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ABSTRACT For disaster backup in cloud data center network, existing researches have not jointly
considered sufficient data redundancy and limited receiving capacity, likely to result in underutilization of
network transmission capability, unfair distribution of backup load, or even lacks of disaster resistance.
In this paper, we propose a new strategy to realize bandwidth-efficient and load-fair disaster backup under
redundancy and capacity constraints using customized bandwidth allocation and flexible flow scheduling
in software-defined networking. Based on many-to-many relationship in disaster backup, we formulate a
new redundancy-guaranteed and receiving-constrained capacitated multi-commodity flow problem. By con-
structing flow-ratio-constrained backup transmission model, we specify flow allocation ratio among backup
data centers with limited receiving capacity. Then we present a basic ratio-aware ant colony optimization
algorithm satisfying backup flow constraint and rate requirement constraint. Furthermore, to obtain higher
performance in redundancy guarantee and enhance bandwidth allocation fairness among massive backup
transfers, we propose a fair-rotating and ratio-aware ant colony optimization (FRRA-ACO) algorithm.
Especially, we use rotary routing search for multiple concurrent flows based on backup requirement cloning
to approximate the upper bound of bandwidth allocation, adjust ratio of bandwidth allocation for multiple
backup transfers with different requirements, and further improve flow rate according to the maximum
link utilization on links if possible. Experiments demonstrate that FRRA-ACO outperforms state-of-the-art
algorithms with less backup completion time, fairer backup load distribution, and higher network utilization.

INDEX TERMS Disaster backup, redundancy-guaranteed and receiving-constrained,
flow-ratio-constrained, fair-rotating and ratio-aware, software-defined networking.

I. INTRODUCTION
Nowadays, the deployment of geographically distributed
(geo-distributed) data centers (DCs) is becoming an increas-
ingly popular trend. More and more large enterprises such
as Amazon, Facebook, Google, Microsoft, and Yahoo!,
have been building multiple global DCs in cloud DC net-
work [1], [2]. Large-scale and distributed cloud DCs not only
play an important role in guaranteeing high quality of cloud
services for global users, but also contain huge amount of
valuable military and economic information [3]–[5]. How-
ever, they are facing growing failure risks due to various man-
made or natural disasters [6], [7]. To avoid huge economic

losses in case of disaster, more and more attentions are paid
to periodic disaster backup for sufficient data redundancy
among geo-distributed DCs in cloud DC network.

Disaster backup will not be real-time but usually happens
in a particular time period of the day (e.g., from 3 a.m.
to 6 a.m.) [8]. It copies all the newly generated data in a
certain past period to remote backup DCs. Large enterprises
like Google can process about 100 PB data daily in geo-
distributed application DCs [6]. Although not exceeding five
percent of the daily data requires backup [9], the data amount
is still huge and disaster backup will consume massive band-
width and storage capacity. On the one hand, there are two
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important constraints should be considered in disaster backup
process. Firstly, to obtain sufficient data redundancy against
disasters, the critical data in multiple DCs is eligible for the
backup process among three or more geo-distributed backup
DCs [10]. Therefore, the required number of replicas for all
the data with backup requirement (we denote them as primary
data) should be considered as data redundancy constraint.
Secondly, limited by resources, one or more application DCs
have to act as backup DCs simultaneously. Considering huge
storage space requirement in that case, we should consider
the limited storage capacity as receiving capacity constraint.
On the other hand, backup completion time and backup load
distribution are two important metrics for disaster backup.
Bulk backup data transfers consume huge bandwidth, likely
to impact other daily services in the network. So disaster
backup should be completed as soon as possible [1]. The fair-
ness of backup load distribution is also significantly impor-
tant to guarantee availability of replicas and avoid overload
of DCs [11], [12]. Therefore, from the traffic engineering
aspect, it is of great importance to realize fast backup trans-
mission and fair backup load distribution with considerations
of sufficient data redundancy and limited receiving capacity
by appropriate residual bandwidth allocation and efficient
routing selection.

It is noteworthy that the current researches on disaster
backup transmission face many challenges. They have not
considered resource allocation from global view, flow split-
ting of arbitrary proportions or intelligent multipath routing
selection for concurrent transfers according to transmission
requirements (e.g., various backup data amount) or destina-
tion storage status (e.g., limited receiving capacity). Existing
works schedule transmission order of backup transfers one by
one with different priorities (e.g., backup data amount [6], [7]
or specify importance factor [13]) to reduce completion
time or obtain maximum utility. But these methods above
might lead to underutilization of network transmission capa-
bility in some links, or unfair backup load distribution to some
backup DCs [14].

Here we present an illustrative example in Fig. 1 about
backup completion time with different bandwidth allocation
strategies. We assume that there are two backup transfers
denoted as bt1 (delivering 20 GB data) and bt2 (deliver-
ing 10 GB data) to backup DC set M1 or M2 respectively.
bt1 and bt2 are delivered through a shared link eu,v. We sup-
pose that bt1 and bt2 have different importance factors (bt ′1s is
lower than bt ′2s). The available bandwidth of eu,v is 20 Gbps.
The total bandwidth of the path set from node v toM1 andM2
is 30 Gbps and 10 Gbps respectively.

In the existing researches above, if one available path is
assigned to a backup transfer, all the residual bandwidth on
this path will be occupied by this transfer until its transmis-
sion completion. Fig. 1(a) and Fig. 1(c) illustrate two different
bandwidth allocation strategies in that case. In Fig. 1(b),
bt1 occupies all residual bandwidth (20 Gbps) in eu,v and
transfers 20 GB data toM1 using 8 seconds. After completion
of bt1, bt2 transfers 10 GB data to M2 using 8 seconds. So it

FIGURE 1. Different strategies for disaster backup transmission.

takes 16 seconds in total to complete the whole backup trans-
mission in strategy 1. In Fig. 1(d), bt2 occupies all residual
bandwidth (20 Gbps) in eu,v and transfers 10 GB data to M1
using 4 seconds, and then bt1 transfers 20GB data toM2 using
16 seconds. So it takes 20 seconds in total to complete the
whole backup transmission in strategy 2. However, the two
strategies above have not fully utilized the residual bandwidth
in eu,v. For example, in strategy 1, when bt2 transfers data
after the completion of bt1, only 50% of the residual band-
width in eu,v is utilized. The same situation appears in step 2
of strategy 2.

In order to further improve the utilization of network trans-
mission capability, we should set different bandwidth ratios
for these two transfers with different backup data amount,
especially in their shared link eu,v. In Fig. 1(e), we split the
residual bandwidth in eu,v for bt1 and bt2 directly propor-
tional to their data amount. In details, we assign 13.33 Gbps
to bt1 and 6.67 Gbps to bt2 in eu,v, and then concurrently
transfer their data to M1 and M2 respectively. In this con-
dition, we complete transmission for bt1 and bt2 simultane-
ously spending about 12 seconds in total in Fig. 1(f). This
example illustrates that proportional bandwidth allocation for
concurrent backup transfers according to their requirements
(e.g., different backup data amount) can effectively improve
the utilization of network transmission capability and achieve
more efficient backup transmission with less total backup
completion time or more transferred data before a certain
deadline.

However, existing traffic management mechanisms in tra-
ditional network paradigm are not applicable for disaster
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backup in cloud DC network. For example, we can use the
Multi-Protocol Label Switching (MPLS) to flexibly split net-
work flows for different network requirements according to a
certain given optimization purpose [15], but face challenges
in guaranteeing scalability and resilience for lack of global
view and control in traffic engineering [16].

