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ABSTRACT In current medical imaging, coronary artery stenosis quantification requires fast and accurate
coronary centerline computation. This paper develops a new framework for extracting coronary centerlines
from 3-D segmented coronary arteries models. The approach utilizes the gradient vector flow (GVF) filed-
based speed image of the vessel model and implements a wavefront propagation technique for centerline
branch tracking. The approach was validated over 17 3-D synthetic vessel models. The results showed a
good agreement between the proposed method and ground truth centerline in synthetic vessel models with
an average distance of 0.25 mm and overlap measure of 96.0%, given the CT scans with a resolution of about
0.3 mm×0.3mm×0.4mm. Second, the proposed method was further tested in six clinical coronary arteries
models reconstructed from computed tomography coronary angiography in human patients and found to
be applicable in both left coronary arteries and right coronary arteries with an average processing time
of 16 minutes per case. In conclusion, the proposed GVF field and the fast marching-based method should
have more routine clinical applicability.

INDEX TERMS Computed tomography angiography, coronary centerline, fast marching method, gradient
vector flow, vessel segmentation.

I. INTRODUCTION
Coronary centerline computation plays an utmost role in
cardiovascular disease screening [1]–[3], since it holds
great significance for coronary artery stenosis quantifi-
cation and provides important pathological information.
However, the performance of centerline tracking tech-
nique varies easily due to noises and artifacts. Moreover,
it is a grand challenge to identify the vascular directions
at intersections or overlapping. Furthermore, manual
extraction and annotation is skill-demanding and time-
consuming. Therefore, accurate algorithms for coronary
centerline tracking with minimal user interaction are in
demand.

At present, several approaches are dedicated to coro-
nary centerline extraction, such as mathematical morphol-
ogy [4], medialness filter [5] and fuzzy connectedness [6].
An overview of available centerline extraction techniques

are presented in [7]. Topology- or connectivity-preserving
thinning is usually used for computing centerlines [8]. In [9],
a smoothing approach is introduced for lung airways, which is
based on an ellipsoidal kernel before segmenting and thinning
the 3D volumetric image. Bullitt et al. [10] developed a
ridge line detectionmethod to identify centerlines, which uses
the Hessian of the image intensity. Aylward and Bullitt [11]
introduced a method based on intensity ridge traversal.
The resulting centerlines are smoothed using a B-spline-
based approach. The approach by Zhang et al. [12] is
based on Dijkstras algorithm using a distance field cost
function. Besides, the extraction algorithm described by
Wischgoll et al. [13] is based on a topological analysis of
a vector field generated by normal vectors of the extracted
vessel wall. Zheng et al. [14] developed a new mean center-
line generation method by combining model-driven and data-
driven approaches.

41816
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-8625-2521


H. Cui, Y. Xia: Automatic Coronary Centerline Extraction Using GVF Field and Fast Marching Method From CT Images

Due to the existence of narrowing and calcification, these
methods can not compute distal parts of coronary centerlines
accurately. In addition, all the methods are designed for their
own purpose and detection ability, thus their performances
vary according to the values of their parameters and thresh-
olds. Moreover, many existing algorithms do not consider the
shape of each vessel, which may provide important informa-
tion for clinical diagnosis.

In the present context, numerous algorithms for centerline
extraction have been developed based on variousmedial func-
tions [15]–[17]. For example, some approaches depend on the
concept of distance filed. At each voxel location, the distance
field computes the nearest distance from the vessel’s bound-
ary. In [15], the distance transform is calculated as a speed
image, and the fast marching (FM) method is performed for
centerline extraction. In [16], a modified distance field based
speed image is proposed, which integrates the magnitude of
Gaussian gradient. Therefore, further smoothing and pruning
operations are usually required to obtain smooth centerline,
especially in 3D case.

To overcome the aforementioned shortcomings,
Hassouna and Farag [18] combined level set method and
wave propagation technique. However, the parameters are
heuristically selected, which prevents the algorithm from
automation. Besides, the method is inefficient for large
datasets since the processing time for distance map calcu-
lation is huge.

