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ABSTRACT A framework for designing orthogonal chaotic phase-coded waveforms with space-time
complementary coding is proposed for multiple-input multiple-output (MIMO) radar applications. The
phase-coded waveform set to be transmitted is generated with an arbitrary family size and an arbitrary
code length by using chaotic sequences. Due to the properties of chaos, this chaotic waveform set has
many advantages in performance, such as anti-interference and low probability of intercept. However,
it cannot be directly exploited due to the high range sidelobes, mutual interferences, and Doppler intolerance.
In order to widely implement it in practice, we optimize the chaotic phase-coded waveform set from two
aspects. First, the autocorrelation property of the waveform is improved by transmitting complementary
chaotic phase-coded waveforms, and an adaptive clonal selection algorithm is utilized to optimize a pair
of complementary chaotic phase-coded pulses. Second, the crosscorrelation among different waveforms is
eliminated by implementing space-time coding into the complementary pulses. Moreover, to enhance the
detection ability for moving targets in MIMO radars, a method of weighting different pulses by a null space
vector is utilized at the receiver to compensate the interpulse Doppler phase shift and accumulate different
pulses coherently. Simulation results demonstrate the efficiency of our proposed method.

INDEX TERMS Multiple-input multiple-output radars, orthogonal waveforms, space-time complementary
coding, Doppler compensation.

I. INTRODUCTION
For multiple-input multiple-output (MIMO) radar appli-
cations, a set of transmitted waveforms with impulse-
like autocorrelation and zero crosscorrelation can obtain a
good detection performance [1], [2]. Recently, the chaotic
sequences have been widely exploited in the waveform
design for MIMO radars [5], [7] due to their inherent
advantages in the randomness, no cycle, complexity, secu-
rity, code generation speed, and the number of possible
code sequences [3], [4]. A multicarrier chaotic phase-coded
radar waveform was proposed in [8]. A new kind of fre-
quency hopping codes based on chaotic sequences has been
designed in [9] and [10]. In [11], a chaotic waveform using

wavelength-division multiplexing technology has been pro-
posed for the distributed MIMO radar. By implementing
the phase coding technique [12], [13] on chaotic sequences,
a set of chaotic phase-coded waveforms was obtained [14],
which is also a good waveform candidate for the MIMO
radar detection. Due to the aperiodicity in chaotic dynamics,
an impulse-like autocorrelation function of the chaotic phase-
coded waveform can be approached. Due to the sensitivity of
chaotic systems to the initial values, the quasi-orthogonality
among different chaotic phase-coded waveforms can be
achieved. Furthermore, the chaotic phase-coded waveforms
with an arbitrary family size, code length, and phase num-
ber can be easily generated, and they also well match with
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the requirements of anti-jamming and low probability of
intercept (LPI) for modern radars. However, the primary
chaotic phase-coded waveforms cannot be used directly for
the MIMO radar detection due to high range sidelobe level,
large mutual interference, and Doppler intolerance. In order
to tackle these problems, further waveform optimization and
signal processing are proposed based on the primary chaotic
phase-coded waveforms.

To suppress the high range sidelobes and reduce the mutual
interferences in the MIMO radar waveform set, in general,
there exist two research strategies for waveform design.
The first strategy is to jointly optimize the autocorrelation
and crosscorrelation properties of the waveform set. Many
statistical optimization algorithms, such as the simulated
annealing algorithm [15], cross entropy-based [16] meth-
ods, genetic algorithm [17], particle swarm algorithm [18],
and iterated algorithm [19], [20] were proposed to design
a set of orthogonal unimodular sequences, which are then
modulated by phase-coding on a long transmitted pulse.
For these optimization algorithms, the family size and code
length of the optimized waveform set are very limited due
to the heavy computational load, large calculation storage,
and high time cost. The second strategy is to separately
optimize the autocorrelation and crosscorrelation properties
of the waveform set. In this strategy, many traditional radar
waveforms with good aperiodic autocorrelation properties
can be borrowed into the MIMO radar with orthogonal divi-
sion multiplexing techniques for achieving the waveform
orthogonality. The traditional radar waveforms employed in
real radar systems mainly consist of the LFM waveforms
and phase-coded waveforms [14], [21], [22]. The phase-
coded waveforms are preferred due to their almost ideal
aperiodic autocorrelation properties and easy generation. The
complementary phase-coded waveform is a special kind of
phase-coded waveforms which have an ideal autocorrelation
property (i.e. strictly impulse-like aperiodic autocorrelation
function) by modulating the complementary phase-coded
sequences on consecutive transmitted pulses [24], [25]. Since
the ideal autocorrelation property cannot be achieved with
a single phase-coded sequence, we exploit the complemen-
tary phase-coded sequences from the traditional radar into
the MIMO radar in this paper. To obtain the orthogonality
among different waveforms in the MIMO radar, the orthog-
onal time/frequency/code division multiplexing techniques
are usually exploited. The time division technique was uti-
lized in the MIMO-OTHR [26] to construct a kind of
‘‘time-staggered’’linear frequency-modulated (LFM) contin-
uous waveforms, and the drawback is that only one signal can
be transmitted at an instant of time. The frequency division
technique was exploited in a kind of LFM waveforms mod-
ulated on different frequencies for the MIMO radar detec-
tion [27], but the cost is the requirement of a large bandwidth.
The typical method to reduce the crosscorrelation by the code
division is the space-time coding [28], which is relatively
superior to the other two division techniques without extra
frequency spectrum and time resources [29]. Moreover, the

code division technique can mitigate the decrease of the
coherence of targets in the time division and frequency divi-
sion techniques. Therefore, the achievement of a good orthog-
onality with code division is preferred in many theoretical
analysis and practical MIMO radar systems. In this paper,
we employ the second strategy to flexibly design chaotic
phase-codedwaveforms in a simple and quickway. The archi-
tecture of complementary sequences is optimized to achieve
low sidelobes of the autocorrelation function, and the space-
time coding is utilized to achieve the orthogonality.

The phase-coded waveforms are usually Doppler intol-
erant [30]. The solutions of this problem can be classified
into two categories. The first category is to consider the
correlation properties for all possible Doppler frequencies
in the cost function of the waveform optimization, which
is implemented at the transmitter. Essentially, it is to opti-
mize the auto-ambiguity function and the cross-ambiguity
function of the waveforms. However, the optimization pro-
cess is extremely clumsy even for a small set of short
sequences [15], [16], [20], [31], [32]. For complementary
waveforms, the low-order terms of the Taylor expansion of
the pulse train ambiguity function were derived, and then
the Doppler resilient Golay complementary sequences were
designed [33], [34]. However, the designed complemen-
tary sequences are still stringently limited by the number
and length of the sequences, and they are only tolerant at
modest Doppler shifts. The other category is to compen-
sate the Doppler shifts through signal processing methods
at the receiver [35]. The typical approach is to use a bank
of Doppler-matched filters [36]. In this paper, we utilize
the second category to obtain the Doppler resilience of our
designed chaotic phase-coded waveforms. The challenge is
that the Doppler phase shifts over several pulses instead of a
single pulse have to be compensated.

By thoroughly addressing those three issues of autocorre-
lation, crosscorrelation, and Doppler resilience, the chaotic
phase-coded waveforms with space-time complementary
coding (STCC) are well-designed. The overall designing
process can be divided into four steps. Firstly, the chaotic
phase-coded sequences are mapped from the discrete chaotic
sequences, and modulated on the transmitted pulse. The
resultant waveforms are identified as the primary chaotic
phase-coded waveforms. It means that the waveforms are
constructed by the chaotic sequences solely. Secondly,
the approximately complementary chaotic phase-coded
sequences are optimized by a properly-selected optimization
algorithm. Specifically, a chaotic sequence is randomly-
generated. Then, an adaptive clonal selection (ACS)
algorithm [37] is introduced to optimize its complementary
partner. By transmitting a pair of complementary chaotic
phase-coded waveforms, the sidelobes of the autocorrelation
function can be greatly reduced. This process is sensitive
to the initial value. Thus, if the process is repeated inde-
pendently by M times, M independent pairs of comple-
mentary chaotic phase-coded waveforms are obtained, and
they are quasi-orthogonal. Thirdly, the space-time coding
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is further implemented on the complementary chaotic
phase-coded waveforms to completely eliminate the cross-
correlation among different transmitted waveforms. This
kind of waveforms are identified as the chaotic phase-coded
waveforms with STCC. Finally, a method of weighting mul-
tiple received pulses by a null-space vector is utilized to
compensate the Doppler shift and accumulate different pulses
coherently at the receiver. This manipulation can significantly
enhance the Doppler tolerance of the chaotic phase-coded
waveforms with STCC.