Therefore, we need a new network paradigm with global
view of whole network supporting centralized manage-
ment of network resources, arbitrary flow splitting opti-
mization and multipath routing for different network service
requirements. Here we choose the Software-Defined Net-
working (SDN) architecture. Due to its high efficiency to
obtain better network capacity utilization, SDN provides
an advanced supporting environment for traffic engineering
of cloud DC network, and has been widely accepted to
deploy and manage global DCs in large enterprises [17], [18].
In Google private cloud DC network spanning wide area
networks, they leverage SDN for flexible flow splitting via
multipath routing to balance link capacity, achieving almost
100% utilization rate [19]. In the SDN scenarios, we can
easily optimize routing paths, improve resource utilization,
and realize network traffic control. In this paper, we pro-
vide a new efficient disaster backup strategy by reducing
backup completion time and achieving fair backup load dis-
tribution under redundancy constraint and receiving capacity
constraint among geo-distributed DCs in SDN.

II. RELATED WORKS AND OUR SOLUTIONS
For disaster backup problem among geo-distributed DCs,
many new mechanisms have been proposed, focusing on
optimal resource allocation for backup storage [11], shared
backup with least backup servers [12], content placement
and management to provide survivability in disasters with
less expected loss [20], minimum failure probability [21],
high content connectivity and low wavelength consump-
tion [22], backup path selection and content replica placement
for disaster survivability [23], [24], emergency backup with
maximum utility [13] or minimal cost [25], fast one-to-one
backup strategy [6], [26], [27], our earlier work on rapid and
fair disaster backup with receiving capacity constraints [28].
However, none of them has jointly considered data redun-
dancy constraint and receiving capacity constraint for backup
activity among geo-distributed DCs.

Most researches focus on the placement problem of DC
contents and their backup replicas for disaster prevention.
In [11], Bianco et al. trade off the minimization of maximum
hop number for backup activity and the minimization of over-
load on backup servers after virtual machinemigration in case
of disasters. In [12], Couto et al. select locations for virtual
machine servers avoiding simultaneous failure of backup and
primary servers, to reduce required server amount by virtual-
ization. References [20], [21], and [22] study placement and
management of contents and their replicas among multiple
DCs considering disaster risks. In [20], Ferdousi et al. con-
sider disaster vulnerable location distribution and research on
DC placement and data management to mitigate disaster loss.

In [21], Ma et al. focus on DC location and content distribu-
tion to minimize failure probability. In [22], Li et al. define
k-node (edge) connectivity to measure content reachability in
case of disasters and apply it to optical DC networks. In [23],
Habib et al. construct disaster resistant DC network jointly
against path failure and node failure, and reduce backup
cost by placing data close to their popular regions. But to
simplify the model, they have not considered limited storage
space in backup DCs. In [24], Zhou et al. propose three-
stage algorithm including physical server selection, virtual
machine placement and task assignment to reduce recovery
cost under k-fault-tolerance constraint. In [13], Lu et al.
prioritize endangered data in emergency backup according to
their values and propose distributed algorithm to maximize
backup profit. However, all the researches above ignore the
joint consideration of appropriate routing selection and rea-
sonable bandwidth allocation for multiple concurrent backup
transfers to achieve efficient data transmission.

We note that there have been some researches about trans-
mission path selection for disaster backup. However, none
of them jointly consider redundancy constraint and receiving
capacity constraint for backup activity among geo-distributed
DCs. In [25], Ma et al. propose a theoretical framework
to select backup DC nodes and evacuation routing before
the arrival of predicted disasters for minimal cost of backup
transmission and data storage. But they have not consid-
ered how to allocate bandwidth for concurrent backup trans-
fers (especially in shared links) during data transmission.
References [6], [26], and [27] by Yao et al. study mutual
disaster backup strategy among multiple DCs with the object
to minimize backup completion time. They design disaster-
aware heuristics algorithms to select backup DC and cal-
culate maximum flow routing for every application DC to
realize rapid mutual disaster backup. However, the researches
in [6], [26], and [27] are based on one-to-one backup mode
which is not adaptable in practice for insufficient reliability of
fault-tolerant, because critical data should have three or more
replicas in geo-distributed backup DCs to obtain sufficient
data redundancy [10]. In addition, they have not considered
limited receiving capacity of backup DCs. We have done
some earlier work about disaster backup. In [28], we con-
sider receiving capacity constraint and propose BA-ACO
algorithm to realize specified proportional bandwidth allo-
cation and backup load distribution. However, we have not
considered data redundancy constraint, and therefore there is
no redundancy guarantee for solutions. Besides, after path
searching stage, we have not adjusted bandwidth alloca-
tion or improve flow rate according to the maximum link
utilization. Therefore, we need to further improve earlier
works for sufficient data redundancy guaranteeing and higher
network transmission capability utilization.

As shown above, previous works ignore the joint
consideration of sufficient data redundancy and limited
receiving capacity, likely to result in underutilization
of network transmission capability, unfair distribution of
backup load [14], or even lacks of disaster resistance.
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In this paper, we newly propose Redundancy-Guaranteed and
Receiving-Constrained strategy. We leverage SDN to sup-
port customized bandwidth allocation for backup transfers
and flexible flow scheduling for backup DCs. We allow
data transmission via multipath routing to make full use of
network transmission capability. We define data redundancy
constraint to guarantee sufficient replicas for primary data.
We use receiving capacity constraint to fairly assign backup
loads. We summarize our contributions from four aspects:

• We schedule bandwidth ratio jointly according to data
redundancy requirement and receiving capacity in dis-
aster backup for the first time, achieving more rea-
sonable bandwidth allocation among concurrent backup
transfers and fairer load distribution in geo-distributed
backup DCs.

• We formulate the disaster backup problem as a new
Redundancy-Guaranteed and Receiving-Constrained
Capacitated Multi-Commodity Flow (RGRC-CMCF)
problem based on many-to-many backup relationship.

• We build an effective Flow-Ratio-Constrained (FRC)
backup transmission model to specify the ratio of flows
allocated to backup DCs according to their receiv-
ing capacity for guaranteeing backup load distribution
fairness.

• We design a Basic Ratio-Aware Ant Colony Optimiza-
tion (BRA-ACO) algorithm satisfying backup flow con-
straint and rate requirement constraint. And furthermore,
we propose a new Fair-Rotating and Ratio-Aware Ant
Colony Optimization (FRRA-ACO) algorithm to obtain
better data redundancy guarantee and enhance band-
width allocation fairness. FRRA-ACO performs better
than state-of-the-art algorithms in reducing backup com-
pletion time, balancing backup load distribution and
improving network utilization.

The following chapters are organized as follows.
In Section III, we present illustrative examples to explain
the necessity of data redundancy constraint and receiving
capacity constraint, and then give the formal specification
of RGRC-CMCF problem. In Section IV, we construct a
new FRC backup transmission model, and then propose and
analyze BRA-ACO algorithm and FRRA-ACO algorithm in
detail. In Section V, we evaluate our solution over different
network topologies. At last, we summarize our work and
provide suggestions for further research.

III. PROBLEM DESCRIPTION AND FORMULATION
In disaster backup, to obtain sufficient data redundancy,
enough replicas of the same data (e.g., krp replicas) should
be assigned to different geo-distributed backup DCs [10].
To make full use of resources, some DCs always play dual
roles as application servers (i.e., application DCs) and backup
servers (i.e., backup DCs) simultaneously [6]. We propose a
new and practical backup model to describe many-to-many
relationship between application DCs and their backup DCs
in Fig. 2.