This paper develops a fast and accurate centerline extrac-
tion algorithm. The new algorithm can be described in two
main parts: 1) Given the vessel segmentation results, the algo-
rithm computes an initial medial function (speed image)
based on gradient vector flow. 2) The algorithm automat-
ically decides a source point and drive a wave using the
GVF based speed image, computes a time arriving map and
tracks the centerline branch along the gradient decent of the
time arriving map. The first major contribution is to pro-
pose an enhanced Frangi’s filter that can better detect the
vesselness measures. More specifically, a novel vesselness
diffusion filter is developed to enhance the intensities of
the main branches. The second contribution is to use the
GVF based medial function as the new speed image, which
can guarantee the efficiency and accuracy. Thirdly, the multi-
ple branch extraction algorithm uses the previously computed
centerlines as the source points and drives new wave front
propagations. Also high order Runge-Kutta method is applied
to solve the discrete centerline extraction formulation.

A preliminary version of this work was presented in [19].
In this manuscript, we make extensions in the following
aspects: 1) Amore detailed description of the multiple center-
line extraction procedure is given. 2) The theoretical support
of 3D gradient vector flow is presented. Besides, superiority
of the gradient of GVF over its magnitude is described.
3) We further provide comparison of processing time and
overlap measure with Hassouna’s improved GVF in [18].
4) Our manuscript includes detailed studies of algorithm
design, speed image construction, as well as numerical

FIGURE 1. The pipeline of the centerline computation framework.

solution for single branch tracking. Fig. 1 shows the flowchart
of the presented framework.

II. METHODOLOGIES
A. CORONARY ARTERY SEGMENTATION
The connected components based approach [20] is used to
segment the entire coronary artery tree from CTCA dataset.
Frangi’s vesselness function [21] is formulated as:

VF (Eλ)

=

0 if λ2 > 0 or λ3 > 0

(1− e−
A2

2α2 ) · e
−

B2

2β2 · (1− e
−

S2

2γ 2 ) otherwise

(1)

where |λ1| ≤ |λ2| ≤ |λ3| are the eigenvalues of the Hessian,
A, B and S are defined as follows to capture different vessel
structures
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2
2 + λ

2
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and α, β and γ are weighting parameters. Although Frangi’s
filter is relatively efficient, it is sensitive to image noise.
Meanwhile according to (1), small-scale vessels will be con-
sidered as artifacts easily since the enhancement effect is
lower. Therefore, a multi-scale approach can be used to
enhance tubular structures and reduce background noises,
by performing vesselness diffusion.

Original CT images are usually evolved by applying the
diffusion equation, whose divergence form can be expressed
as:

Lt = ∇ · (D∇L) (5)

where L is the original image and D is the diffusion tensor.
Unfortunately, VF defined in (1) can not directly be used
in (5) since it is not smooth at the origin. The enhanced
vesselness function Vs is therefore proposed

Vs(σ ) =
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where the first term approaches zero near the origin and is one
everywhere else. The multiscale approach can be performed,
and the maximum vesselness response is selected as

V = max
σmin≤σ≤σmax

Vs(σ ) (7)

Intuitively, diffusion in the vessel direction should be
steered and diffusion perpendicular to the vessel should be
inhibited. Therefore, the novel diffusion tensor D incorpo-
rates the vesselness measure V , and is given by [22] and [23]:

D , Q3′QT (8)

where Q is the eigenvectors of H. Moreover, three diagonal
entries of the diagonal matrix 3′ are defined as:

λ′1 , 1+ (ω − 1) · V
1
S (9)

λ′2 , 1+ (ε − 1) · V
1
S (10)

λ′3 , 1+ (ε − 1) · V
1
S (11)

with parameters S ∈ R+, ω > ε and ε > 0. The diffusion
strength parameter ω is normally larger than one. Besides,
ε should be chosen as a small positive value to ensure the
tensor’s positive definiteness. The diffusion strength is max-
imal (ω) for tubular structures (V → 1). While for non-
vessel structures (V → 0), the diffusion is isotropic and
high. Finally, the parameter S will not alter the smoothness
property. Fig. 2 shows a comparison of Frangi’s vessel-
ness, enhanced vesselness and the diffusion result. The main
branch is enhanced and the background non-vessel structures
are suppressed.

FIGURE 2. A comparison of Frangi’s vesselness, enhanced vesselness and
the diffusion result after 4 iterations. (a) Frangi’s vesselness.
(b) Enhanced vesselness. (c) Diffusion.

B. EDGE MAP
The edge map [24] f (x) of the original segmentation
result I(x) is given by

f (1)(x) = |∇I (x)| (12)

or

f (2)(x) = |∇[Gσ (x) ∗ I (x)]| (13)

where x = (x, y, z) and Gσ (x) is the 3D Gaussian function.
Edge maps generally have some nice properties. The gradient

of an edge map ∇f is approximated to zero in homogeneous
regions. At the edge locations, the ∇f vectors have large
magnitudes and point toward the edges.