Although the thought of Golay complementary codes with
STCC has been studied in [38] and [49], the length and
number of the codes are fixed. In this paper, the optimized
complementary chaotic sequences are exploited in the STCC,
and the Doppler resilience of the STCC is obtained, which is
more feasible in practical applications. The main contribu-
tions of this paper are summarized as follows.

1) Multiple chaotic phase-coded pulses are designed
by implementing the STCC on the primary chaotic
phase-coded waveforms for achieving the required
autocorrelation and crosscorrelation properties. The
Doppler tolerance of the designed waveforms is
achieved by utilizing a Doppler compensation method
at the receiver. Compared with the traditional wave-
form optimization for MIMO radars, our design pro-
cess is simpler, and the waveform performance is
superior.

2) To optimize the complementary chaotic sequences,
a non-linear optimization problem is formulated, and
an adaptive clonal selection algorithm is proposed to
solve it. Generally, the number, length, and phase num-
ber of the existing strictly-complementary sequences
are stringently limited, and our optimization on the
complementary architecture can break this limitation
to enable the wide application of complementary
sequences. Moreover, if the process is repeated inde-
pendently, a degree of orthogonality between differ-
ent pairs of complementary chaotic sequences can be
obtained. Thus, they can be utilized for MIMO radar
detection in the cases that the orthogonality is not
highly required.

3) Simulation results demonstrate that the chaotic phase-
coded waveforms with STCC are relatively more sensi-
tive to the Doppler frequency comparedwith the typical
orthogonal phase-coded waveforms (e.g., the Deng’s
phase-coded waveforms). The main reason is that the
STCC is Doppler-intolerant. In this sense, the utilized
Doppler compensation method is benefit to solve the
Doppler intolerance of the STCC.

The rest of this paper is organized as follows. In Section II,
the concise signal model, MIMO ambiguity function, syn-
thetic output of the primary chaotic phase-coded waveforms
in the MIMO radar are derived. The sophisticated waveform
design approach is proposed in Section III. In Section IV,
simulation results are presented. Finally, Section V concludes
the paper.

II. SIGNAL MODEL IN THE MIMO RADAR
A. PHASE-CODED WAVEFORMS FOR THE MIMO RADAR
Without loss of generality, it is assumed that Mt waveforms
denoted by S = [s1(t), s2(t), · · · , sMt (t)]

T are emitted from
Mt transmitting antennas. sm(t) is the phase-coded waveform
modulated on the carrier frequency f0 transmitted by the mth
antenna. To obtain a good Doppler resolution, a coherent
train of pulses is transmitted. The train can be constructed
from identical pulses or identical pair/set of different pulses.
We consider the later case in this paper. For the sake of
easy explantation, a pair of different phase-coded pulses are
assumed to be modulated on sm(t) and repeatedly transmitted
in succession. Then, sm(t) can be expressed as

sm(t) = (Am(t)+ Bm(t − Tr ))exp(j2π f0t) (1)

Am(t) =
L−1∑
l=0

exp(jam(l))u(t − lTs) (2)

Bm(t) =
L−1∑
l=0

exp(jbm(l))u(t − lTs) (3)

u(t) =

{
1, if 0 < t < Ts
0, otherwise

(4)

am(l), bm(l) ∈
{
0,

2π
Mc
, 2

2π
Mc
, · · · , (Mc − 1)

2π
Mc

}
(5)

where m = 1, 2, · · · ,Mt . Am(t) and Bm(t) are the
complex envelopes of the two consecutive phase-coded
pulses modulated on sm(t). u(t) is the rectangular win-
dow of duration Ts with unit amplitude for symbol mod-
ulation. am(l) and bm(l) are the lth code symbols mapped
on the mth subcarrier, and Mc is the phase number.
The am = [am(0), am(1), · · · , am(L − 1)]T and bm =

[bm(0), bm(1), · · · , bm(L − 1)]T are defined as the phase-
coded sequences corresponding to Am(t) and Bm(t). The code
length is L, and Ts is the sub-pulse width. Thus Tp = LTs
denotes the time width of a single pulse. Tr is the pulse
repetition interval (PRI).

B. CHAOTIC PHASE-CODED WAVEFORMS
Compared with the traditional pseudo random sequences,
chaotic sequences have the advantages in the large num-
ber, sensitivity, long length, aperiodicity, and easy genera-
tion. Chaotic phase-coded waveforms generated from chaotic
sequences inherit these advantages, thus are suitable for
MIMO radar detection. The randomness and security of
coded waveforms are guaranteed, and the requirements for
the code number and length can be satisfied easily. The dis-
crete chaotic sequence is generated according to the chaotic
map. Typical chaotic maps include the bernoulli, logistic,
tent, quadratic maps, and so on. These chaotic maps generate
the commonly-used one-dimensional chaotic sequences, and
the specific map functions can be referred to [39]. Based
on them, more complex chaotic sequences are proposed.
A hybrid logistic-tent map was constructed in [40] to produce
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spread spectrum sequences. Reference [41] proposed a hyper
logistic phase-coded waveform for radar applications.

The discrete chaotic sequence is generally mapped into the
phase-coded sequence [42] by using the threshold quantiza-
tion method. Assume that the chaotic sequence is xm(l), l =
0, 1, 2, · · · ,L−1, then xm(l) can be generated by a non-linear
chaotic map function 8(·), given as

xm(l + 1) = 8(xm(l)) (6)

where the chaotic sequences are normalized into xm(l) ∈
(0, 1). Then xm(l) is quantized and mapped into phase-coded
sequence am(l) (or bm(l)). The specific steps are described as
follows.

1) Set an arbitrary initial value xm(0), and xm(0) ∈ (0, 1).
2) Generate the chaotic sequence {xm(l◦)}, 1 ≤ l◦ ≤

L + 999 according to the chaotic map in (6). In order
to reduce the influence of the initial value, the first
1000 points are removed to improve the complexity of
the chaotic sequence. Then a chaotic sequence {xm(l)},
l = 0, 1, · · · ,L − 1 is obtained.

3) Quantize the chaotic sequences {xm(l)} into Mc phases
according to their values in different intervals divided
by Mc − 1 thresholds. These thresholds divide the
range [0, 1] evenly. Then the chaotic phase-coded
sequence {am(l)} is mapped from {xm(l)} by am(l) =
2πceil(Mcxm(l)− 1)/Mc.

By repeating these steps independently by Mt times,
Mt chaotic phase-coded sequences {am(l)}l=0,1,···L−1, m =
1, 2, · · ·Mt can be obtained. TheseMt sequences are approx-
imately independent of each other due to the independent
and random initial values for the chaotic map. We iden-
tify these directly-mapped phase-coded sequences as the
primary chaotic phase-coded sequences. If the period L is
infinitely long and the numerical precision is infinitely high,
the autocorrelation function of the primary chaotic phase-
coded sequence is an ideal Dirac delta function, and the
crosscorrelation between different sequences is zero. In prac-
tical situations, only the chaotic sequences with a finite
length are utilized. Thus the ideal autocorrelation property
and orthogonality can only be approached approximately.
Actually, the range sidelobes of primary chaotic phase-coded
sequences are still very high, and the mutual interferences are
severe. It is essential to further optimize the chaotic phase-
coded sequences for obtaining a better detection performance
in MIMO radars.