FIGURE 2. Example of many-to-many relationship between application
DCs (n = 6) and their backup DCs (krp = 3).

As shown above, the primary data of n = 6 application
DCs need to be backup. We denote the amount of primary
data in DCi as dmi and every primary data requires krp = 3
replicas in geo-distributed backup DCs. The information in
every ellipse represents a certain DC, its available storage
space for receiving replicas, and the replicas assigned to it.
We use a one-way arrow pointing to the cloud DC network to
denote a backup transfer from an application DC, and a one-
way arrow from the cloud DC network to denote a backup
transfer to an application DC. The tuple (DCi,DCj) indicates
the backup transfer from an application DC (DCi) to a backup
DC (DCj). We can see the backup correspondence between
every application DC and its backup DCs. For example, the
application DC1 delivers replicas to three geo-distributed
backup DCs (DC3, DC4, and DC6). At the same time, DC1
acts as backup DC of four geo-distributed application DCs
(DC2, DC3, DC4, and DC5) to store the replicas of their
primary data (dm2, dm3, dm4, and dm5). The receiving capac-
ity of backup DCs might be different due to their different
available storage space. In Fig. 2, we assign different amount
of replicas to backup DCs according to their different receiv-
ing capacity. To obtain sufficient data redundancy as shown
above, we should reformulate the disaster backup problem
and design more practical and efficient algorithm than the
existing works.

Moreover, to obtain fast and fair backup transmission solu-
tion, flow ratio scheduling for backup DCs is a fatal factor.
We have demonstrated this problem in detail in our earlier
work [28]. Therefore, instead of repeating it, we just present
an illustrative example here. In Fig. 3, we need to transfer
1 PB data to backup DCs {bd1, bd2, bd3} . For the first strat-
egy in Fig. 3(a), the backup transmission to bd1 will only
last for about 13.33 minutes because bd ′1s available storage
will be fully filled with backup load at that time. The backup
transmission to bd2 will proceed for about 35.56 minutes
until bd ′2s storage is fully filled. But the backup transmission
to bd3 will proceed for about 53.33 minutes, whereas the
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FIGURE 3. An illustrative example of flow allocation ratio in disaster
backup.

bandwidth capacity allocated to bd1 and bd2 will lie idle for
about 40 minutes and 17 minutes respectively. By contrast,
the second strategy in Fig. 3(b) make better use of network
transmission capability and obtain the total backup time
of 30.30 minutes with more fair load distribution. We adjust
flow ratio assigned to backup DCs according to their receiv-
ing capacities, and obtainmore efficient and balanced disaster
backup solution. As shown in Fig. 3 and Table 1, maximum
total flows of backup transmission does not necessarily imply
full utilization of network transmission capability. We should
pay more attention to appropriate flow ratio scheduling,
especially according to transmission requirement or destina-
tion storage status. Therefore, we should consider receiving
capacity and backup data amount, and adapt reasonable flow
scheduling to improve network transmission capability uti-
lization and backup load distribution fairness.

TABLE 1. Comparsion of two strategies.

A. PROBLEM DESTRIPTION
We assume that there is no alternate network dedicated to
disaster backup because of high deployment cost especially in
cloud DC network. Thus we use residual bandwidth to trans-
fer backup data. To describe the network topology, we con-
sider a directed and connected graph G = (V ,E), where
V is a finite set of vertices (network nodes) and E is the
set of edges (network links) representing connection of these
vertices. Let |V | be the number of network nodes and |E| be
the number of network links. We use eu,v to denote the link
from node u ∈ V to node v ∈ V . Let N+v (N−v ) denote the set

of out-neighbor (in-neighbor) nodes of v in G. Node u is in
N+v (N−v ) if there is a directed edge eu,v from u to v (from v
to u) in E .
We use D = {DC1,DC2, · · · ,DCn} to denote the

DCs with disaster backup requirements and M =

{M1,M2, · · · ,Mn} to denote the corresponding available
backup DC set. Here, Mi = {bdi1, bdi2, · · · } denotes the
available backup DC set to respectively place a piece of
replica from DCi. We define BTi = {bti1, bti2, · · · } as
the set of massive (tens of or even hundreds of) backup
transfers from DCi to assign replicas to Mi, and BT =
{BT1,BT2, · · · ,BTn} as the total set of backup transfers
for D. We assume that there are sufficient total storage
capacity distributed in all geo-distributed backup DCs to
place replicas transferred by BT whereas the storage capacity
of every backup DC is limited.

We use a group of ants which are denoted as ant =
{ant1, ant2, · · · antm} to search for a solution with multipath
routing in every iteration. And in every iteration, we run
multiple rounds to search for available paths for every
backup transfer. Let path = (path1, path2, · · · , pathn) denote
the path set for backup data delivering. Every pathi =
pathi(BTi,Mi) is a sub-graph of G spanning the source node
DCi ∈ D and the set of its destination nodes Mi ∈ M . Let
p(btij, d) be the set of multiple paths for the backup transfer
btij to a destination node d ∈ Mi. We define pt (btij, d) as the
tth path for btij to a destination node d ∈ Mi in path searching.

There are three non-negative real value functions associ-
ated with every link eu,v ∈ E : delay d(eu,v) : E → R+,
available bandwidth c(eu,v) : E → R+, and path shared
degree psd(p(btij, d), eu,v) : E → N . The link delay d(eu,v)
is considered to be the sum of processing, propagation, and
switch configuration delays. The link bandwidth c(eu,v) is
the residual bandwidth function. The path shared degree
psd(p(btij, d), eu,v) stands for the number of paths in p(btij, d)
through eu,v, and is defined as follows:

psd(p(btij, d), eu,v) =
∑

pt (btij,d)∈p(btij,d)

∑
d∈Mi

δij,t,d,eu,v (1)

The binary variable δij,t,d,eu,v denotes if eu,v is in pt (btij, d)
to a destination node d ∈ Mi. Special to note is that the path
shared degree indicates the relative importance of a link in
the disaster backup routing topology for btij. A larger value
of psd(p(btij, d), eu,v) means that more paths share eu,v during
backup data transmission for btij.

We use b(pt (btij, d)) to denote the allocated bandwidth for
pt (btij, d). We define total bandwidth of p(btij, d) as:

b(p(btij, d)) =
∑

pt (btij,d)∈p(btij,d)

b(pt (btij, d)) (2)

We use binary variable xbtij,d to denote if the primary data
in btij is backuped in a destination node d ∈ Mi. We define
total rate fij of btij by multipath routing as follows:

fij =
∑
d∈Mi

xbtij,d · b(p(btij, d))) (3)
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We use f ijuv to denote the flow allocated to btij in eu,v.
We define dmij as the amount of backup data in btij and
define dmij

/
dl ij as rate requirement to complete btij within

its disaster backup deadline dlij. Considering data integrity,
we can assign a piece of replica to only one backup DC and
every backup DC with enough free storage space can hold
multiple replicas from different application DCs. We define
scd as available storage capacity for disaster backup load in

d ∈ M and use
(

n
∪
i=1

Mi

)
to denote all the backup DCs with

replicas. We use αd to denote the ratio of backup receiving
capacity in d to total backup receiving capacity of all backup
DCs as follows:

αd = scd

/ ∑
d∈
(

n
∪
i=1

Mi

) scd (4)

We use βij to denote the ratio of total data amount in btij to
total data amount of all backup transfers as follows:

βij =

∑
d∈Mi

(
xbtij,d · dmij

)/
 ∑
BTi∈BT

∑
btij∈BTi

∑
d∈Mi

(
xbtij,d · dmij

) (5)