C. GRADIENT VECTOR FLOW
The 3D GVF field V (x) = [u(x), v(x),w(x)] minimizes the
following energy functional [25]

EGVF (V ) =
∫∫∫

µ(|∇u(x)|2 + |∇v(x)|2 + |∇w(x)|2)

+ |∇f (x)|2|V (x)−∇f (x)|2dx (14)

where µ is the smoothness regularization parameter.
Using the calculus of variations [26], the GVF field must

satisfy

µ∇2V (t)− (V −∇f )|∇f |2 = 0 (15)

where ∇2 is the Laplacian operator and t is the time variable.
The GVF field can thus be determined by solving

Vt = µ∇2V (t)− (V −∇f )|∇f |2 (16)

where Vt is the partial derivative of V . Compared to the
distance field, the GVF magnitude (|V (x)|) does not form
medial surfaces since that the GVF value at each pixel is
computed by diffusion process [27].

D. SPEED IMAGE
In the previous work [18], |V (x)| is used to construct a
weak medial function, and the following medial function is
proposed:

λ(x) = 1.0−
(
|V (x)|−min(|V |)

max(|V |)−min(|V |)

)γ
, 0 < γ < 1 (17)

with field strength parameter γ . It can be seen that the
magnitude of the GVF was normalized and the parameter γ
was introduced for the purpose of controlling the strength
of the medial function λ(x). The value of γ was empirically
determined. However, this value was determined by using a
slab, which deviates too much from tubular structures (coro-
nary arteries). Moreover, the value of γ is data-dependent,
which prevents the whole centerline extraction algorithm
from automation and reproduction.

To reduce the effect of the strength parameter γ on the
accuracy of the medial function, the properties of the magni-
tude of the gradient of GVF, |∇V (x)|, is utilized in this work
to construct the initial medial function. We first compute the
gradient of GVF field ∇V (x). The centerlines and the edge
points can be discerned by checking |∇V (x)|. For the purpose
of extracting centerlines only, the edges need to be further
removed after separating the smooth area. Therefore, an edge
indicator function [28] is defined

g(x) =
1

1+ f (x)
(18)

with very small values at the strong edge locations and 1 in
other places. The centerline strength function is thus given by

k(x) = g(x) ∗ |∇V (x)| (19)
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then normalizing it to [0, 1],

k̄(x) =
(

k(x)−min(k)
max(k)−min(k)

)γ
(20)

where γ is the field strength in [0, 1]. Once |∇V (x)| is
computed and the edge indicator function g(x) is introduced,
the accuracy of the new medial function is less dependent on
the parameter γ . It can be proved that any value in (0, 1) can
be selected.Without loss of generality, γ is chosen as 1 in this
work.

Therefore, a new speed image based on k̄(x) [18] for the
fast marching method

F = eβ k̄ (21)

where β is a speed parameter defined as β = 1/τ and τ is the
parameter. The proposed speed image F is computationally
efficient since it is directly computed from the GVF and there
is no extra computation required.

E. BRANCH TRACING
Based on the proposed centerline strength function k̄(x),
the source point Ps is chosen as the point with maximal value
in k̄(x):

Ps = arg max
x

k̄(x) (22)

Then a wave front is propagated using the new speed image
F from the source Ps. The resulting map T can be treated as
a modified distance map from medial function k̄(x), using a
non Euclidean metric that gives larger value in the center of
the vessel.

Fig. 3(a) shows a 2D example of tubular structures, whose
properties of high curvature and multiple branches are capa-
ble of representing the vascular structures. Fig. 3(b) gives the
computed time arriving map T of the wave front starting from
the source point Ps, given the proposed speed image F .

FIGURE 3. A 2D example of multiple vessel branches and the computed
time arriving map of the wave front starting from the source point Ps.