C. THE SYNTHETIC OUTPUT AND MIMO
AMBIGUITY FUNCTION
In MIMO radar systems, a bank of matched filters cor-
responding to different transmitted waveforms are utilized
at the receiver to detect targets. For Mt transmitted wave-
forms, there are Mt matched filters corresponding to the
waveforms s1(t), s2(t), · · · , sMt (t) respectively. Assume that
the target’s delay is zero and that the target’s Doppler fre-
quency is fd . Then the total received signal can be written as

x(t) = [s1(t) + s2(t) + · · · + sMt (t)] exp(j2π fd t), where the
spatial delay of the transmitting array is ignored for conve-
nience.When x(t) is matched filtering corresponding to sm(t),
the filtered output can be represented as

Rrm(sm,S, fd )

=

∫
+∞

−∞

x(t)s∗m(t + τ )dt

=

∫
+∞

−∞

sm(t)s∗m(t + τ ) exp(j2π fd t)dt

+

Mt∑
n 6=m,n=1

∫
+∞

−∞

sn(t)s∗m(t + τ ) exp(j2π fd t)dt

4
= χsm (τ, fd )+

Mt∑
n 6=m,n=1

χsm,sn (τ, fd ) (7)

where χsm (τ, fd ) is just the auto-ambiguity function
(auto-AF) of sm, and χsm,sn (τ, fd ) is just the cross-ambiguity
function (cross-AF) between sm and sn. To evaluate the
overall performance of the pulse compression results of the
Mt matched filters, a synthetic filtered output is defined as

Rr (S, fd )
4
=

Mt∑
m=1

|Rrm(sm,S, fd )|

=

Mt∑
m=1

∣∣∣∣∣∣χsm (τ, fd )+
Mt∑

n 6=m,n=1

χsm,sn (τ, fd )

∣∣∣∣∣∣
4
= χ (τ, fd ). (8)

According to the classic definition of MIMO ambiguity
function (MIMO-AF) [43], it is found from (8) that the
defined synthetic output is equivalent to the MIMO-AF. The
ambiguity function (AF) is usually employed in radar for
evaluating the waveform performance of target detection,
target resolution, target estimation, and so on. In this paper,
we mainly consider the target detection ability of the wave-
forms in MIMO radar. Since the target is detected from
the synthetic output of the Mt matched filters, we take the
synthetic output as the indicator to evaluate the waveform
performance.
To optimize the synthetic output of the waveforms,

the equation of Rr (S, fd ) is further derived from the expan-
sion of the MIMO-AF χ (τ, fd ). The χ (τ, fd ) is composed
of χsm (τ, fd ) and χsm,sn (τ, fd ). If the transmitted signal sm(t)
is sampled into the discrete signal sm(lTs), l = 0, 1, · · · ,
(L − 1), the auto-ambiguity function χsm (kTs, fd ) can be
written as

χsm (kTs, fd ) = χu(0, fd )[χam (kTs, fd )

+ exp(j2π fdTr )χbm (kTs, fd )] (9)

where k = −(L − 1), · · · , 0, · · · , (L − 1) and

χu(0, fd ) =
exp(jπ fdTs)sin(π fdTs)

π fdTs
(10)
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χam (kTs, fd ) =
L−|k|−1∑
l=0

[exp(jam(l))][exp(jam(l + |k|))]

∗ exp(j2π fd lTs). (11)

The χbm (kTs, fd ) can be directly obtained by replacing the
code sequence am in (11) by bm. The detail derivations can
be referred in Appendix A.

Similarly, the cross-ambiguity function χsm,sn (kTs, fd ) can
be written as

χsm,sn (kTs, fd ) = χu(0, fd )[χam,an (kTs, fd )

+ exp(j2π fdTr )χbm,bn (kTs, fd )] (12)

where k = −(L − 1), · · · , 0, · · · , (L − 1) and

χam,an (kTs, fd ) =
L−|k|−1∑
l=0

[exp(jan(l))][exp(jam(l + |k|))]

∗ exp(j2π fd lTs). (13)

The χbm,bn (kTs, fd ) can be directly obtained by replacing the
code sequence am in (13) by bm. The detail derivations can be
referred in Appendix B.

By substituting (9) and (12) into (8), the synthetic output
Rr (S, k, fd ) can be obtained. Generally, the performance of
the synthetic output is indicated by its sidelobe level. The
sidelobe level should be low to reduce the false alarm prob-
ability. In most cases, the peak sidelobe level (PSL) and the
integrated sidelobe level (ISL) of the synthetic output are uti-
lized to evaluate the detection performance of the waveform,
which can be computed by

PSL(fd ) = 10log10(
max
k 6=0

R2r (S, k, fd )

R2r (S, 0, fd )
) (14)

ISL(fd ) = 10log10(

k=L−1∑
k=−L+1,k 6=0

R2r (S, k, fd )

R2r (S, 0, fd )
). (15)

Obviously, the PSL(fd ) and ISL(fd ) are affected by the
Doppler frequency fd . In order to achieve a good detection
ability of both stationary and moving targets, the PSL(fd ) and
ISL(fd ) are expected to be low for ∀fd .

D. THE CORRELATION PROPERTY AND
DOPPLER INTOLERANCE
When fd = 0, it is found from (7) that the auto-ambiguity
function of sm becomes the autocorrelation function of sm,
and the cross-ambiguity function between sm and sn becomes
the crosscorrelation function between sm and sn, given as

Ra(sm)
4
=

∫
+∞

−∞

sm(t)s∗m(t + τ )dt = χsm (τ, 0) (16)

Rc(sm, sn)
4
=

∫
+∞

−∞

sn(t)s∗m(t + τ )dt = χsm,sn (τ, 0). (17)

For the sampled signal sm(lTs), by substituting fd = 0 into (9)
and (12), and ignoring the impact of the carrier frequency f0,

the Ra(sm, k) and Rc(sm, sn, k) can be further written as

Ra(sm, k) = χsm (kTs, 0)

= Ras(am, k)+ Ras(bm, k)
4
= Raa(am, bm, k) (18)

Rc(sm, sn, k) = χsm,sn (kTs, 0)

= Rcs(am, an, k)+ Rcs(bm, bn, k)
4
= Rcc(am, an, bm, bn, k) (19)

where the autocorrelation and crosscorrelation functions of
the phase-coded sequences am,m = 1, 2, · · · ,Mt can be
obtained by

Ras (am, k)

= χam (kTs, 0)

=
1
L

L−|k|−1∑
l=0

[exp (jam (l)) exp (−jam (l + |k|))] (20)

Rcs (am, an, k)

= χam,an (kTs, 0)

=
1
L

L−|k|−1∑
l=0

[exp (jan (l)) exp (−jam (l + |k|))]. (21)

The Ras (bm, k) and Rcs(bm, bn, k) can be directly obtained
by replacing the code sequence am and an in (20) and (21)
by bm and bn respectively. By substituting (18) and (19) into
(8), the synthetic output of the Mt matched filters for zero
Doppler frequency can be written as

Rr (S, 0)
4
=

Mt∑
m=1

|Rrm(sm,S, 0)|

=

Mt∑
m=1

∣∣∣∣∣∣Ra(sm, k)+
Mt∑

n6=m,n=1

Rc(sm, sn, k)

∣∣∣∣∣∣. (22)

The synthetic output Rr (S, 0) embodies the overall corre-
lation properties (the autocorrelation and crosscorrelation
properties) of the transmitted waveform set S. The Ra(sm, k)
is the main part of Rr (S, 0), and is expected to be a Dirac
delta function. The Rc(sm, sn, k) is usually viewed as the
interference in Rr (S, 0), and is expected to be zero. Thus
the Rr (S, 0) is desired to be a Dirac delta function with zero
sidelobe level, i.e. PSL(0) ≈ 0 and ISL(0) ≈ 0.
To achieve the ideal synthetic output Rr (S, 0), it is

found from the relations in (18) and (19) that the
correlation properties of the phase-coded sequences
{am, bm,m = 1, 2, · · · ,Mt } should be optimized. Specifi-
cally, the sidelobe level of Raa(am, bm, k) should be sup-
pressed, and the crosscorrelation level of Rcc(am, an, bm,
bn, k) should be reduced. Thus, we consider to design good
phase-coded sequences at the transmitter to satisfy these
requirements.
When fd 6= 0, the good waveform performance can be bro-

ken by the nonzero Doppler frequency. This effect is called
the Doppler intolerance of waveforms, which is a serious
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problem especially for phase-coded waveforms. By compar-
ing (11) with (20) and comparing (13) with (21), a phase shift
exp(j2π fd lTs) is induced by the nonzero fd within a pulse.
This intrapulse phase shift can break the autocorrelation and
crosscorrelation properties of the phase-coded sequences in
a single pulse. By comparing (9) with (18) and comparing
(12) with (19), a phase shift exp(j2π fdTr ) is induced by the
nonzero fd between different pulses. This interpulse phase
shift can further break the sum properties of the autocor-
relation and crosscorrelation functions of the phase-coded
sequences in consecutive pulses.