B. PROBLEM FORMULATION
The objective function of RGRC-CMCF problem is:

maximize
∑

BTi∈BT

∑
btij∈BTi

fij (6)

We aim to maximize total available flows for disaster
backup in the network to achieve fast data transmission and
fair load distribution under the following constraints:∑
BTi∈BT

∑
btij∈BTi

∑
d∈Mi

∑
pt (btij,d)∈p(btij,d)(

δij,t,d,eu,v · b(pk (btij, d))
)
≤ c(eu,v) (7)∑

v∈V

f ijuv −
∑
v∈V

f ijvu

=


−b(p(btij, d)) u = d
0 otherwise
b(p(btij, d)) u = DCi

,
d ∈ Mi, btij ∈ BTi (8)

∣∣∣∣∣∣∣∣∣

∑
BTi∈BT

∑
btij∈BTi

b(p(btij, d))

/

∑
d∈
(

n
∪
i=1

Mi

)
∑

BTi∈BT

∑
btij∈BTi

b(p(btij, d))

−αd
∣∣∣∣∣∣∣∣∣≤ω1, d ∈Mi

(9)

∣∣∣∣∣∣
fij/ ∑

BTi∈BT

∑
btij∈BTi

fij

− βij
∣∣∣∣∣∣ ≤ ω2 (10)

fij ≥ dmij/dlij, btij ∈ BTi, BTi ∈ BT (11)

b(pt (btij, d)) ≥ 0, d ∈ M , btij ∈ BTi, BTi ∈ BT (12)∑
d∈Mi

xbtij,d ≥ krp, btij ∈ BTi, BTi ∈ BT (13)

The link capacity constraint in (7) ensures that the aggre-
gated traffic through any link cannot exceed its maximum
capacity. The flow conservation constraint in (8) ensures that
for each backup flow, the input traffic equals to the output
traffic at any intermediate node in the paths to destinations.
The ω1 and ω2 in (9) and (10) are two very small nonnegative
decimals. The backup receiving capacity constraint in (9)
ensures the close approximation of flow ratio to receiving
capacity ratio αd for every backup DC. Next in Section IV,
we will extend original network G(V ,E) to construct a new
FRC backup transmission modelG

′

(V
′

,E
′

), in order to spec-
ify the ratio of flows allocated to backup DCs according
to (9). The backup flow constraint in (10) ensures the close
approximation of flow ratio to data amount ratio for every
backup transfer, to achieve rapid transmission of total backup
data as shown in Fig. 1. In the next section, we will design
two algorithms to determine the transmission paths and adjust
bandwidth allocations for every backup transfer according
to this constraint. The rate requirement constraint in (11)
ensures sufficient bandwidth obtained via multipath routing
for every backup transfer, to guarantee timely transmission
completion. The flow value constraint in (12) denotes that
the value of backup flows should be nonnegative. The data
redundancy constraint in (13) denotes that for every backup
transfer, total number of replicas assigned to multiple geo-
distributed backup DCs should not be less than the required
replica number krp to guarantee enough data redundancy.

In our earlier work, we have considered receiving
capacity constraint and formulated the disaster backup
problem to be Receiving-Capacity-Constrained Capacitated
Multi-Commodity Flow (RCC-CMCF) problem which is
NP-complete [28]. Obviously, RGRC-CMCF problem is a
special case of RCC-CMCF problem and more challeng-
ing with the addition of data redundancy constraint. Thus
RGRC-CMCF problem is NP-complete, too. In the cloud DC
network of large-scale and high-complexity structure, it is
extremely essential to obtain optimal or near-optimal solution
within acceptable computing time. For RGRC-CMCF prob-
lem, we design algorithms based onACOwhich is effective to
solve the CMCF problem [29], [30] in the following sections.

IV. ALGORITHM DESIGN
We first construct FRC transmission model to specify flow
ratio for backup DCs. Based on it, we propose and analyze
two algorithms to solve RGRC-CMCF problem.

A. FRC TRANSMISSION MODEL FOR FLOW RATIO
To specify flow ratio of backup DCs, we extend the orig-
inal network model G(V ,E) to a new model G

′

(V
′

,E
′

)
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exclusively used for disaster backup transmission. In our
earlier work for disaster backup [28], we have proposed RCA
network model which introduces corresponding super node
for every original backup DC, with the purpose of flow ratio
control. But we have not fully considered the effect of data
redundancy constraint on storage space and just set every
super node to have infinite storage space. This setting will
not affect flow ratio value which is determined by receiving
capacity of backup DCs. But it still causes some bias in
fitness evaluation especially for backup load distribution and
might mislead the routing search of ants. Therefore, in this
paper, we define super backup DCs as virtual nodes (e.g., bd

′

i
in Fig. 4) owning the same storage capacity as the original
nodes (e.g., bdi) instead of infinite storage space in [28].

FIGURE 4. Example of FRC transmission model.

In other respects, we still maintain the original settings.
Therefore, instead of repeating them, we just give a brief
description and present an illustrative example here. In gen-
eral, we define V

′

= V ∪ Madd and E
′

= E ∪ Eadd .
We use Madd = {bd ′1, bd

′

2, . . .} to denote the super backup
DC set which will be used as destination nodes for backup
data transmission instead of original backup DC setM in our
algorithms. In order to distinguish between every available
backup DC and its super backup DC, we call the former as
original destination nodewhich is the unique previous node of
the later. We use Eadd = {ebd1,bd

′

1
, ebd2,bd

′

2
, ...} to denote the

directed edges from every original destination node bdi ∈ M
to its corresponding destination node bd

′

i ∈ Madd . To guaran-
tee flow ratio control in algorithm implement, we specify the
ratio of link capacity in ebdi,bd ′i

to total link capacities in Eadd
to be equal to the ratio of available storage capacity in bdi to
total available storage capacity in all backup DCs.

As in Fig. 4. We specify the link capacity ratio in directed
edges to constrain flow ratio (i.e., 2: 4: 5) for backup DCs.
Performing data transmission through FRC, we use flow
ratio to control load distribution among backup DCs (as the
BRA-ACO algorithm and FRRA-ACO algorithm in the next
subsection).

B. ALGORITHM DESIGN
ACO is a global optimization evolutionary algorithm, which
imitates the collective food searching behavior of ant colony
in real world. Ants often travel between their nests and food
sources by the guidance of shared foraging informationwhich
is called pheromone. During foraging process, ants prefer
to choose, in probability, the path with higher pheromone

concentration. After reaching the food source, ants evalu-
ate their passing paths and leave clues to other ants in the
form of pheromone. The pheromone trails on paths lead
to effective communication of sharing information, which
enables ants to find the shortest paths between their nest and
food sources. Specifically, when choosing candidate node to
construct available path, ACO leverages transition probability
model which depends on pheromone factor and heuristic fac-
tor. Compared with other optimization algorithms, ACO has
following characteristics: positive feedback mechanism to
make search process converge and approach optimal solution,
pheromone trail to realize indirect communication among
individuals, distributed and parallel computing by many indi-
viduals simultaneously to greatly improve algorithm comput-
ing efficiency, and heuristic probabilistic search to avoid local
optimum and find global optimal solution.

Based on the newly proposed FRC network model and
existing ACO metaheuristic [31], we design new algorithms
to determine transmission paths and bandwidth allocation
to realize redundancy-guaranteed and receiving-constrained
disaster backup for geo-distributed DCs in SDN. In the fol-
lowing subsections, we describe pheromone trail, heuristic
information, fitness evaluation, and then propose two avail-
able algorithms.

