If C1 colludes
with one QU and gets its secret key sku, it is very easy to
compute skc by Eq. (2). Once the secret key skc is revealed,
it severely threatens DO’s database security. To better protect
DO’s secret key skc, we propose a new collusion resistant
Re-encryption key Generation (CRRKG) protocol in next
section.

D. COLLUSION RESISTANT Re-encryption KEY Generation
(CRRKG) PROTOCOL
In this section, we propose a new collusion resistant
Re-encryption key Generation (CRRKG) protocol that pro-
tects DO’s ElGamal secret key skc from C1 and C2 even
if they collude with QU. The new protocol is given in
Algorithm 3 with two secret keys skc and sku as inputs and
two Re-encryption keys rku1 and rku2 as outputs. We first
discuss the detail of the protocol, then analyze its collusion
resistant property.

As shown in Algorithm 3, two Re-encryption keys rku1
and rku2 are generated for C1 and C2 respectively. Under
the non-collusion assumption between the two cloud servers,
the trick of this protocol is that, by randomly generating two
Re-encryption keys for C1 and C2, neither of them can get
enough knowledge to deduce skc even if colluding with QU.
Clearly, using rku1 and rku2 , there will be two Re-encryption
processes performed by C1 and C2, and the details are given
in the later Algorithm 4.

To generate rku1 , DO first randomizes its secret key skc by
computing a = skc + α1 and sends it to C1. Here α1 is a
random number in Z∗p (p is the prime order of group G in
ElGamal encryption) known only to DO. After reveiving a,
C1 also generates a random number α2, and computes the first
Re-encryption key

rku1 = a− α2 = skc − (α2 − α1) = skc − sk1 (3)

where the new ElGamal secret key

sk1 = α2 − α1 (4)

According to the ReEnc(·) algorithm of PRE protocol
(Section III-B), nowC1 can use rku1 to re-encrypt the original
encrypted labels c′i into new ciphertexts c′′i which can be
decrypted using the new secret key sk1. However, C1 cannot
deduce α1 from a, thus it cannot obtain sk1 to decrypt the
re-encrypted classification labels.

To generate rku2 , C2 first picks up a random number β and
sends it to QU. Then QU uses β to perturb its ElGamal secret
key sku by computing b1 = β − sku and sends it to C1. Next
C1 adds α2 to b1 and sends the result b2 to DO.After receiving
b2, DO computes b3 = b2−α1 and sends b3 back to C2, here
α1 is the random number to randomize DO’s secret key skc.
At last, C2 computes the second Re-encryption key rku2 by
removing the random number β from b3 as below

rku2 = b3 − β = (α2 − α1)− sku = sk1 − sku (5)

According to the ReEnc(·) algorithm of PRE protocol
(Section III-B), now C2 can use rku2 to re-encrypt the previ-
ous ciphertexts c′′i into new encrypted labels c′′′i which can be
decrypted usingQU’s secret key sku. However, without know-
ing sk1 and sku, C2 cannot deduce either of them from rku2 ,
therefore it cannot decrypt c′′i and c′′′i to obtain the plain
classification labels.
• Proof of Security for CRRKG: Now we analyze the

security of our CRRKG protocol under the non-collusion
assumption between C1 and C2.
Similar as in SRKG protocol, we first consider the simple

circumstance that C1 and C2 cannot collude with QU. With-
out collusion, C1 has the following knowledge:

(1) α2, (2) a = skc + α1, (3) b1 = β − sku.

Apparently,C1 cannot derive out skc from awithout know-
ing α1 and cannot derive out sku from b1 without knowing
β. Considering C2, without collusion, it has the following
knowledge:

(1) β, (2) rku2 = (α2 − α1)− sku.

Obviously, C2 cannot get skc and cannot deduce sku
from rku2 without knowing α1 and α2. To summarize, our
CRRKG protocol preserves both DO’s secret key skc and
QU’s secret key sku from the two cloud servers.

Now we consider the situation that C1 and C2 may collude
with QU to reveal DO’s secret key skc. By colluding with QU,
C1 has the following knowledge:

(1)α2, (2)a = skc + α1, (3)β, (4)sku

Still, C1 cannot figure out either DO’ secret key skc or the
random number α1 from its new knowledge. Similarly,
by collusion, the knowledge of C2 is

(1)β, (2)rku2 = (α2 − α1)− sku, (3)sku

Apparently, C2 can only derive out α2 − α1, but it cannot
deduce skc based on its new knowledge. Therefore, even

41776 VOLUME 6, 2018

W. Wu et al.: Efficient kNN Classification Over Semantically Secure Hybrid Encrypted Cloud Database

colluding with QU, neither C1 nor C2 can deduce DO’s secret
key skc under the assumption that they cannot collude.

IV. THE PROPOSED SCHEME
In this section, we propose a new privacy preserving kNN
classification (PPKC) protocol over hybrid encrypted cloud
database. Compared with the state-of-the-art PPkNN pro-
tocol in [1], our protocol is more efficient while achiev-
ing the same security and privacy properties: (1) database
security, (2) query privacy and (3) hiding of data access
patterns.

On one hand, similar as the previous work [1], we encrypt
the database points using the Paillier cryptosystem, and uti-
lize its homomorphic properties to perform computation over
ciphertexts. On the other hand, to achieve better efficiency,
our scheme is different from the work [1] in the following
three aspects:

(1) We encrypt the classification labels using the ElGamal
encryption instead of the Paillier encryption (used in [1]),
so we can utilize the Re-encryption property of ElGamal
cryptosystem to transform the encrypted labels.

(2) We compute encrypted inner products instead of
encrypted squared Euclidean distances [1] under the Paillier
encryption, and in this way less encryption and exponentia-
tion operations are required.

(3) We use random permutation over intermediate compu-
tation results sent from C1 to C2 and efficiently hide data
access patterns from both of the cloud servers.

Our proposed scheme consists of five different processes:
(1) key generation; (2) database encryption; (3) query encryp-
tion; (4) encrypted kNN classification and (5) classification
labels decryption. The details of each process are given as
follows.
• Key Generation
In this process, DO randomly generates two public-secret

key pairs: (1) a Paillier cryptosystem key pair (pkp, skp) for
database points pi; (2) an ElGamal cryptosystem key pair
(pkc, skc) for classification labels ci.
• Database Encryption
Assume that DO’s plain database D consists of n tuples t i,

denoted by D = {t1, t2, . . . , tn}, and each t i = {pi, ci} con-
tains a d-dimensional database point pi = (pi1, pi2, . . . , pid)
and a classification label ci. Without loss of generality,
we assume that pij ∈ ZN (the Paillier plaintext space) and
ci ∈ G (the ElGamal plaintext space) for i ∈ [n], j ∈ [d].

