
Received June 14, 2018, accepted July 18, 2018, date of publication July 25, 2018, date of current version August 20, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2859445

Real-Time Stereo Vision System: A Multi-Block
Matching on GPU
QIONG CHANG AND TSUTOMU MARUYAMA, (Member, IEEE)
Graduate School of Systems and Information Engineering, University of Tsukuba, Tsukuba 3058577, Japan

Corresponding author: Qiong Chang (cq@darwin.esys.tsukuba.ac.jp)

ABSTRACT Real-time stereo vision is attractive in many areas such as outdoor mapping and navigation.
As a popular accelerator in the image processing field, GPU is widely used for the studies of the stereo
vision algorithms. Recently, many stereo vision systems on GPU have achieved low error rate, as a result
of the development of deep learning. However, their processing speed is normally far from the real-time
requirement. In this paper, we propose a real-time stereo vision system on GPU for the high-resolution
images. This system also maintains a low error rate compared with other fast systems. In our approach,
the image is resized to reduce the computational complexity and to realize the real-time processing. The
low error rate is kept by using the cost aggregation with multiple blocks, secondary matching and sub-pixel
estimation. Its processing speed is 41 fps for 2888×1920 pixels images when the maximum disparity is 760.

INDEX TERMS Stereo vision, GPU, multi-block, real-time.

I. INTRODUCTION
The aim of stereo vision systems is to reconstruct the
3-D geometry of a scene from images taken by two sep-
arate cameras. It can be widely used in many areas like
3D-reconstruction [22], [23], robot vision [24], self-driving
cars [25] and mechanical parts inspection. Many researchers
have developed a wide range of effective algorithms, includ-
ing CNN (Convolutional Neural Networks), Segmentation,
BF (Belief Propagation), GC (Graph Cut) and Adaptive Cost
Aggregation. Although most of them provide excellent accu-
racy, their high computational complexity often prohibits
their application in real-time systems.

Many acceleration systems with FPGAs, GPUs and ded-
icated hardware have been developed [1]–[4]. All of them
succeeded in real-time processing of high resolution images,
but the maximum ranges of their disparities are less than 128.
The larger the disparities are, increasingly complex the pro-
cessing becomes. Middlebury Benchmark launched a new
data set that consists of high resolution images with large
disparity ranges (roughly 760), aiming to promote the devel-
opment of stereo vision algorithms and systems for high
resolution images. Recently, many algorithms on GPU have
been developed. Sophisticated algorithms such as [5] and [6]
have been implemented on GPU, and they showed very
high accuracy. However, their processing speed for a high
resolution image set is far from the real-time requirement.
This is caused by the fact that data in several lines are

accessed intensively in the stereo vision. The shared mem-
ory in GPU runs very fast, however, it is too small to hold
all those lines. As a result, many memory accesses to the
global memory is inevitable, and they limit the acceleration
by GPUs. Therefore, the key for high performance on GPU,
is to reduce the number of global memory accesses by effi-
ciently sharing the data in the shared memory among the
GPU cores.

In this paper, we aim to construct a real-time GPU stereo
vision system for the high resolution image set (2888 ×
1920 pixels×760 disparities) in the Middlebury Benchmark.
In order to achieve the balance of the processing speed and
the accuracy, we focus on proposing a series of methods
to accelerate the multi-block matching (MBM) algorithm
proposed by [9] on GPU.

The reason for choosing MBM is that it shows a good
performance of processing speed and accuracy on CPU, and
it can be easily combined with other methods to achieve a
better performance, which makes our acceleration research
more meaningful. In MBM, for each pixel, the normalized
cross-correlation (NCC) is calculated by using a 3×3window
centered around the pixel, and the NCCs in several different
size and shape blocks centered around the target pixel is
added together. Then, the product of the sums is used to
calculate the disparity of each pixel. This approach enables
higher matching accuracy than the approaches that use only
one block. MBM requires more computation, but the size of

42030 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ VOLUME 6, 2018

https://orcid.org/0000-0002-4447-0480

Q. Chang, T. Maruyama: Real-Time Stereo Vision System: Multi-Block Matching on GPU

FIGURE 1. Image scaling.

data set that are intensively accessed is only slightly larger
than that by single-block algorithms.

When we consider processing a high resolution image, its
computational complexity is too high to achieve real-time
processing by using MBM. In order to achieve high perfor-
mance, in this paper, we propose the following methods:
Scaling the images: As shown in Fig.1, to reduce the com-

putational complexity, we scale down the input images into a
small size, and then scale up the disparity map to the original
size. The images are scaled down to 1/4 (or 1/16) by reducing
the width and height by half (or quarter), and the disparities
are calculated on the scaled down image. The maximum
disparity is also reduced to half (or quarter), which means
that the total computational complexity can be reduced to
1/8 (or 1/64). This approach typically worsens the matching
accuracy, but in our approach, an interpolation method based
on the secondary matching is performed during the scaling up
step, and a high matching accuracy can be maintained. This
approach becomes possible because of the high quality of the
high resolution images.
Making full use of on-chip memory: In addition to the

shared memory, there are many registers on the GPU. The
same as the shared memory, the registers can also be accessed
at a high speed by the corresponding thread, but the data
stored in them cannot be shared among the threads. In the
stereo matching, some data of the reference image does not
need to be accessed by other threads, so it becomes possible
to store them in the registers. The data of the target image
needs to be shared among the threads and are stored in the
shared memory. By using the registers, it becomes possible
to cache two-fold lines of images in the on-chip memory.
Reusing the intermediate results: To reduce the computa-

tional complexity, we reuse the intermediate results in two
phases. First, in the stereo vision, the two input images are
matched twice using one image as the reference and the other
image as the target. In these two matchings, the matching
costs calculated in the first matching can be reused in the
second matching even though large memory is required to
store them. The global memory of GPU is large enough
for this purpose. Secondly, in the cost aggregation step, the

matching costs of pixels in three different size blocks are
aggregated. In this cost aggregation, the partial sums, such
as the sum of the matching costs along the x-axis in smaller
block, can be reused in the aggregation for the larger blocks.