Next the start point m0 is chosen as the point with maxi-
mum T value, which is the furthest geodesic point. The first
branch centerline is extracted by solving

dS
dt
= −

∇T
|∇T |

, S(0) = m0 (23)

where m0 is the furthest geodesic point and S(t) represents
the discrete centerline. The classical implicit Runge-Kutta
method [29] is explored, which is given as

Sn+1 = Sn +
s∑
i=1

biki (24)

where

ki = hf (tn + cih, Sn +
s∑
j=1

aijkj) (25)

here tn is the time step and h is the step size.
The two-stage Gauss-Legendre method (order of 4)

is applied to achieve higher accuracy. It can be shown
that [30]:

k1 = hf
(
tn + (

1
2
−

1
6

√
3)h, Sn +

1
4
k1 + (

1
4
−

1
6

√
3)k2

)
(26)

k2 = hf
(
tn + (

1
2
+

1
6

√
3)h, Sn + (

1
4
+

1
6

√
3)k1 +

1
4
k2

)
(27)

Assume initial guesses of k1 and k2, denoted as k01 and k02 ,
were linearly interpolated from the 8 nearest neighbours of
m0 in the gradient field ∇T and then used for the first branch
tracking. To improve the efficiency, an iterative method [29]
was used to solve this system of nonlinear equations. Once
the first branch is determined, it will be used as the new
wave front source points and all the remaining branches can
be computed following the same tracking process. Fig. 4
illustrates a 2D example of multiple centerline branches for-
mation. The whole procedure terminates when the length
of the new branch is less than some pre-defined threshold
value L. Algorithm 1 shows the pseudo-code of the whole
procedure.

Algorithm 1 Centerline Computation Algorithm
1: Input: Segmentation result I
2: Output: Final centerline Sf
3: Sf = ∅, linelength = ∞
4: Ps = arg maxx k̄(x)
5: i = 0
6: while linelength > L do
7: T = FastMarching(Ps,F)
8: mi = x | T (x) ≥ T (y) ∀x, y ∈ O
9: S = backtrace(mi,Ps)
10: linelength = length(S)
11: Ps = Ps + S, Sf = Sf + S
12: i = i+ 1
13: end while

Note: k̄(x) =
(

k(x)−min(k)
max(k)−min(k)

)γ
, k(x) = g(x) ∗ |∇V (x)| and

g(x) = 1
1+f (x) , where V (x) is GVF field, f (x) is edge map, γ

is the field strength in [0, 1]. F = eβ k̄ , where β = 1/τ and
τ is the parameter.
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FIGURE 4. Multiple centerline branches formation.

III. RESULTS
A. VALIDATION
The testing datasets were provided by the MICCAI’08 work-
shop 3D Segmentation in the Clinic: A Grand Challenge II -
Coronary Artery Tracking [31]. A total of 8 patients were
scanned, each of which has four different segments of coro-
nary arteries extracted. In this work, a total of 17 segments
of coronary artery models were reconstructed. Validation of
the centerline extraction algorithmwas performed using these
17 synthetic vessel models. Table 1 summarizes the dataset
size and resolution of each CTCA dataset. All the experi-
ments were implemented in Matlab 2014b on a Windows
computer with 2.6 GHz CPU and 16 GB of RAM.

In the experiments, the edge maps were calculated accord-
ing to Equation (13). The parameter µ = 0.2 and iteration
n = 10 were chosen for the GVF computation. The field
strength parameter γ = 1 was used. Meanwhile, different

TABLE 1. Dataset size and resolution of each CTA data.

values of γ between 0 and 1 were selected, which gave
similar centerline results of the synthetic vessel model. This
demonstrates one advantage of the proposed speed image.
The step size for Runge-Kutta method is selected as 0.01.

Fig. 5 demonstrates the computed edge maps of
a 2D vessel cross section, for different values of parameter σ .
Central pixel locations are observed to be discerned when
σ is selected as 2. Fig. 6 shows a 2D example of gradient
of the edge map and the gradient vector flow field, with
σ = 0.5. In Fig. 7 we show the model Vessel 0, the ground
truth centerline and result of applying the skeletonization
algorithm. The computed centerline is observed to be contin-
uous, naturally smooth and highly coincident with the ground
truth centerline. The remaining 3D synthetic vessel models,
together with the ground truth and the computed centerlines
are presented in Fig. 8.

FIGURE 5. Edge maps for different values of parameter σ .

Moreover, a quantitative analysis was performed to explore
the accuracy of the centerline extraction algorithm. The
average error and maximum error in both world space
and voxel space between the ground truth and com-
puted centerlines for three different methods are presented
in Table 2. For Van’s method, the average distance and
maximum distance in voxel space between the ground
truth and computed centerlines were 0.65 ± 0.23 mm
and 1.09 ± 0.37 mm, respectively. For DTFM method,
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TABLE 2. A comparison of the average and maximum error for each of the synthetic vessel model between previous methods and the proposed method.