1) PHEROMONE TRAIL AND HEURISTIC INFORMATION
To avoid mutual interference of different backup transfers in
the path searching process, we set unique pheromone trail and
heuristic information for every btij. After the kth iteration, we
choose the used links in cur_CMCF and gb_CMCF for btij,
and enhance the pheromone intensity. Here the cur_CMCF
is total amount of flows for the current solution cur in the
kth iteration, and the gb_CMCF is total amount of flows for
the global best solution gb. We define the rules of pheromone
update as:

τ ij
uv
(k + 1)

= (1− ρ)τ ij
uv
(k)+1τ ijuv(k) (14)

1τ ijuv(k)

=
(
λχij(k)+ µσij(k)

)/(
εij(k)+ 1

)
(15)

χij(k)

=
(xcur,iju,v · cur_CMCF) ·

(
psd(p(btij, d), eu,v)

)θ
UP_CMCF

(16)

σij(k)

=
(ygb,iju,v · gb_CMCF) ·

(
psd(p(btij, d), eu,v)

)θ
UP_CMCF

(17)

xcur,iju,v

=

{
1 if eu,v belongs to p(btij, d) for cur_CMCF
0 otherwise

(18)

ygb,iju,v

=

{
1 if eu,v belongs to p(btij, d) for gb_CMCF
0 otherwise

(19)
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UP_CMCF

= min{
∑
Di∈D

∑
u∈V ′

c(DCi, u),
∑

d∈
(

n
∪
i=1

Mi

)
∑
v∈V ′

c(v, d)} (20)

εij(k)

=

∑
d∈Mi

zk,iju,vω
k
ij (21)

ωkij

=
∣∣(curbtij/cur_CMCF)− βij∣∣ (22)

zk,iju,v

=

{
1 if eu,v lies in btij’s path set in the kth iteration
0 otherwise

(23)

We use ρ as evaporating parameter controlling the evap-
orating speed of pheromone after every iteration. We use
λ and µ to express the influences of cur_CMCF and
gb_CMCF on the increment of pheromone intensity in the
(k + 1)th iteration. We define UP_CMCF as upper bound
of maximum network flow in backup data transmission. We
use θ to express the influence of psd(p(btij, d), eu,v) in χij(k)
and σij(k). We define ωkij as the bias between βij and the ratio
of bandwidth allocated for btij to total bandwidth allocated
for all backup transfers in the kth iteration. We use curbtij to
express total bandwidth allocated to btij in the kth iteration.
Heuristic information ηij

u,v
(k + 1) reflects the prior and

deterministic factors on eu,v in the (k + 1)th routing search
process for btij. We define it with the residual bandwidth
capacity c(eu,v), the length of shortest path from v to the
nearest destination node, and the delay on eu,v. The heuristic
information in the (k + 1)th iteration is as follows:

ηij
u,v
(k + 1) = $ · (

c(eu,v)
(dis(v, di)+ 1) · d(eu,v)

) (24)

We use$ to adjust the value of ηij
u,v
(k+1) and use dis(v, di)

to denote the length of the shortest path from node v to the
nearest destination node for btij.

2) TRANSITION PROBABILITY
We use Rij

u,v
(k+1) to describe the possibility of a certain node

v being chosen from the current node u in the (k+1)th routing
search process for btij. We define it with pheromone inten-
sity and heuristic information occupying different importance
factors φ and ϕ respectively. We denoteN (u) as the neighbor-
hood set of u. The definition is as follows:

Rij
u,v
(k + 1) =

(
τ ij
u,v
(k + 1)

)φ
∗

(
ηij
u,v
(k + 1)

)ϕ
∑

w∈N(u)

((
τ ij
u,w
(k + 1)

)φ
∗

(
ηij
u,w
(k + 1)

)ϕ)
(25)

3) FITNESS EVALUATION
In every iteration, we need to evaluate the fitness of the
solution. To realize redundancy-guaranteed and receiving-
constrained disaster backup, we focus on the following met-
rics: total amount of available flows, backup load distribution

variation, and network transmission capability utilization.
So the evaluation of fitness is a compound function of the
three above:

fitness(cur)

=



0, if

∑
d∈Mi

xbtij,d < krp, btij ∈ BTi,BTi ∈ BT


or
(
fij < dmij/dlij, btij ∈ BTi,BTi ∈ BT

)
α1 · ecur_CMCF/gb_CMCF

+α2 · e−loaddis(cur)/bestloaddis

+α3 · eNT (cur)/bestNT , otherwise

(26)

loaddis(cur)

=

√√√√√√√
∑

d∈
(

n
∪
i=1

Mi

)
 ∑

BTi∈BT

∑
btij∈BT

xbtij,d · dmij

/scd−avgload

2

(27)

NT (cur) = Throughputcur/MaxFlow (28)

We use avgload to denote average ratio of backup load
to the total backup receiving capacity in all backup DCs.
We use Throughputcur to denote the throughput in cur , and
MaxFlow to denote the total maximum network flow from
application DCs to their backup DCs. We use Normalized
Throughput [32] NT (cur) to evaluate network transmission
capability utilization in cur . The loaddis(cur) and NT (cur)
denote the values of total backup load distribution variation
and network transmission capability utilization function in
cur , and the variables bestloaddis and bestNT stand for the
total backup load distribution variation and network trans-
mission capability utilization function in gb, respectively. α1,
α2, α3 are the weighted functions to represent the importance
of corresponding measurements. We define α1, α2, α3 ≥ 0,
and α1 + α2 + α3 = 1. In the real algorithms, different
values can be set according to the requirements of the user.
In the simulation, we set α1, α2, α3 to be 0.7, 0.15, and 0.15
respectively by experience.

4) BRA-ACO ALGORITHM
BRA-ACO algorithm has two basic operations: path search-
ing and pheromone updating. We set cur_CMCF to store the
sum of the flows in cur and initially set cur_CMCF = 0.
Every ant does not search multiple available paths to obtain
bandwidth as much as possible for every backup transfer one
by one based on different priorities. Because this traditional
way may result in unfair load distribution and more comple-
tion time. Therefore, an ant just searches for one available
path and adds the path to p(btij, d) for every btij. And we
update cur_CMCF and network status. The abovementioned
steps are repeated until all ants finish path searching. Then
we obtain path = (path1, path2, · · · , pathn) and compute
cur_CMCF . After obtaining a solution cur , we assess the
fitness, and update gb and gb_CMCF according to fitness
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if necessary. Then we update the pheromone and run the next
round of iterations until BRA-ACO converges.

The pseudo code of BRA-ACO algorithm is as follows:

Algorithm 1 BRA-ACO Algorithm

Input: G
′

(V
′

,E
′

); BT = {bt1, bt2, · · · , btn}
Output: disaster backup solutions for every backup

transfer btij
1. Set parameters, initialize pheromone trails, etc.

/∗ Run iterative loop ∗/
2. while termination condition not met do

/∗ Construct a disaster backup solution ∗/
3. for every ant do

/∗ Search for one path for every
backup transfer ∗/

4. for every btij do
5. while not reach available backup DC do

/∗ Choose next node in the transition
probability ∗/

6. Calculate heuristic information according
to (24)

7. Select the next node according
to (25)

8. if reach available backup DC do
/∗ Update path set and network status ∗/

9. Add the path to p(btij, d)
10. Update network G

′

(V
′

,E
′

)
11. end if
12. if the next node not exist do
13. Break
14. end if
15. end while
16. end for
17. end for

/∗ Obtain a solution and compute total
flows ∗/

18. Obtain path and compute cur_CMCF
/∗ Determine whether the solution satisfies the
constraints ∗/

19. if satisfy rate requirement and redundancy
constraint do
/∗ Update the global best solution if necessary ∗/

20. if find a better solution do
21. Update gb_CMCF
22. end if
23. end if

/∗ Update pheromone ∗/
24. Apply updating rule (14)
25. end while

BRA-ACO is terminated when it converges or reaches
maximum iteration number. In every iteration, multiple ants
participate in the path set construction process for btij. We set
m as the number of ants. At most m paths are generated for
btij, so the time complexity is approximately O(mn|V |).