By using these three methods, it becomes possible to
achieve the real-time processing of the stereo vision of
high resolution images. The processing speed of our sys-
tem is faster than any other stereo vision systems on GPU
and FPGA. The error rate evaluated using the Middlebury,
KITTI2012 and KITTI2015 Benchmarks is at a medium level
compared with those systems. Furthermore, we implemented
our system on the Kepler series GPU Geforce GTX 780Ti
and the Pascal series GPUGeforce GTX 1080Ti respectively.
By using the Geforce GTX 780Ti GPU, the processing speed
of our system has been achieved 18fps for high resolution
image set (2888 × 1920 pixels ×760 disparities), while it
has been improved to 41fps by using the GTX 1080Ti. These
two implementations proved that our methods are suitable for
different architecture GPUs.

This paper is organized as follows. Section II presents
the background of our research and introduces the match-
ing algorithms implemented on GPU. Section III describes
our matching method. The detailed description of our GPU
implementation is presented in Section IV. Finally, the accu-
racy and the processing speed are evaluated in Section V.
Section VI concludes this paper.

II. BACKGROUND
Recently, many algorithms for stereo vision have been devel-
oped. These algorithms can be categorized into two groups:
global algorithms and local algorithms.

In the global algorithms, the disparities of all pixels are
decided by the mutual effect of all pixels. Thus, the global
algorithms achieve lower error rates, but require longer com-
putation time. References [1] and [8] implemented the min-
imal spanning tree (MST) and dynamic programming (DP)
on FPGA respectively. They achieved the real-time process-
ing (30fps) for the high resolution images, but all of their
disparities are smaller than 64, which is not suitable to the
modern requirements. Reference [10] implemented a Recur-
rent Neural Network (RNN) aggregation method on a high-
end GPU Geforce GTX Titan X, and [11] implemented a
Semi-Global Matching (SGM) method on a low-end embed-
ded GPU Tegra X1. In both of these two GPU systems,
the global algorithms are processed in real-time. However,
the input image size of [10] is 1242 × 375 pixels, while that
of [11] is 640× 480 pixels. None of which are large enough.
Additionally, according to the evaluation results in the KITTI
Benchmark 2015, the error rates of RNN [10] (6.34%) and
the SGM [11] (8.24%) is higher than the MBM [9] (6.04%),
which is used in this paper, because both of them need to
simplify the algorithms to fit the hardware architecture.

In the local algorithms, only the local information around
the target pixel is used to decide the disparity of the pixel. This
feature is suitable for their acceleration on GPUs because the
small and fast memory on GPU works efficiently owing to

VOLUME 6, 2018 42031

Q. Chang, T. Maruyama: Real-Time Stereo Vision System: Multi-Block Matching on GPU

the high locality of the memory access. Cross-Based Aggre-
gation (CROSS) is one of the most effective local algorithms.
References [12] and [13] implemented the CROSS on GPU
and FPGA, and achieved real-time processing respectively.
Although both of them achieved a low error rate, their input
sizes are smaller than 640 × 480. Reference [13] also runs
their system for the high resolution images of Middlebury
Benchmark. However, their speed is slower than 3fps for the
large image set (2888× 1920 pixels×760 disparities). Refer-
ence [4] implemented the Segmentation method on GPU for
high resolution images, which is used in the cost aggregation
step. The same as [10] and [11], it also simplified the original
algorithms in order to implement it on GPU, which resulted
in decreased accuracy.

As described previously, the existing real-time stereo
vision systems face limitations such as small image
size or low accuracy. None of the them can obtain a good
balance.

III. OUR ALGORITHM
In our algorithm, to achieve the real-time processing of high
resolution images, and low error rate for them,

1) the two input images are gray-scaled,
2) the two images are scaled down,
3) the Normalized Cross-Correlation (NCC) is calculated

as the matching cost of each pixel,
4) they are aggregated using three different shape and size

blocks,
5) the Multi-Block Matching (MBM) is applied, and a

disparity map is generated,
6) the secondary matching, and then a disparity map is

scaled up by the bilateral estimation,
7) step 4) to 6) are executed again to obtain two disparity

maps using left and right image as the reference,
8) Ground control point (GCPs) are chosen using the two

disparity maps, and
9) the disparity map is improved using the GCPs.

A. SCALING DOWN
In order to reduce the computational complexity, the two
images are scaled down linearly in both horizontal and verti-
cal directions using the mean-pooling method. Here, take the
left image as an example:

L(x, y) =
1

(2m+ 1)2
×

m∑
j=−m

m∑
i=−m

Lorg(K · x + i,K · y+ j)

(1)

where Lorg(K · x + i,K · y + j) is the pixel in the original
image, and K is the factor for the scaling down. L(x, y) is
the pixel of the left scaled down image, and is smoothed by
a mean-filter the size of which is (2m+ 1)2. By choosing the
block size and the pooling stride carefully, we can avoid the
loss of thematching accuracy, and can improve the processing
speed.

B. MATCHING COST COMPUTATION
The matching cost of each pixel is calculated using the NCC.
When the left image L is used as the reference, the matching
cost of L(x, y) and R(x − d, y) is given by

CL(x, y, d)

=

∑
x ′,y′∈Sp

(L(x ′, y′)− L̄(x, y))(R(x ′ − d, y′)− R̄(x − d, y))

|Sp| · σL(x, y) · σR(x − d, y)
(2)

where

L̄(x, y) =
1
|Sp|

∑
x ′,y′∈Sp

L(x ′, y′), (3)

and

σL(x, y) =

√√√√ 1
|Sp|

∑
x ′,y′∈Sp

(L(x ′, y′)− L̄(x, y))2 (4)

In this equation, Sp is the window used to calculate the NCC.
L(x ′, y′) and R(x ′−d, y′) are the pixels in each NCCwindow,
while L̄(x, y) and R̄(x− d, y) are the averages of them. R̄(x−
d, y) and σR(x − d, y) are given in the same way as L̄(x, y)
and σL(x, y).

When the right image R is used as the reference, the match-
ing cost is given as follows:

CR(x, y, d)

=

∑
x ′,y′∈Sp

(R(x ′, y′)− R̄(x, y))(L(x ′ + d, y′)− L̄(x + d, y))

|Sp| · σL(x + d, y) · σR(x, y)
= CL(x + d, y, d). (5)

This equation means that all CR are already calculated
when CL were calculated, and CL(x, y, d) can be reused as
CR(x − d, y, d).
For this cost calculation using NCC, the integral images

can be used to reduce the computational complexity of ((2)).
However, ‘‘long’’ or ‘‘double’’ (8B width) is required for
the arrays to store the integral images, and their data size
becomes the double of our calculation method using ‘‘float’’
(4B width). With this increase of the data size, only one row
can be processed at the same time (as described in Section IV,
it is possible to process two rows at the same time with-
out accessing global memory in the implementation using
‘‘float’’), and the total processing speed becomes worse.