FIGURE 6. A 2D example of gradient of edge map and GVF field. (a) Edge
map, σ = 0.5. (b) GVF, σ = 0.5.

the average distance and maximum distance in voxel space
between the ground truth and computed centerlines were
0.61 ± 0.24 mm and 1.04 ± 0.38 mm, respectively. While
for GVFFM method, the average distance and maximum
distance in voxel space between the ground truth and com-
puted centerlines were 0.25± 0.16 mm and 0.45± 0.21 mm,
respectively.

Further quantitative validations were performed using the
above 17 synthetic vessel models, according to three dif-
ferent overlap measures (overlap (OV), overlap until first
error (OF) and overlap with the clinically relevant part of the
vessel (OT)) [32], [33]. Table 3 compares the overlap mea-
sure evaluation results of the proposed GVFFM method with
Van’s method and DTFM method. The proposed GVFFM
method is found to achieve higher OV, OF and OT mea-
sures for 16 synthetic vessel models among all the tested
datasets. This is mainly because the new GVF based speed
image avoids forming medial surface, which is capable of
driving the discrete centerline tracking as close to real medial
axis as possible. The average OV, OF and OT measures for
Van’s method are 93.3%, 85.2% and 93.0%, respectively.
The average OV, OF and OT measures for previous DTFM
method are 93.6%, 85.6% and 93.3%, respectively. While for
the proposed GVFFM method, the three measures can be,

FIGURE 7. Ground truth centerline (red) and the computed centerline
(blue) for Vessel 0.

respectively, up to 98.2%, 91.7% and 98.3%. The proposed
method can therefore outperform the previous Van’s and
DTFMmethod. Meanwhile, the proposed GVFFMmethod is
able to achieve OV measure of 100% for two vessel models,
and OT measure of 100% for three vessel models. The only
synthetic vessel model that the GVFFM method achieves
lower overlap measures (OV, OF and OT) is Vessel 2. How-
ever, the reductions of all the three measures are marginal,
which might be explained by the existence of high curvature
areas and artifacts.

Furthermore, the proposed algorithm was performed on
the testing set (24 datasets) of the Rotterdam coronary
CTA database, and compared to another seven automatic
centerline extraction method [14]. Table 4 shows the com-
parison with other automatic centerline extraction methods
using the overlap metrics. The proposed method outperforms
all the other automatic methods regarding OV and OT, and
ranks second on OF.
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FIGURE 8. Computed centerline results (blue) and ground truth centerlines (red) for synthetic vessel models
Vessel 1-16.

In addition, we tested the total running time of cen-
terline extraction for all the three algorithms. Synthetic
vessel model Vessel 0 was used as the reference model.

The total processing time for each case includes two parts,
distance map computation time and single branch tracking
time. In Fig. 9 we compare the two-stage processing time for
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TABLE 3. A comparison of computed three overlap measures between the obtained centerline and the ground truth centerline for Van’s method,
DTFM method and GVFFM method.

TABLE 4. Comparison with other automatic centerline extraction
methods on the Rotterdam coronary CTA test set (24 datasets)
using the overlap metrics.

both methods. For Van’s method, the distance map compu-
tation time is 213.2 ± 31.8 seconds and the branch tracking
time is 30.9 ± 3.6 seconds. For DTFM method, the distance
map computation time is 215.4±32.5 seconds and the branch
tracking time is 31.6 ± 3.7 seconds. On the other hand,
the distance map computation time is 149.7 ± 13.6 seconds
and the branch tracking time is 33.7 ± 3.2 seconds for
GVFFM method. The new approach is able to improve the
distance map computation efficiency by about 31%. At the
same time, the branch tracking procedure costs almost
the same time for all the three methods.

B. APPLICATION TO PATIENT STUDY
In this section, the presented coronary centerline computation
framework was further applied over three different CTCA
datasets in DICOM format (ccta 1, 14 and 22). In Table 5 we
summarize the dataset size, resolution and computation time
of both methods for each CTCA dataset. Before coronary
artery segmentation, the vesselness diffusion was performed
to the original CTCA datasets by applying the proposed diffu-
sion filter. In this study, complete 3D segmentation results of

FIGURE 9. A comparison of processing time for the Van’s, DTFM and
GVFFM method. (a) Distance map computation time. (b) Single branch
tracking time.

coronary artery trees were obtained from the CTCA datasets
via Hessian filter and connected components based segmen-
tation method [34]. In Fig. 10 we present the computed
centerline results for three different CTCA datasets. The
computed centerlines are continuous, naturally smooth and
centrally located. In addition, no extra branches are generated
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TABLE 5. Dataset size, resolution and computation time.