These Doppler phase shifts raise the sidelobe level of the
synthetic output, and reduce the detection ability for mov-
ing targets. When |fd | increases, the PSL(fd ) and ISL(fd )
become much higher than the PSL(0) and ISL(0). In gen-
eral, the PSL(fd ) and ISL(fd ) are utilized as the measurable
indicator for the Doppler intolerance. If the PSL(fd ) and
ISL(fd ) remain almost unchanged or increase slowly with the
increased |fd |, we regard that the good Doppler tolerance of
the waveforms is gained. The good Doppler tolerance can be
indicated by

PSL(fd ) ≈ PSL(0), ∀fd 6= 0 (23)

ISL(fd ) ≈ ISL(0), ∀fd 6= 0. (24)

Since the optimization of a set of waveforms with good
Doppler tolerance at the transmitter is computationally com-
plex, we consider to compensate the Doppler phase shift by
signal processing techniques at the receiver for obtaining a
good Doppler tolerance.

III. WAVEFORM OPTIMIZATION
A. SUPPRESSING THE AUTOCORRELATION SIDELOBES BY
OPTIMIZING THE COMPLEMENTARY CHAOTIC
PHASE-CODED WAVEFORMS
An effective method to suppress the autocorrelation sidelobes
of phase-coded waveforms is to utilize the complementary
sequences. A pair or set of sequences is identified as comple-
mentary sequences (CSs) if and only if the sum of the ape-
riodic autocorrelation functions of the sequences is an ideal
Dirac delta function [44]. The CSs are usually modulated on
consecutive pulses in a coherent pulse train, which overcomes
the difficulty of realizing the ideal autocorrelation function in
only one pulse. However, the number, code length, and phase
number of the existing complementary sequences are fixed,
e.g., the Golay [24] and Frank [45] sequences. To break this
limitation and flexibly choose the parameters of the comple-
mentary sequences, we consider to optimize the complemen-
tary architecture based on chaotic phase-coded sequences.
By utilizing appropriate optimization algorithms, the approx-
imate complementary chaotic phase-coded sequences are
obtained. Thus the autocorrelation sidelobes can be greatly
suppressed, and many side benefits are gained from the
chaotic properties.

Firstly, the optimization problem is formulated. Ideally, for
strictly complementary codes, when the Doppler frequency is

zero, the am and bm satisfy the following equation

Raa (am, bm, k) = Ras (am, k)+ Ras (bm, k)

=

{
2, k = 0
0, k = ±1,±2, · · · ,± (L − 1)

(25)

where k is the delay point of the autocorrelation function.
Actually, sequence pairs that strictly satisfy the equation

of (25) mathematically are limited. All those pairs previously
found are exhaustively searched by computers. For long and
complex complementary sequences, an intolerable amount of
computation is required. Thus we relax the restriction of (25),
and build an approximate model to approach it. Specifically,
the sum of the autocorrelation functions of am and bm is
firstly calculated, which is Raa(am, bm, k). Then, the peak
sidelobe level (PSL) and the integrated sidelobe level (ISL)
of Raa(am, bm, k) are computed as

PSLRaam = 10log10(
max
k 6=0

R2aa(am, bm, k)

R2aa(am, bm, 0)
) (26)

ISLRaam = 10log10(

k=L−1∑
k=−L+1,k 6=0

R2aa(am, bm, k)

R2aa(am, bm, 0)
). (27)

The PSL and ISL should be minimized (ideally to zero)
to approach the equation of (25). To further simplify the
computation, the first sequence of am is pre-given, and the
corresponding sequence of bm is searched. Then, the cost
function is constructed as

Eum(bm) = ISLRaam + µPSLRaam (28)

where µ is the weight coefficient balancing the PSL and the
ISL. The problem for finding the optimal complementary
sequence bm corresponding to am is formulated as

min
bm

Eum(bm), m = 1, 2, · · · ,Mt

s.t. bm(l) ∈
{
0,

2π
Mc
, 2

2π
Mc
, · · · , (Mc − 1)

2π
Mc

}
. (29)

By solving this optimization problem, the sequence pair of
am and bm approximately satisfying (25) can be found.
The above non-linear optimization problem is a

NP-complete problem. The traditional greedy algorithms are
often easy to get trapped in a local optimum because they
search along the directions to reduce the cost function. The
greedy algorithms are very limited for solving this kind
of problems. In contrast, the statistical optimization algo-
rithms [46] provide effective solving method. The search-
ing for complementary sequences is very similar with the
immune process. Thus, in this paper, the adaptive clonal
selection (ACS) algorithm is utilized. Moveover, the algo-
rithm’s advantages in the fast convergence speed and efficient
global optimization ability for solving the NP problem are
obtained.

The adaptive clonal selection algorithm is inspired by the
biology immune system. By simulating the mechanisms of
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self-adjusting, learning and adapting in the natural immune
system, the algorithm realizes the global optimal solution.
The antigen corresponds to the cost function under different
constraints of the optimization problem, and the antibody
corresponds to the optimal solution of the optimization prob-
lem. The affinity function of the antigen and antibody cor-
responds to the matching degree between the solution of the
optimization problem and the cost function. In the algorithm,
the clonal scale of the antibody population, the mutation
probability of the antibody, and the selection probability of
the mutation are adaptively adjusted to enhance the diversity
of the population, increase convergence speed, and avoid the
premature convergence.

Assuming that am is pre-given, and the sequence bm having
the maximum affinity value is searched. There are mainly
seven steps in the algorithm, which are described specifically
as follows.

1) Population initialization
A chaotic map is chosen, and a chaotic phase-coded
sequence amT with size of 1 × L is generated by
using the method described in Sec.II.B. Then the initial
values of this chosen chaotic map are changed, and
the generation operations are repeated by Np times to
get a set of chaotic phase-coded sequences bm(i) =
[bm1(i), bm2(i), · · · , bml(i), · · · , bmL(i)]T , where i =
1, 2, · · · ,Np. An antibody is defined as β i = bm(i),
then the initial population is

2(n |n = 0) = {β1(n = 0),β2(n = 0),

· · · ,βNp (n = 0)}
4
= {β i(n = 0)}i=1,2,··· ,Np . (30)

2) Affinities calculation and ordering
An affinity function is defined by H (β i) =

1/Eum(bm(i)). For each antibody β i, their affinity func-
tions are calculated, then their values are ranked in a
descending order, given as

{β◦1(n),β
◦

2(n), · · · ,β
◦
Np (n)|

H (β◦1(n)) ≥ H (β◦2(n)) ≥ · · · ≥ H (β◦Np (n))}. (31)

3) Clonal operation
According to the affinity value of each antibody,
the clone scale of the ith antibody is decided by

qi(n) = ceil(ncH (β i(n))/
Np∑
i=1

H (β i(n))) (32)

where nc is the parameter on determining the clonal
size. After the clonal operation, the new population
becomes

2′(n |n = 0) = {β ′iq(n)} i=1,2,··· ,Np
q=1,2,···qi(n)

. (33)

4) Mutation operation
The mutation probability piq of the cloned antibody
β ′iq(n) is adjusted according to its affinity value and

the evolutionary generation n. The adaptive mutation
probability is chosen as

piq =

pmax −

(
pmax−pmin

N

)
n, H (β ′iq(n))>Havg

pmax, H (β ′iq(n))≤Havg
(34)

where pmax is the maximum mutation probability, and
pmin is the minimummutation probability.N is the total
number of generations, and n presents the current gen-
eration. H (β ′iq(n)) is the affinity value of the evolving
antibody β ′iq(n), and Havg is the average affinity value
of the population.

5) Clone selection operation
An optimal antibody is selected from the mutated anti-
bodies according to the affinity values, given as

κ i(n) = β ′iq(n)
∣∣∣maxH (β ′iq(n))

q = 1, 2, · · · , qi, i = 1, 2, · · · ,Np. (35)

The new antibody replaces the original antibody with
a probability of (36), as shown at the top of the next
page, where ζ is a parameter related to the population
diversity. A large ζ implies a more diverse population.

6) Population regeneration
The generation of the evolution becomes n = n + 1,
and the population regenerates into

2(n+ 1) = {β1 (n+ 1) ,β2(n+ 1),

· · · ,βNp (n+ 1)}
4
= {β i(n+ 1)} i=1,2,··· ,Np . (37)

7) The termination condition
If the generation number reaches N , the iteration is ter-
minated. The antibody of the current population having
the largest affinity value is retained. Then the optimal
complementary chaotic phase coded sequence bm cor-
responding with am is obtained. Otherwise, it turns to
step (2).

If the above operations are repeated with different initial
values by Mt times, Mt chaotic phase-coded complementary
pairs {am, bm}m=1,2,··· ,Mt are randomly and independently
obtained. The crosscorrelation between different pairs is
small, and theMt complementary pairs are quasi-orthogonal.