C. COST AGGREGATION
The standard Block-Matching (BM) approach is widely used
in the matching cost aggregation step. In this approach,
the matching costs of the pixels in a rectangular block cen-
tered at the target pixel are added, and the sum is used as the
matching cost of the target pixel:

CLB(x, y, d) =
∑

(x ′,y′)∈b(x,y)

CL(x ′, y′, d). (6)

where b(x, y) is a rectangular block centered at (x, y).

42032 VOLUME 6, 2018

Q. Chang, T. Maruyama: Real-Time Stereo Vision System: Multi-Block Matching on GPU

FIGURE 2. Multi-block matching.

However, the standard BM usually generates disparity
maps with strong fattening. In order to obtain better dis-
parity maps, [9] proposed the MBM approach. It combines
matching blocks of different shapes and sizes and has shown
significant improvement compared to the standard BM. In
the MBM, a multiplicative function of block set B is used to
calculate the matching cost of each pixel:

CLMBM(x, y, d) =
∏
b∈B

CLB(x, y, d). (7)

whereCLB(x, y, d) is thematching cost calculated by standard
BM for a block b.
Fig.2(a) shows the cost aggregation in the standard BM.

The matching costs of the pixels in the block are simply
added. This approach often lacks the sensitivity because of
the cost averaging in the large block. Fig.2(b) and (c) show
the matching costs obtained when a vertical and horizontal
block are used. In this example, as shown in Fig.2(c) a
horizontal bock shows higher sensitivity because the texture
changes sharply along the horizontal direction in the image.
In this case, in the original BM, the sensitivity that could be
obtained by the aggregation along only the x-axis is lost by
the averaging of the pixels in the square block. However, it is
preserved in the MBM in which the aggregated cost of each
block is multiplied as the final matching cost (Fig.2(d)).

FIGURE 3. Stereo-matching in different scale.

Finally, the disparity of each pixel DLMBM(x, y) is decided
by Winner-Take-All (WTA) as follows:

DLMBM(x, y) = max
d

CLMBM(x, y, d). (8)

Here, disparity d is in the range of [0,D′max]. D
′
max is the

maximum of the disparity of the scaled down images as
following:

D′max =
Dmax
K

. (9)

Dmax is the maximum of the disparity of the original images
and K is the scale factor described above.

D. SECONDARY MATCHING AND SCALING UP
As described above, in order to reduce the computation com-
plexity, the input images are scaled down to be processed.
Fig.3 shows the stereo matching along one line on different
scaling images. In Fig.3, all images on the left are the ref-
erence images, and those on the right are the target images.
In Fig.3(a), the matching is performed on the original size
images Lorg and Rorg, and an accurate disparity (da in this
figure) can be found for each pixel Lorg(x, y). Fig.3(b) and (c)
show the matching on the scaled down images. In these cases,
only a fuzzy disparity (df) can be found due to the following
factors:

1) During the scaling down step, part of the pixels in the
target images R are discarded, illustrated by the blank
space.

2) During the scaling up step, the disparity of each dis-
carded pixel can only be estimated by using the dispar-
ities of the retained pixels, which may not be consistent
with the truth value.

Accordingly, in order to improve the accuracy, we propose
two methods to deal with these issues: a secondary matching
method to find an accurate disparity for each pixel in the
scaled down images, and a bilateral estimation method to fill
in the disparities for the discarded pixels during the scaling
up step.

VOLUME 6, 2018 42033

Q. Chang, T. Maruyama: Real-Time Stereo Vision System: Multi-Block Matching on GPU

FIGURE 4. Secondary matching.

1) SECONDARY MATCHING
As the analysis above, the accurate disparity da cannot be
found by using the scaled down images. According to ((9)),
K times the fuzzy disparity df is closest to the accurate
disparity da and in most cases, da should be in (K · (df − 1),
K · (df + 1)). Based on this assumption, in order to obtain a
higher accuracy, after theMBMmatching, a secondary stereo
matching is performed.

As shown in Fig.4, for the pixel L(x, y) in the scaled down
image (K = 4), when the fuzzy disparity dMBM is found by
using the MBM, the corresponding pixel Lorg(xk , yk) in the
original image (xk = K · x and yk = K · y) is matched
again with the original size target image Rorg. Correspond-
ingly, the discarded pixels in the range of (K · (dMBM − 1),
K · (dMBM + 1)) are retrieved and used to find the accurate
disparity. For this secondarymatching, althoughmanymatch-
ing methods can be used such as MBM, in order to reduce
the amount of computation, the simple matching method
SAD [15] is chosen and the accurate disparities are found as
following:

CLSAD(xk , yk , d)

= |Sq| · Ivol −
∑

xk ,yk∈Sq

|Lorg(xk , yk)− Rorg(xk − d, yk)|

(10)

and

DLSAD(xk , yk) = max
d

CLSAD(xk , yk , d). (11)

In ((10)), CLSAD(xk , yk , d) is the matching cost of pixel
Lorg(xk , yk). Sq is the window used to calculate the cost of
SAD, and Ivol is the maximum value in the gray-scale images
(in our implementation, simply, 255 is used as Ivol). In ((11)),
DLSAD(xk , yk) is the disparity of Lorg(xk , yk) that maximizes
the value of CLSAD(xk , yk , d).

Fig.5 shows how the disparities are fine-tuned by using
the secondary matching. First, Fig.5(a) shows a typical case
of two matching costs for pixel L(x, y); the matching cost
by MBM and that by SAD. In this figure, dMBM gives the
best matching cost CLMBM(x, y, dMBM), and in the range of
dMBM ± 1, the secondary matching costs CLSAD(x, y, d) by

FIGURE 5. Fine-tune. (a) Normal matching. (b) Invalid matching: the
result of sad is inconsistent with MBM. (c) Valid matching: the results on
the same side. (d) valid matching: the results on different sides.