5) FRRA-ACO ALGORITHM
Based on the FRC network model, we propose BRA-ACO
algorithm. However, there are two disadvantages. First,
BRA-ACO cannot guarantee sufficient replicas for every pri-
mary data. In any round of path searching for a backup trans-
fer, there is a certain probability that the current ant cannot
find available path, especially in the last round(s). Finally,
BRA-ACO cannot guarantee that the already found paths can
reach enough remote backup DCs to place sufficient replicas
for every primary data. Second, BRA-ACO cannot control the
bandwidth amount allocated to different primary data, and
therefore may fail to satisfy the backup flow constraint and
cannot provide reasonable bandwidth allocation according
to different backup requirements (e.g., backup data amount).
As in Fig. 1, this may result in transmission capability under-
utilization in some links or unfair load distribution to some
backup DCs.

Furthermore, in order to obtain higher performance in
redundancy guarantee and enhance bandwidth allocation
fairness among multiple backup transfers, we propose the
FRRA-ACO algorithm. Especially, we use rotary routing
search formultiple concurrent flows based on backup require-
ment cloning to approximate the specified ratio of bandwidth
allocation, and improve network transmission capability by
reasonable bandwidth ratios for multiple backup transfers
with different requirements, unlike conventional solutions to
achieve maximum network flow for every backup require-
ment one by one respectively.

FRRA-ACO has three basic operations: rotary path search-
ing, bandwidth ratio adjusting, and pheromone updating.
First, we reconstruct the set of backup transfers. To ensure
adequate data redundancy and fair backup load distribution,
we clone the backup requirement set and expand BT =
{BT1,BT2, · · · ,BTn} into krp copies, and obtain new set as
BT
′

= {BT 1,BT 2, . . . ,BT krp}}. Here we use every BT i =
{BT1,BT2, · · · ,BTn} to denote a copy of BT . Then we use
every ant to search for a single available path for every backup
transfer btk

ij
in BT k (1 ≤ k ≤ krp) one by one in every

iteration.
However, we should consider that the process of path

searching does not always go well. So we mark a transfer
if the ant finds one available path for it in the current path
searching round. For the unlucky transfer(s) (unmarked),
the ant will proceed special path searching again until every
backup requirement obtains one available path or the round
number of re-search exceeds the maximum. This measure
is for the purpose of guaranteeing routing path allocation
as fair as possible for every backup transfer with sufficient
redundancy assurance. After special path searching, the failed
path search for some unlucky transfer(s) means that it is
unable to allocate bandwidth for the unlucky transfer(s) in the
current network status. However, even if we cannot allocate
enough bandwidth for them, we should allocate as much as
possible and add bandwidth allocation to them in subsequent
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steps by adjustment rules. Therefore, we reserve the existing
search result, and update path and G

′

(V
′

,E
′

).
If every backup transfer has flow path, we adjust bandwidth

allocations according to (10). In [14], we have proposed
two bandwidth ratio adjustment rules and applied them to
concurrent evacuation transfer optimization. Here, wemodify
the original rules and extend them to three new rules suitable
for disaster backup transmission as follows:
• flow rearranging in shared links. In the links shared
by multiple backup transfers, we adjust the ratios of
allocated flows among them if necessary. If we have
to retrieve the flow assigned to some backup transfer
in shared link, we choose the one for least backup data
amount.

• flow rearranging by path pruning. If bt ′j s original desti-
nation node dj is an intermediate node of a certain path
for bti, we can abandon this bt ′i s path, prune the links
from dj to bt ′i s destination node d

′

i , and then construct
a new path with original destination dj to allocate more
bandwidth for btj if necessary.

• flow rearranging by path aggregation. If bt ′j s original
destination node dj is an intermediate node of a certain
path for bti, we can abandon this bt ′j s path and aggre-
gate its available transmission capability to bt ′i s path to
allocate more bandwidth for bti if necessary.

The adjustment process terminates if the convergence con-
dition is satisfied, for example that the bandwidth ratio offset
is less than ω2 or the number of adjustment iterations reaches
a specified value. The path searching process and bandwidth
ratio adjustment (if necessary) will continue with the next ant.
After the path searching of all ants, we adjust total bandwidth
allocations for every btk

ij
in case of finding no path for some

btk
ij
(s) in certain previous round(s). Then we obtain path,

check the maximum utilization on these links, and improve
flow rate as much as possible. This measure is for the purpose
of making full use of residual bandwidth. Finally we assess
the fitness of cur , and update gb and gb_CMCF if necessary.
The abovementioned steps for solution searching are repeated
until FRRA-ACO converges.

The pseudo code of FRRA-ACO algorithm is as follows:

Algorithm 2 FRRA-ACO Algorithm

Input: G
′

(V
′

,E
′

); BT
′

= {BT 1,BT 2, · · · ,BT krp}
Output: disaster backup solutions for every backup

transfer btk
ij

1. Set parameters, initialize pheromone trails, etc.
/∗ Set priorities to facilitate bandwidth allocation
adjustment ∗/

2. Sort transfers in every BT k in ascending order of
deadlines
/∗ Run iterative loop ∗/

3. while termination condition not met do
/∗ Construct a disaster backup solution ∗/

4. for every ant do

5. Set every btk
ij
as unmarked

/∗ Search for one path for every unmarked
backup transfer∗/

6. for every btk
ij
do

7. if btk
ij
is marked do

8. Continue
9. else
10. while not reach available backup DC do

/∗ Choose next node in transition
probability ∗/

11. Calculate heuristic information according
to (24)

12. Select the next node according to (25)
13. if reach available backup DC do

/∗ Mark btk
ij
to avoid repeated path

searching ∗/
14. Mark btk

ij

/∗ Update path set and network status ∗/
15. Add the path to pathij
16. Update network G

′

(V
′

,E
′

)
17. end if
18. if the next node not exists do
19. Break
20. end if
21. end while
22. end if
23. end for

/∗ Re-search available path for unlucky backup
transfer(s) ∗/

24. for every btk
ij
do

25. if unmarked and re-search iterations not
exceed do

26. Goto 6
27. end if
28. end for

/∗ Approximate bandwidth ratio to data
amount ratio for every backup transfer ∗/

29. if every btkij has flow path(s) do
30. Adjust bandwidth allocation according

to (10)
31. Update cur_CMCF
32. Update network G

′

(V
′

,E
′

)
33. end if
34. end for

/∗ Implement further adjustment if necessary ∗/
35. Adjust bandwidth allocation for every btkij according

to (10)
/∗ Utilize residual transmission capability on selected
links ∗/

36. Obtain path and improve flow rate according to the
maximum utilization on these links if possible
/∗ Determine whether the solution satisfies the
constraints ∗/
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Algorithm 2 (Continued.) FRRA-ACO Algorithm
37. if satisfy rate requirement and redundancy

constraint do
/∗ Update the global best solution if necessary ∗/

38. if find a better solution do
39. Update gb_CMCF
40. end if
41. end if

/∗ Update pheromone ∗/
42. Apply updating rule (14)
43. end while

Similarly, we setm as the number of ants. For btkij , at mostm
paths are generated, so the time complexity is approximately
O(nmkrp|V |). Because the krp is always a constant (around
three usually according to actual needs), we can denote time
complexity as approximately O(nm|V |).