The above optimization strategy can significantly reduce
the computational load, and can ensure the superior wave-
form performance with good autocorrelation and crosscorre-
lation properties. If the autocorrelation and crosscorrelation
properties are jointly optimized, the computation cost for
exhaustively searching the orthogonal set of phase-coded
waveforms is on the order of MMtL

c . For the optimization
strategy proposed in this paper, the computation cost of
exhaustively searching is on the order of MtML

c . It is seen
that the computation cost of our method is lower than that of
the existing methods.
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pns (β i(n)→ κ i(n)) =


0, H (κ i (n)) < H

(
β i (n)

)
exp

(
H (κ i (n))− H

(
β i (n)

)
ζ

)
, H (κ i (n)) ≥ H

(
β i (n)

)
, β i (n) is not optimal

1, H (κ i (n)) ≥ H
(
β i (n)

)
, β i (n) is optimal

(36)

B. ELIMINATING THE WAVEFORM CROSSCORRELATION
BY THE SPACE-TIME CODING
To further eliminate the crosscorrelation between differ-
ent transmitted waveforms, the space-time coding is imple-
mented on the pulse trains of complementary chaotic
sequences for obtaining the multidimensional waveforms for
MIMO radar applications.

The space-time coding was first applied in wireless com-
munication systems to significantly improve the reliability of
communications by transmitting signals from different anten-
nas in fading channels [47]. In a wireless communication
system with two transmitters and two receivers, the signals
transmitted in the first time periods of antenna 1 and antenna
2 are s1 and s2, then the space-time coding rules [48] are

(s1, s2)→ S =
(
s1
s2

−s∗2
s∗1

)
→ Time dimension
↓ Space dimension

(38)

where the superscript ∗ denotes the complex conjugate. Dif-
ferent rows of (38) represent the waveforms transmitted from
different antennas, and different columns represent the wave-
forms transmitted in different PRIs. At the receiver, SH is
used to decode the signal, and the superscript H denotes the
complex conjugate transposition.

The complementary chaotic phase-coded sequences of am
and bm are assumed to constitute the basic transmitted wave-
forms. Then the complementary space-time coding is imple-
mented on the basic transmitted waveforms as

S2×2 =
(
amT bmHJL
bmT −amHJL

)
→ Time dimension
↓ Space dimension

(39)

where JL represents a L × L exchanging matrix with ones
on its antidiagonal and zeros elsewhere. This space-time
coding matrix can be expanded into the 4 × 4 dimen-
sion as in (40), as shown at the bottom of the next page,
where [·]H2×2 represents the block Hermitian transposition
for a 2 × 2 block matrix. S4×4 contains the chaotic phase-
coded sequences with STCC transmitted from four antennas.
Obviously, any 2p × 2p ( p ≥ 2, and p is an integer)
matrix based on the chaotic phase-coded sequences with
STCC can be constructed from the 2p−1 × 2p−1 matrix
recursively as

S2p×2p =

(
S2p−1×2p−1

[
S2p−1×2p−1J2p−1L

]H
2p−1×2p−1

S2p−1×2p−1 −
[
S2p−1×2p−1J2p−1L

]H
2p−1×2p−1

)
.

(41)

Hereinafter, we assume that the transmitted sequence set is
S4×4, whichmeans that the number of transmitted waveforms

is Mt = 4, and that the number of transmitted pulses in
a coherent train is N = 4. Then the sampled transmitted
waveform matrix can be presented as

S(l) =


am(l) bm∗(− l) am∗(− l) bm∗(− l)
bm(l) −am∗(− l) bm(l) −am(l)
am(l) bm∗(− l) −am∗(− l) −bm∗(− l)
bm(l) −am∗(− l) −bm(l) am(l)


(42)

where different rows represent waveform samples transmit-
ted from different antennas, and different columns represent
waveform samples in different PRIs. If the target delay is at
the kt th sample, then the received signal xT (l) in four PRIs at
a certain receiving antenna is

xT (l) = hTS(l − kt )D+ nT (l) (43)

where xT (l) = [x1(l), x2(l), x3(l), x4(l)] is a 1 × 4 row
vector, and xi(l) is the sampled signal received in the ith
PRI. hT = [h1, h2, h3, h4] contains the coefficients of the
propagation channels corresponding to those four transmitted
waveforms. nT (l) = [n1(l), n2(l), n3(l), n4(l)] is the received
noise in four PRIs. D = diag{1, ejθ , ej2θ , ej3θ } is the Doppler
phase shift matrix, where θ = 2π fdTr is the interpulse phase
shift induced by the Doppler frequency fd . As in most cases,
the intrapulse Doppler phase shift is ignored here. For the
waveforms transmitted in a pulse train, the received signal in
each PRI is matched filtering first, then the matched filtering
results of the successive PRIs are coherently accumulated.
This process can be expressed by the following equation

rT (k) =
4∑
i=1

xi(l)⊗ siH (−l) =
4∑
i=1

[
+∞∑
l=−∞

xi(l)sHi (k + l)]

= xT (l)⊗ SH (−l) (44)

where k = −(L − 1), · · · , (L − 1). si(l) is a column vector
representing the Mt waveforms transmitted in the ith PRI,
and S (l) = [s1 (l) , s2 (l) , s3 (l) , s4 (l)]. The subscript i
represents the ith PRI. rT (k) = [r1(k), r2(k), r3(k), r4(k)]
is a 1 × 4 row vector, and rj(k) is the matched filtering
result corresponding to the jth transmitted waveform. The
⊗ represents the convolution. By substituting (43) into (44),
we have

rT (k) = hTS(l − kt )D⊗ SH (−l)+ nT (l)⊗ SH (−l). (45)

If fd = 0, we have D = I , then (45) becomes

rT (k) = hTS(l − kt )⊗ SH (−l)+ nT (l)⊗ SH (−l). (46)
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Benefiting from the STCC, we have

S(l − kt )⊗ SH (−l) = 4LI4δ(k − kt ) (47)

where I4 is a 4× 4 identity matrix. By substituting (47) into
(46), the matched filtering results become

rT (k) = 4LhT δ(k − kt )+ nT (l)⊗ SH (−l). (48)

From (48), it is found that after the matched filtering and
coherent accumulation on the received signal, the crosscor-
relation between different waveforms is eliminated, and the
sidelobes of the autocorrelation are also reduced due to the
STCC property. rT (k) is a vector containing the matched fil-
tering results corresponding to Mt = 4 waveforms. We com-
bine the results of theMt = 4 matched filters, and obtain the
synthetic output, given as

Rr (S, k) =
∥∥∥rT (k)∥∥∥

1
, k = −(L − 1), · · · , (L − 1) (49)

where ‖ · ‖1 is the `1 norm. We utilize the synthetic output as
the detection function to detect targets. Obviously, Rr (S, k) in
(49) is an approximate Dirac delta function with a maximum
value at the target delay kt . According to (14) and (15),
we have PSL(0) ≈ 0 and ISL(0) ≈ 0. The sidelobe level of
the synthetic output is very low, which is propitious to detect
targets.

C. THE WEIGHTING METHOD FOR DOPPLER
INTOLERANCE MITIGATION
When the target is moving, we have fd 6= 0 and D 6= I .
Then the STCC property is broken by the nonzero Doppler
frequency fd , given as

S(l − kt )D⊗ SH (−l) 6= 4LI4δ(k − kt ). (50)

In this case, the crosscorrelation in S cannot be eliminated,
and the sidelobes of the autocorrelation functions also rise.
If the traditional accumulation method described in (49) is
utilized to detect targets, the high range sidelobes caused by
the imperfect crosscorrelation and imperfect autocorrelation
properties deteriorate the target detection performance and
result in a high false probability. In order to depress the
affect of the Doppler frequency and mitigate the Doppler
intolerance of the waveforms, a weighting method by using
an estimated null space vector in [49] is introduced to com-
pensate the interpulse Doppler phase shift.

When fd = 0 and the noise is ignored for convenience,
we denote the received signal in different PRIs as x◦T (l) =
[x◦1 (l), x

◦

2 (l), x
◦

3 (l), x
◦

4 (l)] = hTS(l − kt ). When fd 6= 0 and

the noise is ignored for convenience, the received signal in
different PRIs can be written as

xT (l) = x◦T (l)D

= [x◦1 (l), x
◦

2 (l)e
jθ , x◦3 (l)e

j2θ , x◦4 (l)e
j3θ ]. (51)

If the interpulse Doppler phase shift of the received sig-
nal in (51) is compensated by a weighting vector wd =
[1, ejθ , ej2θ , ej3θ ]

T
, the Doppler affect on the STCC can be

eliminated. The compensated received signal can be written
as xTc (l) = wHd � xT (l), where the � is the Hadamard prod-
uct. If the weighting vector wd is accurate, the compensated
received signal is equal to the received signal without Doppler
modulation as xTc (l) = x◦T (l). However, for an unknown
target, fd is unknown. Thus, the weighting vector wd or the
Doppler phase shift θ = 2π fdTr should be estimated first.