SAD are calculated (K = 4 in this example). The x-axis
represents the disparities for the scaled down and original
size image. The disparity dMBM ± 1 in the scaled down
image corresponds to K · (dMBM ± 1) in the original size
image. In order to ensure the robustness of this method, it is

42034 VOLUME 6, 2018

Q. Chang, T. Maruyama: Real-Time Stereo Vision System: Multi-Block Matching on GPU

necessary to confirm that for each pixel, whether the result
by SAD is consistent with that by MBM or not. If it is
consistent, dSAD, the disparity that maximizes CLSAD(x, y, d),
should be between (K · (dMBM − 1),K · (dMBM + 1)), but
should not be on K · (dMBM − 1) or K · (dMBM + 1), because
CMBM(x, y, dMBM ± 1) is smaller than CMBM(x, y, dMBM).
In Fig.5(a), this requirement is satisfied, but it is not
in Fig.5(b). In the former case, the disparities are fine-tuned
as described below. but in the later case, the matching cost
by SAD is not used for fine-tuning, and dMBM is used as the
result.

In our approach, to fine-tune the disparities, a sub-pixel
estimation method proposed by [14] is used. In [14], it is
supposed that the curve of the matching costs is continuous
on the disparities and each small fragment of the matching
costs can be approximated by a quadratic function. In our
system, usingCLMBM(x, y, dMBM) andCLMBM(x, y, dLMBM±1),
a quadratic function that goes through these three points is
calculated, and the distance from dMBM to the disparity that
gives the peak to the quadratic function,1dMBM, is obtained.
In the same way, a quadratic function that goes through
CLSAD(xk , yk , dSAD) and CLSAD(xk , yk , dSAD±1) is calculated,
and the distance from dSAD to the disparity that gives the
peak to the quadratic function, 1dSAD, is obtained. Then,
the disparity is fine-tuned as follows.

1) If 1dMBM and dSAD + 1dSAD − K · dMBM have the
same sign as shown in Fig.5(c), which means that both
disparities are in the same side of the center line (red
dotted line in Fig.5(c),(d)), the new disparity dL_S for
pixel L(x, y) is calculated as (dSAD +1dSAD)/K .

2) If 1dMBM and dSAD + 1dSAD − K · dMBM have the
different signs as shown in Fig.5(d), which means that
the two disparities are in different side of the center line,
the new disparity dL_S for pixel L(x, y) is calculated
as the average of them (dMBM +1dMBM + (dSAD +
1dSAD)/K)/2.

During this matching step, although the matchings are per-
formed twice, as the disparity range is limited in the sec-
ondarymatching, onlyDmax/K+2K+1matches are required
for each pixel. Hence, not only an accurate matching can be
ensured, but also the amount of the computation is kept small.

2) BILATERAL ESTIMATION
As a result of the sub-pixel estimation, the disparity map
DL_S of the scaled down images is generated. In order to
revert DL_S to the original size map DL , the disparities of
the discarded pixels (the blank pixels) in Fig.3(b) and (c) are
regenerated by the following steps:

1) Set the disparity DL(xk , yk) to K · DL_S (x, y).
2) Fill the disparity of the discarded pixels Lorg(xk + i, yk)

along the x-axis, where 0 < i < K .

a) If |DL(xk , yk) − DL(xk + K , yk)| ≤ T , where
T is the threshold for the difference of dis-
parity, it can be considered that the dispar-
ity is changing continuously in this range, and

DL(xk + i, yk) is filled as DL(xk , yk) + i ·
((DL(xk , yk)− DL(xk + K , yk))/K).

b) If |DL(xk , yk) − DL(xk + K , yk)| > T , which
means that the disparity changes rapidly in this
range, it can be considered that an edge exists in
this range. Thus, DL(xk , yk) is chosen as DL(xk +
i, yk) if Lorg(xk + i, yk) is closer to Lorg(xk , yk)
than Lorg(xk + K , yk) in color, and otherwise,
DL(xk + K , yk) is chosen as DL(xk + i, yk).

3) Fill the disparity of the discarded pixels Lorg(xk , yk + j)
along the y-axis, where 0 < j < K .
a) If |DL(xk , yk) − DL(xk , yk + K)| ≤ T , where T

is the same as above, DL(xk , yk + j) is filled as
DL(xk , yk)+j·((DL(xk , yk)− DL(xk , yk + K))/K).

b) If |DL(xk , yk)−DL(xk , yk+K)| > T , in the same
way as above, we chooseDL(xk , yk) orDL(xk , yk+
K) which is similar to Lorg(xk , yk+j) in color, and
it is copied to DL(xk , yk + j).

4) Fill the disparity of other discarded pixels Lorg(xk +
i, yk + j), where 0 < i < K and 0 < j < K . After
step 3), for each j, the disparities of Lorg(xk , yk + j) and
Lorg(xk + K , yk + j) (these two pixels are on the same
line) are fixed. Then, the disparities of the pixels on this
line are filled according to step 2).

With this approach, an accurate disparity map DL can be
estimated.

E. CROSS_CHECK
In our approach,DR(xk , yk) is also calculated in the same way
as DL(xk , yk). Then, the ground control points (GCPs), are
obtained by comparing them [17]. Here, suppose that d is
the disparity obtained for Lorg(xk , yk), when the left image
is used as the reference. This means that between the two
images, Lorg(xk , yk) and Rorg(xk − dint , yk) shows the best
matching (dint is an integer rounded to the closest one), and
they are the same point of an object in the images. Therefore,
DR(xk −dint , yk) should also be [dint −0.5, dint +0.5]. If this
requirement is satisfied, the point is called a GCP, and it is
considered that GCPs have high reliability.

F. DISPARITY MAP IMPROVEMENT
Ideally, all pixels except for those in the occluded regions
should be GCPs, however, in actuality more pixels become
non-GCPs because of the slight change of the brightness
between the input images. To achieve more reliable dispari-
ties of non-GCPs, two approaches are often used [14]. In both
approaches, for each non-GCP, the closest GCPs on the left
and right hand-side along the x-axis are searched first. Then,
in the first approach, as shown in Fig.6(a), the closer GCP
in the distance is chosen as the disparity of the non-GCP
because the non-GCP and the closer GCP can be considered
to belong to the same object with a higher probability. In the
second approach, as shown in Fig.6(b), the smaller disparity
is chosen as the disparity of the non-GCP assuming that the
non-GCP is caused by the occlusion. The disparity of the

VOLUME 6, 2018 42035

Q. Chang, T. Maruyama: Real-Time Stereo Vision System: Multi-Block Matching on GPU

FIGURE 6. Non-GCPs filling. (a) Method 1. (b) Method 2.

occluded region is smaller than that of the foreground object
because the disparity of the closer object is larger, and the
non-GCP should have a smaller disparity. In our system,
in order to reduce the memory usage, the second approach
is used to improve the disparity map.