Since we introduce two different public key cryptosystems,
to clearly distinguish them, we use Epkp (·) and Dskp (·) to
denote the encryption and decryption operations for Paillier
cryptosystem, and Enc(pkc, ·) and Dec(skc, ·) to denote the
encryption and decryption operations for ElGamal cryptosys-
tem.

We first transform each pi into a (d + 1)-dimensional
point p̂i = (pi,−0.5

∥∥pi∥∥2), which will be used to compute
the inner product instead of the squared Euclidean distance.
Then, for i ∈ [n], DO computes the Paillier encrypted

database points

p′i = (Epkp (p̂i,1),Epkp (p̂i,2), . . . ,Epkp (p̂i,d+1)) (6)

and the ElGamal encrypted classification labels

c′i = Enc(pkc, ci) (7)

The hybrid encrypted database D′ = {t ′1, t
′

2, . . . , t
′
n},

in which the encrypted tuple t ′i = {p
′
i, c
′
i}. Then DO out-

sources D′ to C1, and outsources the Paillier secret key skp
to C2 for further interactive computations. After outsourcing,
DO does not keep a copy of the plain database D and all
further operations are performed by the two cloud servers.
• Query Encryption
For a private plain query point q = (q1, q2, . . . , qd),

QU first generates a positive random number ε ∈ ZN and
transforms q into a (d + 1)-dimensional point q̂ = ε(q, 1).
Without loss of generality, we assume that each qj ∈ ZN for
j ∈ [d]. Then, using DO’s public key pkp, QU computes the
Paillier encrypted query point

q′ = (Epkp (q̂1),Epkp (q̂2), . . . ,Epkp (q̂d+1)) (8)

and submits q′ to C1 for kNN classification.
As shown in the processes of database encryption and

query encryption, we transform pi and q into p̂i and q̂ before
the Paillier encryption. This is because we will compute
the encrypted inner products p̂i · q̂ instead of the encrypted
squared Euclidean distances

∥∥pi − q∥∥2 in the later classifica-
tion process. Now we first prove the correctness of using p̂i · q̂
to determine the kNN classification labels in Theorem 1 , then
analyze the improvement of efficiency by this trick.
Theorem 1: The proposed scheme can correctly determine

whether pi is closer to q than pj by evaluating p̂i · q̂ > p̂j · q̂.
Proof: Note that

p̂i · q̂− p̂j · q̂ = (p̂i − p̂j) · q̂

= (p̂i − p̂j)
T q̂

= (pi − pj)
T (εq)+ (−0.5

∥∥pi∥∥2 + 0.5
∥∥pj∥∥2)ε

= 0.5ε(
∥∥pj∥∥2 − ∥∥pi∥∥2 + 2(pi − pj)

T q)

= 0.5ε(
∥∥pj − q∥∥2 − ∥∥pi − q∥∥2) (9)

In Eq. (9),
∥∥pi − q∥∥ is the Euclidean distance between pi

and q. Since ε > 0, the following equivalent condition is
correct.

p̂i · q̂ > p̂j · q̂⇔
∥∥pj − q∥∥2 > ∥∥pi − q∥∥2 (10)

Therefore, we can use the inner products p̂i · q̂ instead of
the squared Euclidean distances

∥∥pi − q∥∥2 to determine the
kNN classification labels. �

Now we analyze the reason why computing the encrypted
inner products needs less computation cost than computing
the encrypted squared Euclidean distances. Considering the
computation complexity for plain values, each inner product
p̂i · q̂ takes (d+1) multiplications and d additions, while each
squared Euclidean distance

∥∥pi − q∥∥2 takes d subtractions,

VOLUME 6, 2018 41777

W. Wu et al.: Efficient kNN Classification Over Semantically Secure Hybrid Encrypted Cloud Database

d multiplications and (d−1) additions. If these operations are
performed over plaintexts, the difference of the computation
overheads is very small. However, using the homomorphic
property, the computation of squared Euclidean distance over
Paillier encrypted values needs more expensive encryptions
and exponentiations.

Specifically, in our secure inner Product (SIP) protocol
(Section III-A), computing p̂i · q̂ needs (2d + 4) encryptions
and (2d+3) exponentiations. While using the SSED (Secure
Squared Euclidean Distance) protocol in [1], the computation
of encrypted

∥∥pi − q∥∥2 needs d times of SM (Secure Multi-
plication) protocol [1] and d exponentiations. Since each SM
protocol takes 3 encryptions and 3 exponentiations, the total
computation cost of encrypted

∥∥pi − q∥∥2 is 3d encryptions
and 4d exponentiations. For the whole database, computing
n encrypted squared Euclidean distances needs 7nd encryp-
tions and exponentiations, while computing n encrypted inner
products only needs (4nd + 7n) encryptions and exponen-
tiations. Apparently, when n and d are large, computing
encrypted inner products using our SIP protocol is more effi-
cient than computing encrypted squared Euclidean distances
using the SSED protocol.
• Encrypted kNN Classification
This is the core process of our proposed scheme. In this

process, we propose a new privacy preserving kNN classi-
fication (PPKC) protocol in Algorithm 4. By using our SIP
protocol (Section III-A) and the PRE protocol (Section III-B)
in our PPKC protocol, C1 and C2 collaborate to perform the
kNN classification over the hybrid encrypted database and
return the re-encrypted kNN classification labels to the cor-
responding QU. During this protocol, both database security
and query privacy are well preserved, and data access patterns
are also hidden from the two cloud servers.

As shown in Algorithm 4, the PPKC protocol takes the
encrypted database D′, the encrypted query point q′, the Pail-
lier secret key skp and two ElGamal Re-encryption keys
rku1 and rku2 as input, and outputs a set C ′q consisting of
the re-encrypted kNN classification labels. Here the two
Re-encryption keys rku1 and rku2 are securely generated using
our proposed CRRKG protocol (Section III-D). To point
out, we only need to perform the CRRKG protocol once
for each QU, while C1 and C2 will keep the corresponding
Re-encryption keys for further kNN classification processes.