If the matched filtering results of those four pulses in (44)
are arranged in a column, a compressed data matrix can be
written as

E(k) =


x1(l)⊗ s1H (−l)
x2(l)⊗ s2H (−l)
x3(l)⊗ s3H (−l)
x4(l)⊗ s4H (−l)

. (52)

Then (44) is equivalent to

rT (k) = wHE(k) (53)

where w = [1, 1, 1, 1]T . When fd = 0, we can obtain the
following equation from (48) as

wHE(k) = 4LhT δ(k − kt ) (54)

where noise is ignored for convenience. When fd 6= 0, (54)
cannot be hold. If we weight the received signals in different
PRIs as wHd � xT (l) and substitute them into the matched
filters in (52), a new equation can be obtained as

wdHE(k) = 4LhT δ(k − kt ). (55)

(55) can be regarded as weighting the matched filtering
results in different PRIs, and the equation ensures the effec-
tiveness of the STCC in our designed waveforms. It is found
from (55) that if k 6= kt , wd lies in the null space of E(k).
By the subspace decomposition, the null space vector ŵd can
be estimated from E(k). However, if k = kt , ŵd doesn’t lie
in the null space of E(k), and cannot be estimated from E(k).
The target delay kt is unknown, thus all the possible target
delays should be considered to estimate the vector ŵd .

By referring to [49], the estimation procedures for ŵd are
summarized as follows.

S4×4 =
(
S2×2 [S2×2J2L]H2×2
S2×2 − [S2×2J2L]H2×2

)
=


amT bmHJL amHJL bmHJL
bmT −amHJL bmT −amT

amT bmHJL −amHJL −bmHJL
bmT −amHJL −bmT amT

→ Time dimension
↓ Space dimension

(40)
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FIGURE 1. The data arrangement process to obtain Ex (k).

1) Construct an extended matrix Ex(k) from E(k) as

Ex(k) = [E(k−L + 1), · · · ,E(k), · · · ,E(k + L − 1)]

(56)

where Ex(k) is a 1 × (2L − 1) block matrix. The
data arrangement process for obtaining Ex(k) is shown
in Fig. 1. Since the target delay kt is unknown, E(k)
at all possible delays are considered in Ex(k). The
correlation matrix of Ex(k) is calculated by

RE (k) = Ex(k)ExH (k). (57)

2) A trial-and-error method is utilized to eliminate the
impact of E(k = kt ) for an unknown kt . By subtracting
the correlationmatrix ofE(h) fromRE (k), a newmatrix
is obtained as

RE ′(h) = RE (k)− E(h)EH (h) (58)

where h = (k − L + 1), · · · , k, · · · , (k + L − 1). The
number of RE ′(h) is 2L − 1. The eigenvalue decompo-
sition is performed onRE ′(h), and the eigenvectors cor-
responding to the minimum eigenvalue of each RE ′(h)
are stored as f 1(k),f 2(k),...,f 2L−1(k).

3) By arranging these eigenvectors in a row, a new matrix
F(k) = [f 1(k), f 2(k), · · · , f 2L−1(k)] is constructed.
The optimal weighting vector for Doppler compensa-
tion is one of the column vectors in F(k). The inner
product matrix of F(k) is computed by

G(k) = FH (k)F(k) = [g1, g2, · · · , g2L−1]
T . (59)

4) From G(k), the eigenvector in F(k) which has the
minimum inner product with other eigenvectors can be
indexed by

j = arg min
j=1,2,··· ,2L−1

∥∥gj∥∥2 (60)

where ‖ · ‖2 is the `2 norm. Thus f j(k) is the esti-
mated weighting vector for Doppler compensation,
i.e., ŵd = f j(k).

When the weighting vector ŵd is obtained, the matched fil-
tering results in different PRIs are weighted as

rTc (k) = ŵHd E(k). (61)

Similar to (49), the compensated synthetic output becomes

Rrc(S, k, fd ) =
∥∥∥rTc (k)∥∥∥1= ∥∥∥ŵHd E(k)∥∥∥1= ∥∥∥f jH (k)E(k)∥∥∥1

(62)

where k = −(L−1), · · · , (L−1). According to (55), we have
ŵHd E(k) ≈ 4LhT δ(k− kt ). Then, Rrc(S, k, fd ) is approximate
to be a Dirac delta function with a maximum value at the
target delay kt . By substitutingRrc(S, k, fd ) into (14) and (15),
we have PSL(fd ) ≈ PSL(0) ≈ 0 and ISL(fd ) ≈ ISL(0) ≈ 0,
which indicates that the Doppler tolerance of the chaotic
phase-coded waveforms with STCC is regained.

By optimizing at the transmitter and using the compensa-
tion manipulation at the receiver, the target can be detected
with a small false alarm probability. The flowchart of the
transmitted waveform design and received signal processing
is shown in Fig. 2.

IV. SIMULATION AND ANALYSIS
To verify the effectiveness of our proposed waveform design-
ing methodology, simulation results are presented in this
section. Note that an arbitrary number of chaotic sequences
with an arbitrary length and an arbitrary phase number can
be easily generated. The number of the transmitting antennas
Mt = 4 and the sequence length L = 40 are used to illus-
trate our waveform design method. Four above-mentioned
typical chaotic maps of logistic, Tent, hybrid logistic-tent,
and hyper logistic are used to generate the basic chaotic
sequences. These sequences are mapped into 4-ary phase-
coded {0, π, π/2, 3π/2} sequences, i.e., the phase number is
Mc = 4. The Deng’s codes proposed in [30] are used for
comparison.

A. PRIMARY CHAOTIC PHASE-CODED WAVEFORMS
GENERATED BY FOUR TYPICAL CHAOTIC MAPS
Four kinds of primary chaotic phase-coded waveforms are
generated from chaotic maps of logistic, tent, hybrid logistic-
tent, and hyper logistic with random initial values. Here, four
kinds of primary chaotic waveform sets composed ofMt = 4
phase-coded sequences are transmitted directly. The synthetic
outputs Rr (S) = Rr (S, 0) of them are computed according
to (22), and a random trial of those four synthetic outputs is
demonstrated in Fig. 3.

The synthetic outputs represent the pulse compression
results for MIMO radars, which indicate the correlation prop-
erties of the chaotic phase-coded waveforms. It is found
from Fig. 3 that: (1) The sidelobe levels of the synthetic
outputs for those four kinds of primary chaotic phase-coded
waveforms are relatively high, thus they cannot be directly
applied as detection waveforms for MIMO radars. (2) Differ-
ent kinds of chaotic phase-coded waveforms have different
correlation properties. For instance, the hyper logistic and
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FIGURE 2. The flowchart of the transmitted waveform design and received signal processing.

FIGURE 3. The synthetic outputs of four different kinds of primary chaotic
phase-coded waveforms.

tent phase-codedwaveforms have relatively the best synthetic
outputs, and the logistic phase-coded waveforms have almost
the worst synthetic outputs. (3) The correlation properties of
the primary chaotic phase-codedwaveforms should be further
optimized. The primary chaotic sequences with better initial
correlation properties (or better synthetic outputs) can obtain
better optimization results.

B. VERIFYING THE PROPERTIES OF THE STCC
The ACS algorithm is utilized to optimize a pair of com-
plementary chaotic phase-coded sequences. The parameters
are set in Table 1. The cost function values of Eum(bm)
changed with the increase of the generation number are
shown in Fig. 4. It is found that the cost values are
dramatically decreased at first and gradually decreased with

TABLE 1. Parameter setup for the ACS.

FIGURE 4. Cost function values with the increase of the evolution
generation.

the increase of the evolution generation. This phenomenon
agrees well with the adaptive optimization process in the
ACS, in which the mutation probability is high at younger
generation, and the mutation probability is reduced adap-
tively with the increase of the generation number. Moreover,
we note that under the same optimization condition, better
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FIGURE 5. The autocorrelation properties of sole and complementary
chaotic phase-coded waveforms.

results are obtained for the ACS algorithm with better initial
values.