IV. IMPLEMENTATION ON GPU
In this section, we discuss the implementation of our MBM
algorithm on GPU.

A. THE GPU ARCHITECTURE
We implement our algorithm on both NVIDIA GTX780 Ti
and GTX1080 Ti GPUs, which have the different architec-
tures. Although the number of streaming multi-processors
(SMs) and the memory sizes are different, the hierarchy and
the attribute of the memories have not any changed. Each SM
has two types of memory: register memory and shared mem-
ory. The sizes of them are usually limited, but their access
delay is very short. However, the data cached in the register
memory is visible only to the thread that wrote them and last
only for the lifetime of that thread, while the data cached in
the shared memory are visible to all threads in the same SM
and last for the duration of the kernel function which declared
the threads. Each GPU also has the global memory, constant
memory, and texture memory in the off-chip. The global
memory is usually used to hold all data that are required for
the processing, and the constant memory and texture memory
are usually used to reduce the memory traffic to the global
memory. By the reason of the long access delay to the off-
chip memory, the most important technique to achieve high
performance on GPU is how to cache a part of the data on
the on-chip memory, and to hide the memory access delay to
the global memory. The shared and the global memory have
the restriction on the access to them. In the CUDA, which
is an abstracted architecture of NVIDIA GPUs, 32 threads
are managed as a set. When accessing the global memory,
32 words can be accessed in parallel if the 32 threads access
to continuous 32 words on 32 word-boundary. Otherwise,
the bank conflict happens, and several accesses to the global
memory are issued. The shared memory consists of 32 banks,
and the 32 words can be accessed in parallel if they are placed
in different banks (the addresses of the 32 words do not need
to be continuous).

B. SYSTEM PIPELINE
Fig.7 shows the pipeline of our stereo vision system. The
original color images are first converted to gray-scale on

FIGURE 7. System pipeline.

CPU, and then they are transferred to the global memory of
GPU. The data size can be reduced to 1/3 (24bit to 8bit), and
their transfer time also can be reduced. In our system, taking
the GTX1080 Ti as an example, for the 2888 × 1920 pixels
images, the processing on CPU takes about 4.81 millisec-
onds, and the processing on GPU takes about 13.7 millisec-
onds. Although the delay for the first frame takes more than
18 milliseconds, as shown in Fig.7, the calculation on the
two devices can be run in parallel and the stream processing
makes it possible to achieve the real-time processing as its
throughput.

Since the main processing of our system is on the GPU
side, we focus on how to implement our system on GPU.

C. TASK ASSIGNMENT AND DATA MAPPING ON GPU
Because of the high locality of the MBM algorithm, there
exist many alternatives for how to process the pixels in par-
allel by using many cores on GPU. In our implementation,
as shown in Fig.8, the image is divided by N along the y-axis.
Here, Y is the height of the image and N is the number
of the SMs of the target GPU. As shown in Fig.8, Y/N
lines are assigned to each SM. In each SM, Y/N lines are
processed from the top to bottom line by line. In this line by
line processing, one pixel is assigned to one thread as shown
in Fig.8-top and the pixels on the same line are processed
in parallel. In our implementation, the whole work-flow is
divided into five steps as shown in Fig.8, and in each step,
the outputs of the previous step are fetched from the global
memory into the on-chip memory, and the outputs of the
current step are sent to the global memory for the next step.
By reducing the number of steps, higher processing speed
is expected because the number of the memory accesses to
the global memory can be reduced. However, the size of our
target image is large, and only the data required for processing
one line can be held on on-chip shared memory and registers.
Under this limitation, the five steps are the minimum set.
In these five steps, the procedures that can be performed by
using the data of the same line are packed in the same step

42036 VOLUME 6, 2018

Q. Chang, T. Maruyama: Real-Time Stereo Vision System: Multi-Block Matching on GPU

FIGURE 8. Task assignment to each step on GPU. Step1: Smoothing &
Scaling Down. Step2: NCC calculation & Cost Aggregation along the
x-axis. Step3: Cost Aggregation along the y-axis. Step4: WTA, Secondary
Matching & Scaling Up. Step5: Cross-Check & Improvement.

such as the calculation of NCC cost and their aggregation
along the x-axis in the step 2.

D. EFFECTIVE MATCHING PROCESSING ON GPU
The most time consuming steps in our algorithm are step
2 and step 3, because in these steps, D matching costs are
calculated. In order to achieve high performance, the opti-
mization of these two steps is highly important. The following
describes the details of our methods to improve the perfor-
mance of these two steps.

1) MAKING FULL USE OF ON-CHIP MEMORY
Each SM in GPU has on-chip shared memory and registers in
it. By using them efficiently, the access to global memory can
be reduced. The data in the shared memory can be accessed

TABLE 1. Memory sharing in the Ncc cost calculation.

from any threads in the same SM , but the data in the registers
can be accessed only by the thread that wrote them in the
registers. Table.1 shows the memory usage in the NCC calcu-
lation step. In this step, it is necessary to store 3×2 lines of the
reference (left) and target (right) image in the sharedmemory.
σL(x, y), L̄(x, y), σR(x − d, y) and R̄(x − d, y) are used for
calculating NCC as described in Section III-B, and each of
them is accessedD times for calculating all NCCs. During the
computations, σL(x, y) and L̄(x, y) are accessed by only one
thread, while σR(x − d, y) and R̄(x − d, y) are accessed from
D threads. Thus, σL(x, y) and L̄(x, y) can be stored in the on-
chip registers. As shown in Table.1, the intermediate results
for calculating NCCs (Costtemp and Result) are stored in the
shared memory and the total size of the data stored in the
shared memory reaches 42KB for calculating one line. This
means that data for one line in the original size image cannot
be stored in the shared memory, and reducing the image size
is a must for the efficient computation by using only the on-
chip memory.

In our implementation, the NCCs are calculated line by
line. First, two sets of three lines y − 1, y and y + 1 are held
in the shared memory, and the NCC costs of the center line
y are calculated. Then, the pixels of the next line y + 2 are
fetched from the global memory, and the pixels of the oldest
line y − 1 are replaced by the new ones. Using the new line
y+ 2 and the two lines that are already held on the chip y and
y+ 1, the NCC costs of the next line y+ 1 are calculated.