In the protocol, C1 first performs several steps of computa-
tions, then sends the intermediate results toC2, who performs
the other steps and returns the re-encrypted kNN classifica-
tion labels to the corresponding QU. Now we discuss our
proposed PPKC in detail.

To start, C1 randomly generates two one-time positive
numbers λ1, λ2 ∈ ZN (the Paillier plaintext space). Then,
in step 1(b), C1 first uses the SIP protocol to compute
the Paillier encrypted inner product Epkp (p̂i · q̂) between
each encrypted database point p′i and the encrypted query
point q′. Next, C1 adds random noises to Epkp (p̂i · q̂) and
obtains dst ′′i = Epkp (λ1 ∗ p̂i · q̂ + λ2) according to the

Algorithm 4 PPKC(D′, q′, skp, rku1 , rku2)→ C ′q
Require: C1 has D′, q′ and rku1 ; C2 has skp and rku2
1: C1:

(a). Generate two one-time positive random numbers
λ1, λ2 ∈ ZN
(b). For i ∈ [n] do:
• Epkp (p̂i · q̂)← SIP(p′i, q

′)
• dst ′′i ← Epkp (p̂i · q̂)

λ1 ∗ Epkp (λ2)
• c′′i ← ReEnc(rku1 , c

′
i)

(c). Generate a n-length random permutation function π
(d). Perform the following permutations:
• ˜dst ← π (dst ′′), where dst ′′ = {dst ′′1 , dst

′′

2 , . . . , dst
′′
n }

• C̃ ← π (C ′′), where C ′′ = {c′′1, c
′′

2, . . . , c
′′
n}

(e). Send ˜dst and C̃ to C2
2: C2:
(a). Receive ˜dst and C̃
(b). For i ∈ [n], ˆdst i← Dskp (˜dst i)
(c). Compute a fuction Sort(·) that places ˆdst i in a

descending order
(d). Č ← Sort(C̃)
(e). For j ∈ [k], c′′′j ← ReEnc(rku2 , čj)
(f). Send C ′q = {c

′′′

1 , c
′′′

2 , . . . , c
′′′
k } to QU

homomorphic properties of Paillier encryption. After that,
C1 uses the ReEnc(·) algorithm in the PRE protocol to com-
pute the first round re-encrypted classification labels c′′i =
ReEnc(rku1 , c

′
i). As mentioned in Section III-D, C1 cannot

decrypt the re-encrypted values because it does not know the
new decryption key sk1 (given in Eq. (4)) to c′′i . After that,
C1 generates a random permutation function π and uses it to
permute the two sets dst ′′ and C ′′. Then, C1 sends the inter-
mediate computation results ˜dst = { ˜dst1, ˜dst2, . . . , ˜dstn} and
C̃ = {c̃1, c̃2, . . . , c̃n} to C2. Here the random permutation
prevents C2 to figure out the correspondence between its
received values and the encrypted database tuples, which
hides data access patterns from C2.
After receiving ˜dst, C2 uses the Paillier secret key skp to

decrypt each ˜dst i into the plain value ˆdst i. Note that ˆdst i =
λ1 ∗ p̂i · q̂ + λ2, since both λ1 and λ2 are positive numbers,
ˆdst i are in the same order with the corresponding inner prod-
ucts p̂i · q̂. Therefore, according to Theorem 1, we can use
ˆdst i to perform kNN search. Then, C2 computes a fuction
Sort(·) that places ˆdst i in a descending order since a larger
inner product indicates a closer database point to the query
point according to Theorem 1. After that, C2 computes Č =
Sort(C̃) and picks the first k values č1, č2, . . . , čk from Č.
For each čj, C2 computes a second round classification label
Re-encryption c′′′j = ReEnc(rku2 , čj) using the Re-encryption
key rku2 = sk1− sku (Eq. (5)). As discussed in Section III-D,
now the new re-encrypted labels c′′′j can be decrypted
using QU’s ElGamal secret key sku. At last, C2 sends the
set of re-encrypted kNN classification labels C ′q to the
corresponding QU.

41778 VOLUME 6, 2018

W. Wu et al.: Efficient kNN Classification Over Semantically Secure Hybrid Encrypted Cloud Database

In Algorithm 4, to ensure the correctness of comparison,
C1 needs to carefully choose λ1 and λ2 to make sure that the
randomized inner products ˆdst i = λ1∗p̂i·q̂+λ2 are all smaller
than N . As shown in the equation, the values also depend
on the original inner products p̂i · q̂. Since we cannot obtain
every plain query point in advance, we can compute the inner
products between database points and use their value range as
an approximate estimation. This is reasonable because query
points should locate in the same space of the database points.
This process is a one-time work and can be performed by
DO before outsourcing the database. Note that we also use a
positive random number ε to multiplicatively perturb a query
point before query encryption, which is only known by the
corresponding QU. Therefore, C1 should choose a relatively
small λ1 depending on the value range of inner products
(provided by DO) and the value range of the random number
ε (provided by QU). Since λ2 is an additive perturbation, its
value range can be relatively large while guaranteeing the
values of the randomized inner products are all smaller than
N .
• Classification Labels Decryption
After receiving C ′q from C2, QU uses its ElGamal secret

key sku to perform classification labels decryption cj =
Dec(sku, c′′′j) and obtains the plain kNN classification labels
Cq = {c1, c2, . . . , ck}.

V. SECURITY ANALYSIS
Firstly, we emphasize that the submitted query point q′ is
encrypted using the semantically secure Paillier cryptosys-
tem, therefore, QU’s plain query point q is protected from
DO, C1 and C2 in our PPKC protocol. Apart from preserving
the plain query point, the goal of PPKC is to achieve database
security, hide data access patterns and protect the plain kNN
classification labels.

In this section, to prove the security of our PPKC protocol
under the semi-honest model, we use the well-known security
definition from the work of SMC (secure multi-party com-
putation) as given in Section II-C. Based on Definition 1,
we provide the formal security proof for PPKC under the
semi-honest model as follows.