The complementary property of the optimized sequences
is demonstrated in Fig. 5. The sum of the autocorrelation
functions of an optimized complementary pair of logistic
phase-coded waveforms is presented, and the autocorrelation
function of a single logistic phase-coded waveform is also
shown. By comparing the sidelobe level of the sole logis-
tic phase-coded waveform with that of the complementary
logistic phase-coded waveforms, it is found that the sidelobes
are significantly reduced by the complementary optimization.
In addition, themainlobewidth of the complementary logistic
phase-coded waveforms is narrower than that of the sole
logistic phase-coded waveform. Thus, it can be concluded
that the optimized complementary phase-coded waveforms
can obtain a superior autocorrelation property. Here only the
logistic sequences are exemplified for convenience. Other
kinds of chaotic sequences have similar results, and the
degree of improvement for a better chaotic map is larger.

When the STC is utilized for the optimized complemen-
tary chaotic phase-coded waveforms, the crosscorrelation
between different transmitted waveforms is eliminated. The
synthetic output of the optimized logistic phase-coded wave-
forms with STCC is compared with the sum of the auto-
correlation functions of a complementary pair of logistic
phase-codedwaveforms, which is shown in Fig. 6. Obviously,
the two outputs coincide with each other exactly, which vali-
dates the effectiveness of the STCC.

C. VALIDATING THE SUPERIORITY OF THE OPTIMIZED
CHAOTIC PHASE-CODED WAVEFORMS WITH STCC
Four sets of transmitted waveforms are investigated in
this section, which are orthogonal phase-coded waveforms
respectively based on four independent chaotic sequences,
four independent complementary chaotic sequences, four
Deng’ codes, and chaotic sequences with STCC. The orthog-
onal waveform set composed of four complementary pairs

FIGURE 6. The effect of STC on complementary waveforms.

of chaotic phase-coded waveforms is generated by repeating
the ACS optimization algorithm four times independently.
The synthetic outputs Rr (S) of those four waveform sets
using logistic, tent, hybrid logistic-tent, and hyper logistic
maps are shown in Fig. 7(a)-(d), from which we have the
following conclusions: (1) The sidelobe level of the four com-
plementary chaotic phase-coded waveforms is much lower
than that of those four sole chaotic phase-coded waveforms,
and a lit bit lower than that of the Deng’s phase-coded
waveforms. Also the mainlobe width of the complementary
chaotic waveforms is narrower than that of the sole chaotic
waveforms, and almost the same with that of the Deng’s
waveforms. (2) Comparing with Fig. 5, it can be seen that
the synthetic outputs of four complementary chaotic phase-
coded waveforms and four chaotic phase-coded waveforms
are worse than that of the single complementary chaotic
phase-coded waveform and the single chaotic phase-coded
waveform respectively due to the mutual interferences intro-
duced by other transmitted waveforms. (3)When the STCC is
implemented, the synthetic output of the chaotic phase-coded
waveforms is significantly improved, which means that lower
sidelobes and narrower mainlobe width are obtained. (4) The
chaotic phase-coded waveforms with STCC have the optimal
correlation properties, and thus have the best synthetic output
compared with other three waveform sets. (5) No matter
for good chaotic maps or bad chaotic maps, our proposed
designing method can enhance their applicability as phase-
coded waveforms in MIMO radars.

The synthetic outputs of those four sets of chaotic phase-
coded waveforms with STCC using logistic, tent, hybrid
logistic-tent, and hyper logistic maps are also demonstrated
in Fig. 8. All of them have low sidelobes and narrowmainlobe
width. Similar to the synthetic outputs of those four sets
of primary chaotic phase-coded waveforms in Fig. 3, it is
found that the chaotic sequences with better primary correla-
tion properties have better optimized results with STCC. For
instance, the hyper logistic and tent phase-coded waveforms
with STCC have relatively the best synthetic outputs, and
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FIGURE 7. The synthetic outputs with mutual interferences of different kinds of waveform sets. (a) Logistic based and Deng’s; (b) Tent
based and Deng’s; (c) Hybrid logistic-tent based and Deng’s; (d) Hyper logistic based and Deng’s.

FIGURE 8. The synthetic outputs of four different kinds of chaotic
phase-coded waveforms with STCC.

the logistic phase-coded waveforms with STCC have almost
the worst synthetic outputs. However, the difference is small
since their performances are all greatly enhanced. The above-
mentioned four kinds of chaotic maps are taken as examples
to demonstrate that any chaotic map can be utilized in our

waveform designing framework, and that better chaotic maps
can obtain better optimized waveforms.

D. DOPPLER COMPENSATION
According to the analysis in Sec.II.D, the Doppler frequency
induces a phase shift within the uncompressed coded pulse
as θ = 2π fdTr . When the Doppler phase shift θ is zero,
the PSL and ISL of the synthetic output for the chaotic phase-
coded waveforms with STCC are low (i.e., PSL(0) ≈ 0 and
ISL(0) ≈ 0), which is conductive for the target detection.
When the Doppler phase shift increases, the PSL and ISL
for the waveforms gradually increase, which masks other
possible targets near the main peak. The synthetic outputs
Rr (S, fd ) of the logistic phase-coded waveforms with STCC
for θ = 0◦, θ = 90◦, and θ = 130◦ are shown in Fig. 9.
Significant degradation in the sidelobe level is observed for
large Doppler phase shifts compared with the sidelobe level
for zero Doppler phase shift. To mitigate the Doppler effect,
the weighting method by a null space vector is applied. The
compensated resultsRrc(S, fd ) are also shown in Fig. 9, which
demonstrate that after Doppler compensation, the raised PSL
and ISL due to the Doppler phase shift are reduced to be near
the level of zero Doppler phase shift.
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FIGURE 9. The synthetic outputs before and after compensation.

FIGURE 10. The synthetic outputs at different Doppler phase shifts.

To comprehensively demonstrate the Doppler intolerance
of the waveforms, the synthetic outputs Rr (S, fd ) of the logis-
tic phase-coded waveforms with STCC at different Doppler
phase shifts are plotted in Fig. 10, which is equivalent to
the MIMO-AF χ (τ, fd ) of the designed logistic waveforms.
From Fig. 10, it is found that when the Doppler phase shift
increases, the synthetic output of the transmitted phase-coded
waveforms deteriorates in three aspects: (1) the peak of the
mainlobe is dropped. (2) the PSL and ISL of the synthetic
output are increased. (3) the mainlobe width is broadened.
These phenomena show that the designed waveforms are
Doppler-intolerant.

When the received signal is compensated by the weighting
method, the compensated synthetic outputs Rrc(S, k, fd ) of
the logistic phase-coded waveforms with STCC at differ-
ent Doppler phase shifts are shown in Fig. 11. Obviously,
the compensated synthetic output at nonzero Doppler phase
shift is almost the same as the synthetic output at zeroDoppler
phase shift. The effectiveness of the STCC is achieved even
for the nonzero Doppler frequency. Thus the sidelobe levels

FIGURE 11. The compensated synthetic outputs at different Doppler
phase shifts.

of the synthetic outputs at different Doppler phase shifts are
low due to the STCC property and Doppler compensation.
The detection ability is enhanced for both the stationary
targets and moving targets.

To further verify the effectiveness of the Doppler compen-
sationmethod in the coherent accumulation process, the PSLs
and ISLs of the synthetic outputs with increasing Doppler
phase shifts are figured out for different chaotic maps, which
are shown in Fig. 12. It can be seen that the sole chaotic phase-
coded waveforms, the complementary chaotic phase-coded
waveforms, chaotic phase-coded waveforms with STCC,
and Deng’s phase-coded waveforms are Doppler intolerant,
which means that the PSLs and ISLs increase with the abso-
lute Doppler phase shift. Relatively, the proposed transmitted
waveforms (chaotic phase-codedwaveformswith STCC after
Doppler compensation) have lower PSL and ISL, as well
as smoother changing trend with increased Doppler phase
shifts. It indicates that the proposed transmitted waveforms
are much superior in terms of the range sidelobe suppres-
sion of pulse compression and Doppler intolerance. With the
compensation method, the Doppler tolerance of the proposed
waveforms is obtained even for 180◦ phase shifts as shown
in Fig. 12, i.e., PSL(fd ) ≈ PSL(0) and ISL(fd ) ≈ ISL(0) for
∀fd satisfying |2π fdTr | ≤ 180◦.