2) REUSING THE INTERMEDIATE RESULTS
After the NCC cost calculation, they are aggregated using
the MBM algorithm. As described in Section IV-C, the NCC
costs of the next line cannot be calculated at the same time,
which means that the NCC cost cannot be aggregated along
the y-axis without using the global memory. Thus, two steps
are required for the cost aggregation. In our MBM, three
blocks with different size and shape are used. By choosing
the block width properly, the intermediate results of the cost

VOLUME 6, 2018 42037

Q. Chang, T. Maruyama: Real-Time Stereo Vision System: Multi-Block Matching on GPU

FIGURE 9. Multi-block matching.

aggregation for the small blocks can be reused for larger
blocks. Fig.9 shows a set of the blocks, the sizes of which
are 3× 21, 21× 3, 9× 9 respectively. With this combination,
the partial sums calculated for the smallest block 3 × 3 can
be reused for other blocks. Additionally, according to our
evaluation, this combination also shows a good accuracy.
By using larger blocks, higher matching accuracy can be
expected, but according to our experience, the improvement is
marginal though it requires more operations (addition) which
may effect the processing speed.

Fig.10(a) shows the cost aggregation along the x-axis. For
pixel L(x, y), three cost aggregation steps are taken. First, the
costs of itself C(x, y, d) and its two neighbors, C(x− 1, y, d)
and C(x + 1, y, d), are aggregated by the corresponding
thread. Then, its sumC3(x, y, d) is kept in the shared memory
to be reused for other size blocks. Secondly, each thread
aggregatesC3(x, y, d),C3(x−3, y, d) andC3(x+3, y, d), and
the C9(x, y, d) is obtained. C9(x, y, d) is stored into the reg-
ister instead of the shared memory because it is not accessed
from other threads in the following steps. Thirdly,C21(x, y, d)
is calculated by adding C9(x, y, d) and its four neighbors,
C3(x± 6, y, d) and C3(x± 9, y, d). All the costs are stored in
the global memory to be used for the aggregation along the
y-axis. This sequence is repeated D times (d = [0,D)) for
each pixel.

Fig.10(b) shows the layout of the partial sums along the
x-axis in the global memory. For each pixel, the cost of each
disparity is stored in the global memory in the order that the
next aggregation step runs efficiently. Fig.10(c) shows the
costs aggregation along the y-axis. Before entering this step,
the cost aggregation of all lines along the x-axis is finished,
and the all sums are stored in the global memory. For each
pixel L(x, y), its three aggregation costs are given as follows:

C21×3(x, y, d) =
1∑

i=−1

C21(x, y+ i, d) (12)

C9×9(x, y, d) =
4∑

i=−4

C9(x, y+ i, d) (13)

C3×21(x, y, d) =
10∑

i=−10

C3(x, y+ i, d) (14)

In these equations, C21, C9, C3 are transferred from the
global memory to the shared memory and are aggregated line
by line. Here, suppose that C21×3(x, y, d), C9×9(x, y, d) and
C3×21(x, y, d) are held on the shared memory. Then, the three
sums for the next line can be calculated efficiently as follows:

C21×3(x, y+ 1, d)

=

2∑
i=0

C21(x, y+ i, d)

= C21×3(x, y, d)+C21(x, y+2, d)−C21(x, y−1, d) (15)

C9×9(x, y+ 1, d) =
5∑

i=−3

C9(x, y+ i, d)

= C9×9(x, y, d)+ C9(x, y+ 5, d)− C9(x, y− 4, d) (16)

C3×21(x, y+ 1, d) =
11∑

i=−9

C3(x, y+ i, d)

= C3×21(x, y, d)+C3(x, y+11, d)−C3(x, y−9, d) (17)

By this calculation method, the computation order of the
aggregation along the y-axis can be reduced to O(1).

E. SUBSEQUENT PROCESSING ON GPU
After MBM, a series of processing shown in Fig.8 are exe-
cuted line by line. The task assignment to the threads is the
same as the NCC cost calculation step, and all of the steps are
executed one by one in each line:

1) The costs of MBM are transferred from the global
memory to the shared memory repeatedly, and two
initial disparity lines D′LMBM and D′RMBM are generated
by the WTA. During the WTA, when the matching
cost for dc + 1, namely C(x, y, dc + 1), is calculated,
C(x, y, dc − 1) and C(x, y, dc) are being held on the
registers, and the sub-pixel estimation is performed for
dc. With this implementation, when the integer dispar-
ity dMBM which gives the maximum matching cost is
obtained, an offset1dMBM is also obtained through the
sub-pixel estimation.

2) Based on dMBM, the secondary matching is executed in
the range of [K ·(dMBM − 1),K ·(dMBM + 1)]. The same
as the MBM, in the SAD matching, one thread corre-
sponds to one pixel. For each pixel, dSAD and 1dSAD
are calculated by using the same method as 1). Unlike
the first matching, in the secondary matching, several
lines of original image need to be transferred to the
on-chip memory, and the amount of the data becomes
usually several times the data that were used in the
first matching. By using more data in this step, higher
matching accuracy can be expected, but it requires
more arithmetic operations and more memory space.
Hence, according to the limit of the hardware resources
and the processing speed, choosing a suitable amount
of data is very important. Here, one thing to note is that

42038 VOLUME 6, 2018

Q. Chang, T. Maruyama: Real-Time Stereo Vision System: Multi-Block Matching on GPU

FIGURE 10. System pipeline. (a) Cost aggregation along x-axis. (b) Layout of the global memory. (c) Cost aggregation along y-axix.

FIGURE 11. Effective scaling-up (K = 4).

since the image data are also used during the Scaling-
up step, the number of lines must be K at least.

3) The remaining steps are executed. During the Scaling
up step, instead of storing the scaled up disparity map
data successively (Fig.11(a)), the interpolated data are
stored separately as shown in Fig.11(b). These data are
reverted to the original order before the Cross-Check
step. This method is used to avoid shifting the disparity
of the scaled down images when they are fetched from
the global memory.

V. EXPERIMENTAL RESULTS
We have implemented the algorithm on a middle-end
GPU NVIDIA GTX780 Ti and a high-end GPU NVIDIA

FIGURE 12. Accuracy comparison. Scaling-MBM+SAD: Result of MBM on
scaled down images with a secondary SAD matching. Original-MBM:
Result of MBM on original images. Scaling-MBM: Result of MBM on
scaled down images without secondary matching. (H): H-size dataset.
(F): F-Size dataset.