According to Algorithm 4, the execution image of C2 is
5C2 (PPKC) as below

{

〈
˜dst i, ˆdst i

〉
, c̃i, c′′′j | for i, j ∈ [n], [k]}

where ˜dst i is the randomly permuted perturbed inner prod-
uct under Paillier encryption and ˆdst i is the corresponding
decrypted value, and c̃i is the permuted first-round ElGamal
re-encrypted classification label while c′′′j is the second-round
ElGamal re-encrypted label.Without loss of generality, let the
simulated image of C2 be 5S

C2
(PPKC) as below

{
〈
δ7,i, δ8,i

〉
, δ9,i, δ10,j| for i, j ∈ [n], [k]}

Here δ7,i is randomly generated from ZN 2 (the Paillier
ciphertext space) and δ8,i is randomly generated from ZN

(the Paillier plaintext space), while δ9,i and δ10,j are ran-
domly generated from C (the ElGamal ciphertext space).
Since both Epkp (·) (the Paillier encryption) and Enc(pkc, ·)
(the ElGamal encryption) are semantically secure encryption
schemes, and the Re-encryption algorithm ReEnc(rku2 , čj)
(Section III-B) does not disclose any information of the cor-
responding plaintext ci, we claim that ˜dst i, c̃i and c′′′j are
computationally indistinguishable from δ7,i, δ9,i and δ10,j.
Besides, since the random permutation function π is only
known to C1, ˆdst = { ˆdst1, ˆdst2, . . . , ˆdstn} is a random vector
in ZN . Therefore, ˆdst is computationally indistinguishable
from δ8 = {δ8,1, δ8,2, . . . , δ8,n}. This implies that C2 cannot
trace back to the corresponding database tuples, which hides
data access patterns from C2. Based on all these results,
we can conclude that 5C2 (PPKC) is computationally indis-
tinguishable from5S

C2
(PPKC). This guarantees thatC2 learns

nothing during the execution of PPKC protocol.
On the other hand, the execution image5C1 (PPKC) of C1

is given by

{Epkp (p̂i · q̂), c
′′
i | for i ∈ [n]}

where Epkp (p̂i · q̂) is the Paillier encrypted inner product and
c′′i is the first round ElGamal re-encrypted classification label.
Let the simulated image5S

C1
(PPKC) of C1 be given by

{δ11,i, δ12,i| for i ∈ [n]}

where δ11,i is randomly generated from ZN 2 and δ12,i is
randomly generated from C. Since we proved that our SIP
protocol is secure in Section III-A and the Re-encryption
algorithm ReEnc(rku1 , c

′
i) does not disclose any information

of the corresponding plaintext ci, we claim that Epkp (p̂i · q̂)
and c′′i are computationally indistinguishable from δ11,i and
δ12,i. This implies that5C1 (PPKC) is computationally indis-
tinguishable from5S

C1
(PPKC). Therefore, C1 cannot deduce

anything during the execution of PPKC protocol. Apparently,
since Epkp (p̂i · q̂) are encrypted values, C1 cannot use them to
determine the kNN results, which hides data access patterns
from C1. Based on all these results, we claim that our pro-
posed PPKC protocol is secure under the semi-honest model.

VI. PERFORMANCE EVALUATION
We analyze the cost of our proposed PPKC protocol and
evaluate its performance with experiments in this section.

A. COST ANALYSIS
As given in Section II-A, n is the number of database tuples,
d is the dimension of data points and k is the number of
nearest neighbors. In our proposed PPKC protocol, C1 and
C2 together need to perform n times SIP protocol, n + k
classification label re-encryptions, n Paillier decryptions and
other random permutation and sort operations. As discussed
in Section IV, for the whole database, computing n times
SIP protocol takes (4nd + 7n) encryptions and exponen-
tiations, while computing n times SSED (Secure Squared
Euclidean Distance) protocol [1] needs 7nd encryptions and
exponentiations. Therefore, when n and d are large, using SIP

VOLUME 6, 2018 41779

W. Wu et al.: Efficient kNN Classification Over Semantically Secure Hybrid Encrypted Cloud Database

protocol needs less computation cost than using the SSED
protocol. In addition, the PPkNN protocol in [1] needs to
execute n times SBD (secure bit-decomposition) sub-protocol
and k times SMINn (secure minimum out of n numbers) sub-
protocol. Since the SMINn sub-protocol is computationally
expensive, our PPKC protocol is much more efficient than
the PPkNN protocol while achieving the same security prop-
erties. Besides, as shown in the experiment results in [1],
the computation costs increase linearly with the number of
nearest neighbors k , while the computation cost of our PPKC
protocol is not mainly subject to k . In next section, we show
the performance of our PPKC protocol in experiments
by comparing it with the state-of-the-art PPkNN protocol
in [1].

B. EXPERIMENT RESULTS
In this section, we present some experiments to demonstrate
the performance of our PPKC protocol under different param-
eter settings using Python language. All experiments were
conducted on Windows with Intel Core i7 2.8 GHz CPU
and 8 GB RAM. We compare our PPKC protocol with the
state-of-the-art PPkNN protocol in [1]. The results show that
our PPKC protocol is much more efficient than the PPkNN
protocol while achieving the same security properties.

Our experiments are performed on synthetic databases.
A synthetic database consists of n database tuples in which
each database tuple contains an uniformly distributed random
d-dimensional database point and a numerical classification
label. We encrypted the database points using the Paillier
encryption whose key size K1 is 1024 bits, and encrypted
the classification labels using the ElGamal encryption whose
key size K2 is 1024 bits. We ran random queries over the
encrypted database and returned the re-encrypted kNN clas-
sification labels.

We do not discuss the computation cost for DO since it is a
one-time cost. Considering the on-line computation cost for a
QU, encrypting a query point needs about 0.1 s when d = 5,
while decrypting an encrypted label only needs about 4 ms,
i.e., it also needs about 0.1 s to decrypt all the received kNN
labels when k = 25. Compared with the computationally
expensive on-line encrypted kNN classification, the compu-
tation burden for QU is almost negligible and acceptable in
real-world situation.

To clearly show the performance and comparison affected
by different values of n, d and k , we present three different
experiments by changing one parameter and keep the other
two parameters fixed. Here, n is the number of database
tuples, d is the dimension of data points and k is the number
of nearest neighbors. The detailed experiment results and
analysis are given as follows.

1) VARYING THE NUMBER OF DATABASE TUPLES n
In this experiment, we randomly generate databases by vary-
ing n from 1000 to 5000 with fixed d = 5. For each synthetic
database, we run 100 random queries with fixed k = 5 and
record the average execution time. The performance of our

PPKC protocol and the PPkNN protocol are shown in Table 1
and Figure 2.

TABLE 1. Average execution time vs. n (d = 5,k = 5).

FIGURE 2. Average execution time (in log10(s)) vs. n (d = 5,k = 5).