FIGURE 10. Computed centerlines (red) for LAD and left circumflex artery
(LCX) (left panel), and right coronary artery (RCA) (right panel). (a) ccta 1.
(b) ccta 14. (c) ccta 22.

by surrounding noises (Fig. 10(b)), because the centerline is
tracked along the gradient descent in T and a termination
criteria is introduced. The average processing time for each
CTCA dataset is about 16 minutes, which provides a high
efficiency for clinical practice.

The high accuracy benefits from the property of GVF
field, which collapses to medial curve rather than medial
surface, compared to conventional distance transformation
based speed image. Moreover, the high order Runge-Kutta
method and its numerical implementation in this work allows
for accurate tracking of discrete centerline points. Thirdly,
the proposed method possesses a good ability to handle the
deviations. Therefore, the proposed method outperforms the
DTFM method regarding the centerline accuracy, since
the GVF field can collapse to the real central position of

the tubular structure. On the other hand, DT based method
may collapse to medial surfaces in stenosis positions (non-
tubular), which may result in the deviation of the computed
centerline from the ground truth centerline.

IV. DISCUSSIONS
In this work, an automatic and robust approach has been
proposed for coronary artery segmentation and its centerline
extraction to meet the needs of clinical practice. The pre-
sented method is capable of identifying each vessel center-
line based on a wave front propagation technique to find its
right way. For coronary artery segmentation, original Frangi’s
vesselness measure has some drawbacks, e.g., non-uniform
staining. Moreover, Hessian analysis gives poor results on
small branches of high curvature. We propose an enhanced
Frangi’s vesselness filter to steer main diffusion along the
vessel and reduce background noises. As for the center-
line extraction, each single branch is connected because the
branch back tracking algorithm starts at the furthest geodesic
point and terminates at the source points, which uses a con-
stant step size. Meanwhile, newly detected points can inter-
sect the previous centerline branch since the fast marching
field is strong monotonic. Therefore, the entire centerline tree
is connected, without any post-processing operation. Further-
more, the GVFFM method that we used can compensate for
the problem of missing area or holes, which is capable of
minimizing the possible deviation on the resulted centerline
extraction.

In cardiovascular applications (e.g., IVUS), accurate steno-
sis identification plays an utmost role in the early diagnosis
of heart diseases. Therefore, the centerline must possess the
following features: centeredness, connectedness, topology
preserving, uniqueness and robustness to noise [35]–[37].
Recall that the proposed centerline extraction framework
computes the GVFfield as the speed image, and drives a wave
front propagation to compute the time arriving map, it can be
proved to possess all the properties.

In the presented method, the GVF based speed image
drives the centerline along ridges in the time-crossing map.
We can change the value of γ and apply (20) on the
CTCA image, to explore the effect of the field strength.
The centerline strength is observed to be enhanced when
decrementing the field strength γ . Finally, this approach is
computationally efficient since a lower number of computa-
tions are needed (no distance map), and the branch tracking
procedure is more efficient by using the proposed GVF based
speed image.

V. CONCLUSIONS
In this study, we developed a fast and accurate framework
for extracting coronary artery centerlines from real CTCA
images. We have first proposed an enhanced Frangi’s vessel-
ness filter. The GVF field was then computed to develop a
novel medial function of the 3D segmentation result. Finally,
the centerlines were computed by using high order Runge-
Kutta method, given the obtained time arriving map. Both the
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accuracy and efficiency of the presented algorithm have been
validated over 17 3D synthetic vessel models from real CTCA
datasets. It showed that the proposed algorithm improved the
overlap measure by 4.6% for OV, 6.1% for OF and 5.0%
for OT. Besides, it was able to reduce the average error
by 48%, and at the same time, reduce the average processing
time by 26.1%. Furthermore, the new method was performed
over several CTCA datasets from real patients. On average,
it cost about 16 minutes for each dataset, compared with the
time of 27.0 and 25.7 minutes per case in the previous work.

The experimental results demonstrated that the robustness
and effectiveness have been improved for segmented coro-
nary artery models and their centerlines tracking from cardiac
CTA datasets. The new method is highly robust because the
proposed centerline strength function does not form medial
surfaces. Therefore, the back tracing procedure is guaranteed
along the medial axis of the coronary arteries. Moreover,
the new method is more efficient since it avoids calculating
the distance field. Therefore, this algorithm should have more
routine clinical applicability as a real-time coronary center-
line computation tool.
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