It is also noted that compared with the sole chaotic
phase-coded waveforms and Deng’s phase-coded wave-
forms, the complementary chaotic phase-coded waveforms
and the chaotic phase-coded waveforms with STCC are
more sensitive to the Doppler phase shift. However, after
the Doppler compensation, the proposed chaotic phase-
coded waveforms are almost insensitive to the Doppler
phase shift. Compared with Deng’s codes, the proposed
waveforms after compensation present great improvement
in PSL and ISL, whereas compared with solely-transmitted
chaotic codes, significant improvements in PSL and ISL are
obtained.
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FIGURE 12. The PSLs and ISLs of the synthetic outputs of different waveforms with various Doppler phase shifts. (a) Logistic based and
Deng’s; (b) Tent based and Deng’s; (c) Hybrid logistic-tent based and Deng’s; (d) Hyper logistic based and Deng’s.

From these simulation results, we thus can conclude
that the proposed chaotic phase-coded waveforms are much
superior to Deng’s phase-coded waveforms and sole primary
chaotic phase-coded waveforms. Both the sidelobe suppres-
sion and Doppler tolerance are achieved.

V. CONCLUSION
In this paper, a set of chaotic phase-coded waveforms with
space-time complementary coding was designed for MIMO
radar applications. An adaptive clonal selection algorithm
was proposed to optimize independent pairs of complemen-
tary chaotic phase-coded waveforms, which can generate a
set of quasi-orthogonal waveforms with good autocorrelation
properties. To further eliminate the mutual interference of
different waveforms, the space-time coding was implemented
on the complementary pair. Then a set of ideally orthogonal
waveforms with quasi-ideal autocorrelation properties was
obtained. The resultant design was a pulse train of phase-
coded waveforms, and a Doppler compensation method at
the receiver was utilized for the waveforms. In the design-
ing process, three classic problems of autocorrelation, cross-
correlation, and Doppler intolerance were jointly solved,
which makes the resultant waveforms extensively usable in
practical detection scenarios of MIMO radars. Furthermore,

the chaotic systems can provide our optimization a high
cardinality set of sequences, and different kinds of chaotic
maps can be utilized in our designing methodology. The
waveform parameters such as the code number, code length,
and phase number can also be chosen more freely. Thus
the designing methodology offers the waveform generation
great flexibility. Simulation results further demonstrated that
compared with other waveforms, the matched filtering output
of the proposedwaveforms hasmuch lower sidelobe level and
is almost insensitive to the Doppler phase shift. It indicates
that the proposed waveform set is a superior waveform set
suitable for MIMO radar applications.

APPENDIX A
THE DERIVATION OF χsm (τ, fd )
According to the definition of the auto-AF, one has

χsm (τ, fd )

=

∫
+∞

−∞

sm(t)s∗m(t + τ ) exp (j2π fd t)dt

=

∫
+∞

−∞

[Am(t)+ Bm(t − Tr )][Am(t + τ )+Bm(t + τ−Tr )]

∗ exp (j2π fd t)dt. (63)
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Usually, the considered delay τ satisfies τ ∈ [−Tr ,Tr ]. Then
(63) can be simplified as

χsm (τ, fd )

=

∫
+∞

−∞

[Am(t)A∗m(t+τ ) exp (j2π fd t)]dt

+

∫
+∞

−∞

[Bm(t−Tr )B∗m(t+τ−Tr ) exp (j2π fd t)]dt. (64)

By assuming that t ′ = t − Tr , one has∫
+∞

−∞

[Bm(t−Tr )B∗m(t+τ−Tr ) exp (j2π fd t)]dt

= exp (j2π fdTr )
∫
+∞

−∞

[Bm(t ′)B∗m(t
′
+τ ) exp (j2π fd t ′)]dt ′.

(65)

By substituting (65) into (64), one has

χsm (τ, fd )

=

∫
+∞

−∞

[Am(t)A∗m(t+τ ) exp (j2π fd t)]dt

+ exp (j2π fdTr )
∫
+∞

−∞

[Bm(t)B∗m(t+τ ) exp (j2π fd t)]dt

= χAm (τ, fd )+ exp (j2π fdTr ) χBm (τ, fd ). (66)

The detail derivation for χAm (τ, fd ) is presented, and the
deriving process forχBm (τ, fd ) is similar to that forχAm (τ, fd ).
The signal Am(t) defined in (2) can be rewritten as

Am(t) =
L−1∑
l=0

exp(jam(l))u(t − lTs)

= u(t)⊗
L−1∑
l=0

exp(jam(l))δ(t − lTs)

4
= u(t)⊗ am(t) (67)

where⊗ denotes the convolution operation. am(t) is the signal
of the phase-coded sequence, and its ambiguity function is
denoted by χam (τ, fd ). u(t) is the symbol modulation signal,
and its ambiguity function is denoted by χu(τ, fd ). Accord-
ing to the ambiguity function for phase-coded signal [50],
χAm (τ, fd ) can be written as

χAm (τ, fd ) = χam (τ, fd )⊗
τ
χu(τ, fd ) (68)

χam (iTs, fd ) =
L−|i|−1∑
l=0

[exp(jam(l))][exp(jam(l + |i|))]

∗ exp(j2π fd lTs) (69)

χu(τ, fd ) =


exp(jπ fd (Ts − τ ))sin(π fd (Ts − |τ |))

π fd (Ts − |τ |)

∗

(
1−
|τ |

Ts

)
, |τ | ≤ Ts

0, |τ | > Ts

.(70)

By substituting (69) and (70) into (68), one has

χAm (τ, fd ) =
L−1∑

i=−(L−1)

χu(τ − iTs, fd )χam (iTs, fd ). (71)

If τ = kTs, one has

χAm (kTs, fd ) = χu(0, fd )χam (kTs, fd ) (72)

χu(0, fd ) =
exp(jπ fdTs)sin(π fdTs)

π fdTs
. (73)

Similarly, one has

χBm (τ, fd ) =
L−1∑

i=−(L−1)

χu(τ − iTs, fd )χbm (iTs, fd ) (74)

χBm (kTs, fd ) = χu(0, fd )χbm (kTs, fd ) (75)

where the χbm (kTs, fd ) can be directly obtained by replacing
the phase code sequence am in (69) by bm. By substituting
(72) and (74) into (66), the auto-AF χsm (kTs, fd ) is obtained
as

χsm (kTs, fd ) = χu(0, fd )[χam (kTs, fd )

+ exp(j2π fdTr )χbm (kTs, fd )]. (76)

APPENDIX B
THE DERIVATION OF χsm,sn (τ, fd )
According to the definition of the cross-AF, one has

χsm,sn (τ, fd )

=

∫
+∞

−∞

sm(t)s∗n(t + τ ) exp (j2π fd t)dt

=

∫
+∞

−∞

[Am(t)+ Bm(t − Tr )][An(t + τ )+ Bn(t + τ−Tr )]

∗ exp (j2π fd t)dt. (77)

Using the similar manipulations for (64) and (65), one has

χsm,sn (τ, fd )

=

∫
+∞

−∞

[Am(t)A∗n(t+τ ) exp (j2π fd t)]dt

+ exp (j2π fdTr )
∫
+∞

−∞

[Bm(t)B∗n(t+τ ) exp (j2π fd t)]dt

= χAm,An (τ, fd )+ exp (j2π fdTr ) χBm,Bn (τ, fd ). (78)

By referring to the derivation for χAm (τ, fd ), the χAm,An (τ, fd )
can be written as

χAm,An (τ, fd ) =
L−1∑

i=−(L−1)

χu(τ − iTs, fd )χam,an (iTs, fd )

(79)

χam,an (iTs, fd ) =
L−|i|−1∑
l=0

[exp(jan(l))][exp(jam(l + |i|))]

∗ exp(j2π fd lTs). (80)

If τ = kTs, one has

χAm,An (kTs, fd ) = χu(0, fd )χam,an (kTs, fd ). (81)
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Similarly, one has

χBm,Bn (τ, fd ) =
L−1∑

i=−(L−1)

χu(τ − iTs, fd )χbm,bn (iTs, fd )

(82)

χBm,Bn (kTs, fd ) = χu(0, fd )χbm,bn (kTs, fd ) (83)

where the χbm,bn (kTs, fd ) can be directly obtained by replac-
ing the phase code sequence am in (80) by bm. By substi-
tuting (81) and (83) into (78), the cross-AF χsm,sn (kTs, fd ) is
obtained as

χsm,sn (kTs, fd ) = χu(0, fd )[χam,an (kTs, fd )

+ exp(j2π fdTr )χbm,bn (kTs, fd )]. (84)
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