As shown in Table 1, the computation costs for both
of the two protocols increase along with the number of
database tuples n. For our PPKC protocol, it takes 23.72 s
to execute one encrypted kNN classification process over
a small database with n = 1000 and takes 95.30 s for
a relatively large database with n = 5000. While for the
PPkNN protocol, it needs 36.62 minutes for n = 1000 and
173.92 minutes (almost 3 hours) for n = 5000. Apparently,
our PPKC protocol is much more efficient than the PPkNN
protocol. The main reason is that in our PPKC protocol we
only utilize proxy Re-encryption (PRE) and random permu-
tation to hide data access patterns, whose costs are relatively
cheap. While in PPkNN protocol, it needs to execute n times
SBD (secure bit-decomposition) sub-protocol and k times
computationally expensive SMINn (secure minimum out of n
numbers) sub-protocol [1]. Another reason is that we use our
SIP sub-protocol instead of SSED (Secure Squared Euclidean
Distance) sub-protocol (used in PPkNN), so we only need to
compute (4nd + 7n) encryptions and exponentiations instead
of 7nd encryptions and exponentiations. Therefore, when n
is large, using SIP sub-protocol needs less computation cost
than using the SSED sub-protocol.

To better show the efficiency of our PPKC protocol,
we also draw the logarithmic computation cost in Figure 2.
It is clear that our PPKC protocol needs about two orders
of magnitude less execution time than the PPkNN proto-
col. Therefore, with the same security and privacy proper-
ties, our PPKC protocol is more practical than the previous
PPkNN protocol.

2) VARYING THE DIMENSION OF DATA POINTS d
In this experiment, we randomly generate databases by vary-
ing d from 5 to 25 with fixed n = 1000. For each synthetic

41780 VOLUME 6, 2018

W. Wu et al.: Efficient kNN Classification Over Semantically Secure Hybrid Encrypted Cloud Database

database, we run 100 random queries with fixed k = 5 and
record the average execution time. The performance of our
PPKC protocol and the PPkNN protocol are shown in Table 2
and Figure 3.

TABLE 2. Average execution time vs. d (n = 1000,k = 5).

FIGURE 3. Average execution time (in log10(s)) vs. d (n = 1000,k = 5).

As shown in Table 2, the computation costs for our PPKC
protocol increase along with the dimension of data points d ,
while the costs for the PPkNN protocol almost stay the same
when d changes (only increase a little with d). For our PPKC
protocol, it takes 22.83 s to execute one encrypted kNN classi-
fication process with a small data dimension d = 5 and takes
47.78 s for a relatively large data dimension d = 25. While
for the PPkNN protocol, it needs 36.77 minutes for d = 5 and
38.35minutes for d = 25. Obviously, our PPKC protocol still
needs much less computation cost than the PPkNN protocol
when data dimension d grows. The reason why the execution
time of the PPkNN protocol remain almost unchanged is that
only the SSED sub-protocol in PPkNN is subject to the data
dimension d while the main computation cost comes from
the execution of k times SMINn sub-protocol. We will see
that the PPkNN protocol needs apparently more computation
cost when the number of nearest neighbors k increases in the
next experiment.

To clearly show performance improvement of our PPKC
protocol compared with the PPkNN protocol, we also draw
the logarithmic computation cost in Figure 3. As shown in
the figure, the execution time of the PPkNN protocol stay
unchanged, while our PPKC protocol takesmore timewhen d
grows. However, when d = 25, the computation cost of our
PPKC protocol is still about 1.7 orders of magnitude lower
than that of the PPkNN protocol. Hence, our PPKC protocol
also performs much more efficient than the PPkNN protocol
when data dimension d increases.

3) VARYING THE NUMBER OF NEAREST NEIGHBORS k
In this experiment, we randomly generate one database with
fixed n = 1000 and d = 5. Over this synthetic database,
we vary the number of nearest neighbors k from 5 to 25 and
run 100 random queries for each value of k . We record the
average execution time in Table 3 and draw the logarithmic
computation cost in Figure 4.

TABLE 3. Average execution time vs. k (n = 1000,d = 5).

FIGURE 4. Average execution time (in log10(s)) vs. k (n = 1000,d = 5).

As we can see in Table 3, the computation costs for the
PPkNN protocol grow along with the number of nearest
neighbors k , while the costs for our PPKC protocol remain
almost the same when k varies (only grow a little with k).
For our PPKC protocol, it takes 23.32 s to execute one
encrypted kNN classification process with a small k = 5
and takes 24.73 s for a relatively large k = 25. While for
the PPkNN protocol, it needs 36.89 minutes when k = 5
and 163.75 minutes (almost 3 hours) when k = 25. Obvi-
ously, our PPKC protocol is much more efficient than the
PPkNN protocol especially when more nearest neighbors
are required (a larger k). The reason why the execution
time of our PPKC protocol remain almost unchanged is that
only the computations of the second round re-encryptions
(Algorithm 4 Step 2(e)) are subject to the number of nearest
neighbors k , which are not the main computation cost in
PPKC. On the contrary, as discussed before, the main com-
putation cost of PPkNN comes from the execution of k times
SMINn sub-protocol, making the protocol computationally
expensive when k is large.
To better show the efficiency of our PPKC protocol,

we also draw the logarithmic computation cost in Figure 4.
As we can see in the figure, the execution time of our PPKC
protocol stay the same, while the PPkNNprotocol needsmore
time when k increases. Specifically, when k = 5, our PPKC
protocol is about 2 orders of magnitude more efficient than

VOLUME 6, 2018 41781

W. Wu et al.: Efficient kNN Classification Over Semantically Secure Hybrid Encrypted Cloud Database

the PPkNN protocol and when k = 25, our PPKC protocol
achieves 2.5 orders of magnitude faster than the PPkNN
protocol. Apparently, the PPkNN protocol is very slow when
more nearest neighbors are required (a larger k), while our
PPKC protocol keeps efficient when the number of nearest
neighbors k increases.

VII. RELATED WORK
In recent years, a great number of works have been pro-
posed to deal with data security and user privacy, such as
access control techniques [22], [23], searchable encryption
schemes [24], [25] and and privacy preserving data mining
methods [26]–[28]. Recently, to efficiently perform compar-
ison over encrypted data, Li et al. [29] propose a protocol
based on a hybrid approach of Paillier cryptosystem and
garbled circuits. Nevertheless, none of these existing works
can be directly applied to solve the problem of secure kNN
query over encrypted cloud database.