GTX1080 Ti respectively, and evaluated the processing speed
and the error rate using the Middlebury V3 [16], KITTI2012
[26] and KITTI2015 [27] benchmarks. In this section, we
first evaluate the accuracy and processing speed of our sys-
tem using each benchmark, and then make a comprehensive
comparison with other systems.

A. MIDDLEBURY BENCHMARK
Fig.12 shows an accuracy comparison of our proposed
method with theOriginal-MBM (MBM on the original image

VOLUME 6, 2018 42039

Q. Chang, T. Maruyama: Real-Time Stereo Vision System: Multi-Block Matching on GPU

FIGURE 13. Matching Result. (a) Adirondack (b) Playtable (c) Pipes (d) Vintage. A: Repetitive patterns. B: Perspective distortions &
Uniform regions. C : Uniform regions. D,E ,F : Gradient regions.

set) and the Scaling_MBM (MBM on the scaled down image
set without secondary matching). In Fig.12, H and F are
the image sizes. Images in F are larger than those in H.
Their sizes are shown in Table.3. In this evaluation, K = 2
for the H-size images, and K = 4 for F-size images. For
achieving higher processing speed, the block size of SAD is
fixed to 3 × 3. T (a threshold introduced in Section III-D.2)
is set to K . In Fig.12, the x-axis shows several combinations
of block sizes that are used in MBM. The sizes of all blocks
are chosen so that the intermediate results of smaller blocks
can be reused for larger blocks. The block sets shown in
parentheses are used for the original size images and their
sizes are two times those for the scaled down images. The
y-axis shows the bad 2.0 error rate (percentage of ‘‘bad’’ pix-
els whose disparity are different more than 2.0) of the above
three algorithms for the training image set. As shown in this
graph, when the blocks are too large, their error rates become
worse. For the Scaling-MBM and Scaling-MBM+SAD, the
3 × 21, 21 × 3, 9 × 9 block set shows the lowest error rate,
and for the Original-MBM, the 5 × 53, 53 × 5, 17 × 17
shows the lowest error rate. Scaling-MBM shows the worst
error rate (roughly 6% higher than other methods), and our
method Scaling-MBM+SAD shows the lowest for both of
H-size and F-size data sets. Furthermore, the error rates for
both size images are almost the same, which shows that our
method is very robust. Here, it can be noted that the accuracy
of our methods are always better than the Original-MBM,
even though the information of original images is lost by
down-scaling.

Fig.13 shows the results of four H-size images in the
Middlebury Benchmark [16]. The block size used in Scaling-
MBM and Scaling-MBM+SAD is 3 × 21, 21 × 3, 9 × 9,
and the block size of SAD is 3 × 3, while the block size
used in Original-MBM is 5 × 41, 41 × 5, 17 × 17. Three
areas, A, B and C , show the repetitive patterns, perspective
distortions and uniform regions respectively, which represent
the three kinds of difficult problems for the block matching
method. D, E and F show the gradient regions for which
it is required to decide their disparities considering their
continuity. The white pixels represent the matching errors.
As shown in this figure, our approach shows better results
than other approaches specially in those marked areas. This
means that in our approach, GCPs are correct as well as the
original-MBM, and the disparities of non-GCPs are improved
better. For A,B and C regions, because of the scaling down,
some information that makes the matching difficult in the
original size images, such as repetition of patterns and a
serious of similar pixels, are discarded, and better matching
becomes possible. Furthermore, because of the secondary
matching, our method, Scaling-MBM+SAD, shows a better
result than the Scaling-MBM in these regions. For D, E and
F , a secondarymatching generates the continuous disparities,
and the disparities are improved to the same level as matching
by Original-MBM.

Table.2 shows the accuracy comparison among several
stereo vision systems. In this table, systems that were eval-
uated using Middlebury and KITTI benchmarks are listed by
their average error rates onMiddlebury benchmark. Our error

42040 VOLUME 6, 2018

Q. Chang, T. Maruyama: Real-Time Stereo Vision System: Multi-Block Matching on GPU

TABLE 2. Accuracy Comparison on Middlebury Benchmark.

TABLE 3. execution time with the Middlebury benchmark set (ms).

rate for F-size is listed at the bottom, because Table.2 is a hard
copy of the benchmark evaluation site [16], and in this site,
it is not allowed to upload more than one result at a time. Our
error rates for H-size and F-size image sets are not the top,
but they are not bad compared with other systems.

Table.3 shows the details of the processing speed of our
system on GTX1080 Ti. We select 8 representative image
sets from the Middlebury Benchmark [16]. 4 sets of them
are H-size, and 4 sets are F-size. In the evaluated images,

for example, Adirondack and MotorcycleE are large images
with small disparity, Vintage is a large image with large
disparity, and Teddy is a small image with small disparity.
For each image set, the execution time of each processing
step is shown. The graying step (Gray) which takes the large
portion of the execution time, is executed on CPU. HtoD and
DtoH steps show the data transmission time between the CPU
and GPU. DtoH , the transmission time from GPU to CPU,
is roughly twice as HtoD, CPU to GPU, because HtoD is for

VOLUME 6, 2018 42041

Q. Chang, T. Maruyama: Real-Time Stereo Vision System: Multi-Block Matching on GPU

TABLE 4. Processing speed comparison (sec).

two unsigned char images and DtoH is for one float image.
The transmission time of F-size data set is roughly 4 times
that of H-size, because F-size images are 4 times larger than
H-size images. Among the steps executed on GPU, the cost
calculation and its aggregation (NCC&AggH and AggV) take
most of the computation time, because frequent data transfer
(D times loops) between the on-chip memory and off-chip
memory is required. The execution time of the secondary
matching step (WTA&SeM) is relatively small, although sev-
eral loops of matching are still needed. This is because SAD
does not require the global memory access to save/read the
intermediate results owing to the small amount data required
in this step. The overall time required on GPU is proportional
to the image size and the maximum disparity. As shown in
overall field, even for the largest image set ‘‘Vintage’’, its
processing time is only 18.688ms, which makes our real-time
processing possible. However, in the processing for F-size
data set, it can be noted that the time required by CPU is
longer than GPU, and the processing speed depends on the
graying step on CPU.