V. PERFORMANCE EVALUATION
A. ENVIRONMENT AND CONFIGURATION
We compare our algorithms with three representative algo-
rithms. First, we implement basic maximum network flow
algorithm without data redundancy constraint and capac-
ity constraint (MF-NORC). We sort the application DCs
in descending order of primary data, and calculate the
maximum flow to transfer data one by one. Second,
we choose the TwoStep-ILP algorithm in [6]. TwoStep-ILP
divide backup process into two steps: it formulates the first
integer linear programming to determine backup DC loca-
tions to minimize the total hop number between all the appli-
cation DCs and their backup DCs; then it formulates the
second integer linear programming to obtain maximum total
network flows for backup activity. Different from our new
algorithms, TwoStep-ILP has not established association for
bandwidth ratios and backup requirements among concurrent
backup transfers, and has not considered redundancy con-
straint and receiving capacity constraint. Then, we choose
the BA-ACO algorithm in [28] which is our earlier work.
There are obvious differences among BA-ACO, BRA-ACO,
and FRRA-ACO algorithm. Only aiming at limited receiv-
ing capacity in backup DCs, BA-ACO has not considered
data redundancy constraint and there is no related setting
in its pheromone trail and heuristic information. After the
path searching stage, BA-ACO neither adjusts bandwidth
allocation, nor improves flow rate according to maximum
utilization on these links.

We implement above algorithms in a DELL OPTIPLEX
9020 server with eight Intel(R) Core(TM) i7-4790 3.60 GHz
CPUs and 8 GB RAM. We perform simulations over two
kinds of network topologies as follows:

1) THE WAXMAN TOPOLOGY MODEL
We use Waxman topology model [33] to randomly generate

network topology with p(eu,v) = ρ′ · e
−

(
distance(u,v)

L·σ ′

)
. We use

p(eu,v) to denote the probability of link eu,v, distance(u, v) to
denote the Euler Distance between node u and v, and L to

denote the maximum value of distance(u, v). We use ρ′ to
control the number of links and σ ′ to represent the number
of short links. We generate random network topologies with
different nodes and run algorithms on them for comparison.

In simulations, the total data amount for backup is fixed.
We randomly choose 8 nodes as application DCs with backup
requirement and 8 nodes as backup DCs. Obviously, some
nodes simultaneously act as application DC and backup DC.
We randomly choose the primary data on each application
DC to make up 100 backup transfers in all. We set avail-
able bandwidth uniformly distributed on each link within
[1000, 3000] (Gbps). To guarantee sufficient data redun-
dancy, we set the required replica number krp = 3.

2) THE U.S. BACKBONE TOPOLOGY
The U.S. backbone topology used in simulation is in Fig. 5.
Similar to [27] and [28], we modify the original topol-
ogy for the convenience of representing data transmission
between every pair of nodes in the disaster backup process.
We set available bandwidth on every link uniformly dis-
tributed within [1000, 3000] (Gbps). Every bidirectional link
is decomposed into two unidirectional links with opposite
directions. Because of the inability to actually measure the
bandwidth in the two directions, we assume that the two
newly generated links share the bandwidth in the original link
by random ratios. In this topology, we denote the nodes with
thick black circles as application DC nodes, and the nodes
covered by blue shade as backup DC nodes. The application
DCs have backup data ranging from 100 TB to 500 TB.
It is worth noting that the backup DCs at nodes 6, 8, 9, 13,
15 and 22 simultaneously act as application DC and backup
DC. We randomly choose the primary data on each applica-
tion DC to make up 100 backup transfers with content size
ranging from 2 TB to 30 TB. The total amount of data ranges
from 0.5 PB to 5 PB. To guarantee sufficient redundancy,
we still set the required replica number krp = 3.

FIGURE 5. U.S. backbone topology.

Large enterprises such as Google can process about
100 PB data daily in geo-distributed applicationDCs [6]. Nor-
mally, not exceeding five percent of the daily data requires
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backup [9]. Therefore, we can ensure that the results obtained
using our parameter settings accord with the actual situa-
tion. In simulations, we consider processing delay as 10 µs,
propagation delay as 5 µs per kilometer, and switch con-
figuration delay as 15 ms [34]. In our proposed algorithms
(i.e., BA-ACO in [28], BRA-ACO, and FRRA-ACO), we set
the maximum iteration number as 50 and the ant number as
50 at the beginning. If there is no evolution in five consecutive
iterations, we will stop the iteration.

B. SIMULATION RESULTS
We compare our algorithms with other three algorithms from
the aspects of backup completion time, network transmission
capability utilization, and backup load distribution.

1) BACKUP COMPLETION TIME
a) In Fig. 6, we illustrate the comparison of backup com-
pletion time with increasing number of nodes (includ-
ing intermediate nodes, application DCs and backup DCs)
using Waxman topology model. In MF-NORC, TwoStep-
ILP and BA-ACO, every piece of primary data only has one
replica while the required replica number is krp = 3 in
BRA-ACO and FRRA-ACO. For a fair performance compar-
ison, we modify the replica number to be three in the first
three algorithms to make the total amount of data consistent,
and set the total amount of primary data to be 1 PB.

FIGURE 6. Comparison of backup completion time with increase of node
number.

When the node number is relatively small (e.g., less
than 20), the performance of MF-NORC is still acceptable,
even better than BRA-ACO. That’s because MF-NORC tries
to maximize the network flow for every transfer one by
one, whereas it is difficult to allocate reasonable ratios of
bandwidth for concurrent transfers in BRA-ACO due to the
poor choices of appropriate intermediate nodes and links. But
as the increase of node number and link number, BA-ACO
and BRA-ACO outperform MF-NORC more and more obvi-
ously, because they make better use of network transmission
capability through more reasonable bandwidth allocation for

concurrent transfers. TwoStep-ILP always performs better
than MF-NORC because of its global view of least hop-
counts and maximum backup throughput. FRRA-ACO per-
forms better than other four algorithms because it optimizes
the utilization of network transmission capability by reason-
able and fair bandwidth ratios for concurrent transfers with
a global view. In FRRA-ACO, we use rotary routing search
to provide bandwidth supplement for unlucky transfer(s) to
avoid hysteresis phenomenon of backup activity, and use the
final flow rate improvement to make further use of residual
network transmission capability as much as possible, leading
to better performance.

b) In Fig. 7, we illustrate the comparison of backup com-
pletion timewith increase of data amount in the U.S backbone
topology. As in the Waxman topology model, we set replica
number as three uniformly in these five algorithms.

FIGURE 7. Comparison of backup completion time with increase of data
amount.