To protect data security in outsourced classification
scenario, Rahulamathavan et al. [30] propose a privacy pre-
serving SVM classification scheme by using the Paillier cryp-
tosystem. Pointed out by Li et al. [31], the scheme in [30]
has some soundness and security problems and they present
a new scheme fixing the problems with better efficiency.
Although both of the schemes focus on privacy preserving
classification, they only provide a client-server model in their
protocols. Moreover, the normalization and SVM parameters
in the server side are all plain values, while the outsourced
databases for kNN classification are generally in encrypted
form. Thus, we also cannot use the schemes in [30] and [31]
to deal with the problem of privacy preserving kNN classifi-
cation.

One method to execute encrypted kNN query is the
distance-preserving transformation (DPT) [32], which is
proved to be insecure in the work [33]. Later, Wong et al. [3]
provide a proof that distance-recoverable encryptions (DRE),
such as DPT, are vulnerable against a low level attack in
which the attacker have access to the encrypted database
and some plain database tuples (the level-2 attack in [3]).
To better protect the private database, Wong et al. [3] propose
an asymmetric scalar-product-preserving encryption (ASPE)
scheme, in which the encryption (decryption) key for both
database points and query points is an invertible random
matrix. Since the basic ASPE scheme can only resist the
level-2 attack, the authors also propose an enhanced ASPE
scheme that introduces random asymmetric splitting with
additional artificial dimensions, making it secure against the
level-3 attack [3]. Considering its good security property and
efficiency, the ASPE scheme has been utilized as a black-box
in many other works, such as [34]–[36].

Other works [4]–[6] present some schemes to approxi-
mately perform the secure kNN query. Yiu et al. [4] pro-
pose several transformation methods which provide some
trade-offs among data security, query computation cost
and result accuracy. Yao et al. [5] present a secure kNN
query scheme based on the partition-based secure Voronoi

diagram (SVD). Xu et al. [6] propose a random space per-
turbation (RASP) technique to securely perform the kNN
query. In addition, Choi et al. [37] present two secure kNN
query methods (VD-kNN and TkNN) based on the mutable
order-preserving encoding (mOPE) [38]. However, all these
works [3]–[6], [37] assume that the query users are trusted
who have access to DO’s secret key. Under this assumption,
once one QU is corrupted, the attacker can easily break the
encrypted database.

To perform query encryption without sharing DO’s secret
key, Zhu et al. [7], [8] propose a scheme using an interac-
tive protocol between QU and DO. In this protocol, a QU
can only figure out partial information of DO’s secret key.
Later, Zhu et al. [9] propose another scheme introducing the
Paillier cryptosystem in query encryption. However, the use
of the Paillier cryptosystem brings about heavy computation
cost for both QU and DO, making the process inefficient.
Although these works [7]–[9] protect DO’s secret key against
the query users, they require DO staying on-line to partic-
ipate during the process of query encryption. Nevertheless,
this on-line requirement may not be practical in real-world
scenarios since it introduces extra computation and commu-
nication overheads for DO [39]. To address this problem,
Zhou et al. [39] present an efficient secure kNNquery scheme
over encrypted database revealing only limited information
of DO’s secret key to query users without DO’s on-line par-
ticipation. Although these works [7]–[9], [39] protect DO’s
secret key, they can neither resist a high level attack (the
level-3 attack [3]) nor hide data access patterns from cloud
servers.

To hide data access patterns from cloud servers,
Elmehdwi et al. [10] introduce two non-colluding semi-
honest clouds to securely perform kNN query over Paillier
encrypted database. In this work, based on the homomor-
phic properties of Paillier cryptosystem, several secure sub-
protocols, such as SSED (secure squared Euclidean distance)
protocol, SBD (secure bit-decomposition) protocol, SMIN
(secure minimum) protocol and SMINn (secure minimum out
of n numbers) protocol are used to build the SkNNm (fully
secure kNN) protocol. Although this is the first work that
hides data access patterns from cloud servers, it introduces
very high computation cost which may prevent its application
over large databases. Besides, the computation complexity
is subject to the number of nearest neighbors k , since k
times computationally expensive SMINn sub-protocol are
required in one kNN query process. Based on [10], by intro-
ducing other sub-protocols, such as SF (secure frequency)
protocol and SCMCk (secure computation of majority class)
protocol, a PPkNN (privacy preserving kNN) classifica-
tion protocol is proposed in [1]. Similarly, this work also
hides data access patterns with expensive computation costs.
Recently, Rong et al. [40] propose a collaborative kNN pro-
tocol base on a set of secure building blocks using the
ElGamal encryption in multiple cloud environments. The
protocol also hides data access patterns and is designed
without bit-decomposition (used in [1]), and therefore needs

41782 VOLUME 6, 2018

W. Wu et al.: Efficient kNN Classification Over Semantically Secure Hybrid Encrypted Cloud Database

less computation cost than the protocol in [1]. Nevertheless,
as shown in the experiment results [40], performing their
protocol with k = 5 still needs 35.59 minutes over an
encrypted database with n = 4898 and d = 12. Compared
with our PPKC protocol, which only needs 95.30 s (about
1.6 minutes) when k = 5, n = 5000 and d = 5 (in Table 1),
the protocol in [40] also requires much more computation
cost to achieve the same security properties.

In our previous work [11], we design an efficient pri-
vacy preserving kNN classification scheme, which protects
database security, DO’s key confidentiality, query privacy and
hides data access patterns. Both this work and the previous
one use random permutation method to hide data access
patterns. To guarantee that only the corresponding QU can
correctly decrypt the kNN classification labels, we present
different Re-encryption and Re-encryption key generation
approaches in the two works, and the new proposed CRRKG
protocol can also resist collusion between cloud server and
QU. We emphasize that this new work utilizes Paillier and
ElGamal cryptosystems which provide semantic security for
the outsourced database, while our previous work does not
achieve this security property. On the other hand, as shown in
the experiments in [11], the previous scheme is very efficient
even for large database (n = 1000K) and big data dimension
(d = 500). Therefore, if the database is highly sensitive,
DO can choose this new scheme for better privacy protection,
while if the required privacy level is low, DO can choose our
previous scheme for a better computation performance.