Of course, backup completion time values of all these
algorithms are rising while data amount increases. We can
obtain more apparent growth in MF-NORC because it com-
putes maximum flow and transfers backup data for every
application DC one by one, resulting in some available
link capacity lies idle in this mode (as the example shown
in Fig. 1). TwoStep-ILP performs better with less comple-
tion time than MF-NORC because it takes all the data in
an application DC as a whole and transfers the data to a
nearest available destination to create a replica. But placing
data to backup DC in nearby location does not mean full
utilization of transmission capability. Instead, the optimal
transmission solution may be missed by this correspondence.
For BRA-ACO, completion time grows much faster than
BA-ACO and FRRA-ACO, because the network transmission
capability is not fully explored in its routing search process
for concurrent transfers. By contrast, the rotary routing search
mechanisms in BA-ACO and FRRA-ACO improve network
transmission capability utilization and lead to less completion
time, especially in FRRA-ACO with both further bandwidth
allocation adjustment and final flow rate improvement.
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2) NETWORK UTILIZATION
To compare the network transmission capability utilization,
we compute network utilization. We do not intend consider-
ing MF-NORC and TwoStep-ILP, because they both use the
maximum flow algorithm whereas higher network utilization
does not necessarily mean more efficient transmission of
backup data as shown in Fig. 3 and Table I. We aim at the
comparison among BA-ACO, BRA-ACO and FRRA-ACO,
because the three algorithms introduce proportional band-
width allocation for concurrent backup transfers and the
network utilization directly reflects the usage of network
transmission capability.

We first compute MaxFlow from application DCs to
their backup DCs. And then, we run BA-ACO, BRA-
ACO and FRRA-ACO respectively to get their throughput
as ThroughputBA, ThroughputBRA and ThroughputFRRA. The
NT [32] for three algorithms are defined as follows:

NTBA = ThroughputBA
/
MaxFlow (29)

NTBRA = ThroughputBRA
/
MaxFlow (30)

NTFRRA = ThroughputFRRA
/
MaxFlow (31)

a) In Fig. 8, we represents the comparison of NT among
BA-ACO, BRA-ACO, and FRRA-ACOwith increase of node
number in the Waxman topology model.

FIGURE 8. Comparison of NT with increase of node number.

BA-ACO outperforms BRA-ACO because the rotary rout-
ing search reduces idle bandwidth and therefore improves
network transmission capability utilization. FRRA-ACO
performs even better because the bandwidth allocation adjust-
ment after multipath searching makes more reasonable band-
width ratio approximately to data amount ratio of every
backup transfer and final flow rate improvement plays a
positive role of further optimization, leading to higher NT
than the other two algorithms.

b) In Fig. 9, we illustrate the comparison of NT among
BA-ACO, BRA-ACO, and FRRA-ACO with increase of data
amount in the U.S. backbone topology.

FIGURE 9. Comparison of NT with increase of data amount.

The less average amount of data carried by a single
backup transfer, themore we can utilize network transmission
capability by reasonable customized bandwidth allocation
and flow control. The fixed network topology and transfer
number lead to relatively small fluctuation of NT. But the
gap between their NT still can be observed. The NT of
BRA-ACO is relatively low, ranging from 52.30% to
65.05%. BA-ACO obtains relatively higher NT ranging from
69.62% to 83.89%. FRRA-ACO obtains even higher NT
ranging from 79.34% to 90.17%. The comparison results
in Fig. 7 and Fig. 9 jointly demonstrate that for bandwidth
allocation to multiple backup transfers simultaneously under
defined ratio constraint, the strategy with higher NT provides
better transmission capability. This phenomenon also verifies
the necessity of flow rate improvement in FRRA-ACO.

3) BACKUP LOAD DISTRIBUTION
To compare load distribution fairness for disaster backup,
we first define the fair load distribution factor with γ as
follows:

γ = 1−

√√√√√√ 1

|
n
∪
i=1

Mi| − 1

∑
d∈
(

n
∪
i=1

Mi

) (γd − γ )2 (32)

γd =

 ∑
BTi∈BT

∑
btij∈BTi

xbtij,d · dmij

/scd , ∀d ∈ M (33)

γ =
1

|
n
∪
i=1

Mi|

∑
d∈
(

n
∪
i=1

Mi

)
 ∑

BTi∈BT

∑
btij∈BTi

xbtij,d · dmij

/scd

 (34)

We use γd to denote the ratio of total received data amount
in a destination node d to its own backup receiving capacity.
We use γ to denote the average value of γd for all
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destination nodes.We compute
√√√√ 1

|
n
∪
i=1

Mi|−1

∑
d∈
(

n
∪
i=1

Mi

)(γd− γ )2
as the standard deviation of γd for all destination nodes.
In experiments, the value of standard deviation is relatively
small, even approximating 0 in FRRA-ACO. Therefore, for
the convenience of computation and comparison, we define
γ in (32) to express the fairness of backup load distribution.
Obviously, in these algorithms, greater value of γ implies bet-
ter balance of backup load distribution among all destination
nodes.

And then, we run algorithms to get their fair load distri-
bution factor as γMF , γILP, γBA, γBRA and γFRRA. To obtain
greater clarity about the comparison of backup load distribu-
tion fairness among these algorithms, we introduce fairness
ratio and define it as the ratio value of fairness between
two different algorithms. We calculate the fairness ratio of
FRRA-ACO to other four algorithms as follows:

frFRRA−MF = γFRRA
/
γMF (35)

frFRRA−ILP = γFRRA
/
γILP (36)

frFRRA−BA = γFRRA
/
γBA (37)

frFRRA−BRA = γFRRA
/
γBRA (38)

a) In Fig. 10, we illustrate the comparison of fairness ratio
with increasing node number in theWaxman topologymodel.

FIGURE 10. Comparison of fairness ratio with increase of node number.

Implemented in original network model, MF-NORC and
TwoStep-ILP have not considered backup load balance in
backup DCs and they tend to store backup loads nearby to
reduce hop number in data transmission process, therefore
resulting in significant imbalance of backup load distribution.
BRA-ACO performs better in load distribution fairness than
BA-ACO, benefiting from its further consideration of storage
capacity in super backup DCs which is conducive (especially
by pheromone updating) to assign backup loads in a balanced
way. But on the other hand, as shown from Fig. 6 to Fig. 9,
the performance of BRA-ACO in backup completion time
and NT is worse than that of BA-ACO for lack of rotary rout-
ing search. Furthermore, FRRA-ACO performs even better

than BRA-ACO because it jointly considers storage capacity
in super backup DCs and rotary routing search in bandwidth
allocation process.

b) In Fig. 11, we illustrate the comparison of fairness ratio
with increase of data amount in the U.S. backbone topology.

FIGURE 11. Comparison of fairness ratio with increase of data amount.

The rising trend of ratio curves implies that the advantage
of FRRA-ACO in backup load distribution fairness becomes
more and more obvious over other four algorithms. That’s
because larger data amount in transfers has greater impact
on the change of load ratio in backup DCs, especially for
MF-NORC and TwoStep-ILP without consideration of
backup load balance. The growth trend of frFRRA−BRA is
slower than that of frFRRA−BA, benefiting from load distribu-
tion optimization by the specification of FRC transmission
model in BRA-ACO. FRRA-ACO performs better than other
four algorithms in load distribution fairness because of its
comprehensive consideration of rotary routing search, further
bandwidth ratio adjustment, and final flow rate improvement.

VI. CONCLUSION
In this paper, we investigate redundancy-guaranteed and
receiving-constrained disaster backup among geo-distributed
DCs in SDN. Based on problem formulation and modified
network model, we further propose FRRA-ACO algorithm
to obtain higher performance in data redundancy guaran-
tee and enhance bandwidth allocation fairness. The innova-
tion points of FRRA-ACO mainly embody in rotary routing
search based on requirement cloning, reasonable proportional
bandwidth allocation, further flow adjustment, and final flow
rate improvement.We perform simulations to verify the supe-
rior performance of FRRA-ACO over other algorithms.

In further study, we will try to improve the strategy by
reducing bandwidth consumption cost and relieving load
pressure on critical paths.
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