VIII. CONCLUSION AND FUTURE WORK
This paper proposed a novel efficient protocol PPKC address-
ing the problem of privacy preserving kNN classification
over semantically secure encrypted cloud database. The pro-
posed protocol protects database security, query privacy and
hides data access patterns from cloud servers. We formally
proved the security of our PPKC protocol and evaluated its
efficiency in experiments compared with the state-of-the-art
PPkNN protocol. The experiment results showed that our
PPKC protocol is much more efficient than the PPkNN pro-
tocol while achieving the same security properties. For future
work, we plan to investigate and extend our work with more
practical scenarios, such as performing privacy preserving
kNN classification in multiple clouds environments.

REFERENCES
[1] B. K. Samanthula, Y. Elmehdwi, and W. Jiang, ‘‘k-nearest neigh-

bor classification over semantically secure encrypted relational data,’’
IEEE Trans. Knowl. Data Eng., vol. 27, no. 5, pp. 1261–1273,
May 2015.

[2] P. M.Mell and T. Grance, ‘‘The NIST definition of cloud computing,’’ Nat.
Inst. Standards Technol., Tech. Rep., 2011.

[3] W. K. Wong, D. W.-L. Cheung, B. Kao, and N. Mamoulis, ‘‘Secure kNN
computation on encrypted databases,’’ in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2009, pp. 139–152.

[4] M. L. Yiu, I. Assent, C. S. Jensen, and P. Kalnis, ‘‘Outsourced similarity
search onmetric data assets,’’ IEEE Trans. Knowl. Data Eng., vol. 24, no. 2,
pp. 338–352, Feb. 2012.

[5] B. Yao, F. Li, and X. Xiao, ‘‘Secure nearest neighbor revisited,’’ in Proc.
29th Int. Conf. Data Eng. (ICDE), Apr. 2013, pp. 733–744.

[6] H. Xu, S. Guo, and K. Chen, ‘‘Building confidential and efficient query
services in the cloud with RASP data perturbation,’’ IEEE Trans. Knowl.
Data Eng., vol. 26, no. 2, pp. 322–335, Feb. 2014.

[7] Y. Zhu, R. Xu, and T. Takagi, ‘‘Secure k-NN computation on encrypted
cloud data without sharing key with query users,’’ in Proc. Int. Workshop
Secur. Cloud Comput., 2013, pp. 55–60.

[8] Y. Zhu, R. Xu, and T. Takagi, ‘‘Secure k-NN query on encrypted cloud
database without key-sharing,’’ Int. J. Electron. Secur. Digit. Forensics,
vol. 5, nos. 3–4, pp. 201–217, 2013.

[9] Y. Zhu, Z. Huang, and T. Takagi, ‘‘Secure and controllable k-NN query
over encrypted cloud data with key confidentiality,’’ J. Parallel Distrib.
Comput., vol. 89, pp. 1–12, Mar. 2016.

[10] Y. Elmehdwi, B. K. Samanthula, andW. Jiang, ‘‘Secure k-nearest neighbor
query over encrypted data in outsourced environments,’’ in Proc. IEEE
30th Int. Conf. Data Eng. (ICDE), Mar./Apr. 2014, pp. 664–675.

[11] W. Wu, U. Parampalli, J. Liu, and M. Xian, ‘‘Privacy preserving K-nearest
neighbor classification over encrypted database in outsourced cloud envi-
ronments,’’ in Proc. World Wide Web, 2018, pp. 1–23.

[12] S. Bugiel, S. Nürnberger, A.-R. Sadeghi, and T. Schneider, ‘‘Twin clouds:
An architecture for secure cloud computing,’’ in Proc. Workshop Cryptogr.
Secur. Clouds (WCSC), 2011, pp. 1–11.

[13] A. C. Yao, ‘‘Protocols for secure computations,’’ inProc. 23rd Annu. Symp.
Found. Comput. Sci. (SFCS), Nov. 1982, pp. 160–164.

[14] O. Goldreich, S. Micali, and A. Wigderson, ‘‘How to play any men-
tal game,’’ in Proc. 9th Annu. ACM Symp. Theory Comput., 1987,
pp. 218–229.

[15] O. Goldreich, ‘‘General cryptographic protocols,’’ in The Foundations of
Cryptography, vol. 2. Cambridge, U.K.: Cambridge Univ. Press, 2004.

[16] O. Goldreich, ‘‘Encryption schemes,’’ in The Foundations of Cryp-
tography, vol. 2. Cambridge, U.K.: Cambridge Univ. Press, 2004,
pp. 373–470. [Online]. Available: http://www.wisdom.weizmann.ac.il/
~oded/PSBookFrag/enc.ps

[17] P. Paillier, ‘‘Public-key cryptosystems based on composite degree residu-
osity classes,’’ in Advances in Cryptology—EUROCRYPT, vol. 99. Prague,
Czech Republic: Springer, 1999, pp. 223–238.

[18] S. Goldwasser, S. Micali, and C. Rackoff, ‘‘The knowledge complexity of
interactive proof systems,’’ SIAM J. Comput., vol. 18, no. 1, pp. 186–208,
1989.

[19] M. Blaze, G. Bleumer, and M. Strauss, ‘‘Divertible protocols and atomic
proxy cryptography,’’ in Proc. Int. Conf. Theory Appl. Cryptogr. Techn.,
1998, pp. 127–144.

[20] J. Liu, H. Wang, M. Xian, H. Rong, and K. Huang, ‘‘Reliable and con-
fidential cloud storage with efficient data forwarding functionality,’’ IET
Commun., vol. 10, no. 6, pp. 661–668, Apr. 2016.

[21] T. ElGamal, ‘‘A public key cryptosystem and a signature scheme based
on discrete logarithms,’’ IEEE Trans. Inf. Theory, vol. IT-31, no. 4,
pp. 469–472, Jul. 1985.

[22] H. Wang, Y. Zhang, and J. Cao, ‘‘Effective collaboration with information
sharing in virtual universities,’’ IEEE Trans. Knowl. Data Eng., vol. 21,
no. 6, pp. 840–853, Jun. 2009.

[23] M. Li, X. Sun, H. Wang, Y. Zhang, and J. Zhang, ‘‘Privacy-aware access
control with trust management in Web service,’’ in Proc. World Wide Web,
vol. 14, no. 4, 2011, pp. 407–430.

[24] C. Wang, N. Cao, K. Ren, and W. Lou, ‘‘Enabling secure and efficient
ranked keyword search over outsourced cloud data,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 23, no. 8, pp. 1467–1479, Aug. 2012.

[25] S. Kamara, C. Papamanthou, and T. Roeder, ‘‘Dynamic searchable sym-
metric encryption,’’ in Proc. ACM Conf. Comput. Commun. Secur., 2012,
pp. 965–976.

[26] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke, ‘‘Privacy preserving
mining of association rules,’’ Inf. Syst., vol. 29, no. 4, pp. 343–364, 2004.

[27] C. C. Aggarwal and S. Y. Philip, ‘‘A general survey of privacy-preserving
data mining models and algorithms,’’ in Privacy-Preserving Data Mining.
Boston, MA, USA: Springer, 2008, pp. 11–52.

[28] M. E. Kabir, H. Wang, and E. Bertino, ‘‘Efficient systematic clustering
method for k-anonymization,’’ Acta Inf., vol. 48, no. 1, pp. 51–66, 2011.

[29] X.-X. Li, Y.-W. Zhu, and J. Wang, ‘‘Efficient encrypted data comparison
through a hybrid method,’’ J. Inf. Sci. Eng., vol. 33, no. 4, pp. 953–964,
2017.

[30] Y. Rahulamathavan, R. C.-W. Phan, S. Veluru, K. Cumanan, and
M. Rajarajan, ‘‘Privacy-preserving multi-class support vector machine for
outsourcing the data classification in cloud,’’ IEEE Trans. Dependable
Secure Comput., vol. 11, no. 5, pp. 467–479, Sep./Oct. 2014.

VOLUME 6, 2018 41783

W. Wu et al.: Efficient kNN Classification Over Semantically Secure Hybrid Encrypted Cloud Database

[31] X. Li, Y. Zhu, J. Wang, Z. Liu, Y. Liu, and M. Zhang, ‘‘On the soundness
and security of privacy-preserving SVM for outsourcing data classifica-
tion,’’ IEEE Trans. Dependable Secure Comput., to be published.

[32] S. R. M. Oliveira and O. R. Zaiane, ‘‘Privacy preserving clustering
by data transformation,’’ in Proc. Brazilian Symp. Databases, 2003,
pp. 304–318.

[33] K. Liu, C. Giannella, and H. Kargupta, ‘‘An attacker’s view of distance
preserving maps for privacy preserving data mining,’’ in Knowledge Dis-
covery in Databases: PKDD. Berlin, Germany: Springer-Verlag, 2006,
pp. 297–308.

[34] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, ‘‘Privacy-preserving multi-
keyword ranked search over encrypted cloud data,’’ in Proc. INFOCOM,
Apr. 2011, pp. 829–837.

[35] N. Cao, Z. Yang, C.Wang, K. Ren, andW. Lou, ‘‘Privacy-preserving query
over encrypted graph-structured data in cloud computing,’’ in Proc. 31st
Int. Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2011, pp. 393–402.

[36] W. Sun et al., ‘‘Privacy-preserving multi-keyword text search in the cloud
supporting similarity-based ranking,’’ in Proc. 8th ACM SIGSAC Symp.
Inf., Comput. Commun. Secur., 2013, pp. 71–82.

[37] S. Choi, G. Ghinita, H.-S. Lim, and E. Bertino, ‘‘Secure kNN query
processing in untrusted cloud environments,’’ IEEE Trans. Knowl. Data
Eng., vol. 26, no. 11, pp. 2818–2831, Nov. 2014.

[38] R. A. Popa, F. H. Li, and N. Zeldovich, ‘‘An ideal-security protocol for
order-preserving encoding,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2013, pp. 463–477.

[39] L. Zhou, Y. Zhu, and A. Castiglione, ‘‘Efficient k-NN query over encrypted
data in cloud with limited key-disclosure and offline data owner,’’ Comput.
Secur., vol. 69, pp. 84–96, Aug. 2016.

[40] H. Rong, H.-M. Wang, J. Liu, and M. Xian, ‘‘Privacy-preserving k-nearest
neighbor computation in multiple cloud environments,’’ IEEE Access,
vol. 4, pp. 9589–9603, 2016.

WEI WU is currently pursuing the Ph.D. degree
with the School of Electronic Science, National
University of Defense Technology. His research
interests include privacy preserving data mining
and cloud computing security.

JIAN LIU received the B.S., M.S., and Ph.D.
degrees from the National University of Defense
Technology in 2009, 2011, and 2016, respectively.
He is currently a Lecturer with the School of Elec-
tronic Science, National University of Defense
Technology. His research interests include secure
data outsourcing in cloud computing, public audit-
ing, and access control mechanisms.

HONG RONG received the M.S. and Ph.D.
degrees from the National University of Defense
Technology in 2013 and 2018, respectively. His
research interests include privacy-preserving data
mining, cloud computing security, and big data
security.

HUIMEI WANG received the B.S. degree from
Southwest Jiaotong University in 2004, and the
M.S. and Ph.D. degrees from the National Uni-
versity of Defense Technology in 2007 and 2012,
respectively. She is currently a Lecturer with the
School of Electronic Science, National Univer-
sity of Defense Technology. Her research interests
include evaluation techniques in network security,
cloud computing, and distributed systems.

MING XIAN received the B.S., M.S., and Ph.D.
degrees from the National University of Defense
Technology in 1991, 1995, and 1998, respectively.
He is currently a Professor with the School of Elec-
tronic Science, National University of Defense
Technology. His research interests include on
cryptography and information security, cloud com-
puting, wireless sensor network and system mod-
eling, and simulation and evaluation. His research
was supported by the National High Technology

Research and Development Program of China.

41784 VOLUME 6, 2018

	INTRODUCTION
	BACKGROUND
	NOTATIONS
	SYSTEM ARCHITECTURE
	THREAT MODEL
	PAILLIER CRYPTOSYSTEM

	BASIC SECURITY PRIMITIVES
	SECURE INNER Product (SIP) PROTOCOL
	PROXY Re-encryption (PRE) PROTOCOL
	SECURE Re-encryption KEY GENERATION (SRKG) PROTOCOL
	COLLUSION RESISTANT Re-encryption KEY Generation (CRRKG) PROTOCOL

	THE PROPOSED SCHEME
	SECURITY ANALYSIS
	PERFORMANCE EVALUATION
	COST ANALYSIS
	EXPERIMENT RESULTS
	VARYING THE NUMBER OF DATABASE TUPLES n
	VARYING THE DIMENSION OF DATA POINTS d
	VARYING THE NUMBER OF NEAREST NEIGHBORS k

	RELATED WORK
	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	WEI WU
	JIAN LIU
	HONG RONG
	HUIMEI WANG
	MING XIAN