Fig.14 compares the processing speed when the block sizes
are changed in our system. As shown in this figure, in all
cases, more computation time is required for larger blocks.
Considering the error rate shown in Fig.12, the block sizes
used in our implementation, 3 × 21, 21 × 3, 9 × 9, gives
the good balance of the processing speed and the matching
accuracy. Table.4 shows the comparison of our processing
speed with other systems listed in Table.2. Here, because the
image sizes and the disparity ranges are different, in order
to make a clear comparison, we chose the systems that can
process the H-size image sets, and used the Geometric Mean
method [28] to compare them. Due to the space limitation,

FIGURE 14. Processing speed comparison.

Table.4 is folded into two (each system on the leftmost col-
umn is evaluated using 15 images (8 in the upper part, and
7 in the lower part)). In this table, for each system, two values
are shown for each corresponding image. The first one is its
runtime, and the second one in the parentheses is the normal-
ized value by our system (GTX 780Ti). From these values,
oneGeometric Mean value can be calculated for each system.
Based on this value, the difference of the processing speed
among these systems can be shown obviously. As shown
in the column Geometric Mean of Table.4, the processing
speed of our system is much faster than other system. The
processing speed by GTX 1080Ti is three times faster than
GTX 780Ti.

B. KITTI BENCHMARK
We also evaluated our system using KITTI2012 [26]
and KITTI2015 [27] benchmarks, separately. In these

42042 VOLUME 6, 2018

Q. Chang, T. Maruyama: Real-Time Stereo Vision System: Multi-Block Matching on GPU

FIGURE 15. Evaluation results using the KITTI benchmarks.

TABLE 5. KITTI2012.

benchmarks, hundreds of images are divided into two groups.
For the first group (‘‘training dataset’’), their true disparity
maps are given, and this group is used to tune the parameters
of the stereo vision systems. The users are required to upload
their disparity maps for the second group (‘‘testing dataset’’)
to the website, and their matching accuracy are evaluated
on the website. The image sizes are close to 1250 × 375
and the ranges of disparities are always 256. Here, since
the numbers of lines in KITTI are small, we only scaled
down the images along the x-axis (K = 2). According to
our evaluation, the runtime of our system on GTX 780Ti is
roughly 0.015s (66.7 fps), and it is 0.005s (200 fps) on GTX
1080Ti. For the ‘‘testing dataset’’ (the second group), our
accuracy is shown in Table.5 and Table.6, which was ranked
73rd out of 108 systems in KITTI2012 and ranked 94th out
of 119 systems in KITTI2015. This accuracy is not good, but
for this evaluation, the same parameters as Middlebury are
used, and they are not tuned for KITTI benchmarks. As for the
accuracy of the ‘‘training dataset’’ (for this first group, we can
know the error rate of each image), we achieved the lowest
error rates 0.084% for ‘‘KITTI2012-000000’’ and 0.058% for
‘‘KITTI2015-000135’’, while the worst error rate 20.6% for
‘‘KITTI2012-000180’’ and 67.8% for ‘‘KITTI2015-000104’’
as shown in Fig.15. According to our results, except the
‘‘KITTI2015-000104’’ that was taken in a tunnel, most of the
error rates are kept between 1% and 5% on both benchmarks.
We think that this error rate is enough for most practical use.

C. ACCURACY COMPARISON BETWEEN
DIFFERENT SYSTEMS
In this subsection, we compare the error rates of all systems
that are evaluated not only by using Middlebury, but also by

TABLE 6. KITTI2015.

using at least one of KITTI benchmarks. For this comparison,
the Geometric Mean is used. As shown in Table.7, the 2nd,
3rd and 4th columns show the error rates (and the normalized
one by our system) for Middlebury, KITTI 2012 and KITTI
2015 benchmark sets, and 5th, 6th and 7th columns show the
Geometric Mean for Middlebury with KITTI 2012, KITTI
2015, and both. According to these results, it can be noted that
the accuracy of our system in KITTI2012 and Middlebury
is close to the medium level, and as described above, the
accuracy of KITTI2015 is lower, which leads to a decrease
in overall performance.

D. SPEED COMPARISON BETWEEN DIFFERENT SYSTEMS
Table.8 compares the processing speed of stereo vision sys-
tems on different architectures. All the systems achieved a
real-time processing as shown in FPS field, but their target
image size (Size) and disparity range (Dmax) are different.
MDE/s means mega disparity evaluation per second, and
shows the true processing speed of each system. As shown
in this table, MDE/s of our system is much higher than other
systems. For calculating a disparity map of large size image
such as 2888 × 1920, larger Dmax (760) is required, and
with GTX 780Ti, its real-time processing cannot be achieved.
However, by using faster GPU, GTX 1080 Ti, it becomes
possible by our approach, and its MDE/s is 12x to 1060x
faster than other systems. To compare the performance on
different architectures, another criterion, disparities/cycle,
is calculated by using equation (18), which means the number
of disparities that can be processed per clock cycle on each

VOLUME 6, 2018 42043

Q. Chang, T. Maruyama: Real-Time Stereo Vision System: Multi-Block Matching on GPU

TABLE 7. Accuracy comparison.

TABLE 8. Comparison with high-speed stereo vision systems.

architecture.

Disparities/cycle =
ImageSize× Dmax × FPS

Frequency
(18)

For GPU systems, the frequency refers to the frequency of
each core, and for other systems, it means the frequency of
the overall system. By comparing disparities/cycle, we can
understand the performance gain by the algorithms imple-
mented on each device. As shown in Table.8, for some
systems, although their MDE/s are similar, there exists a
gap in disparities/cycle such as ‘‘FPGA-Road [7]’’ and
‘‘FPGA-SOC [44]’’, because their frequency is different. Our

rate 116.743 (for F-size images on GTX 1080Ti) is much
faster than other GPU systems (even 18.04 for H-size images
on GTX-780 Ti is faster). This means that our algorithm
works very well on GPUs. However, FPGAs shows higher
rate than our system. This comes from the fact that higher
parallelism is possible on FPGAs than GPUs because the
data width required in the stereo vision systems is less than
2B in many cases. To compare the performance of the sys-
tems on CPU and GPU, disparities/cycle/core is also shown
in Table.8. This comparison shows that in our system, each
core works more efficiently than other GPU systems, and
even than CPU system for H-size images.

42044 VOLUME 6, 2018

Q. Chang, T. Maruyama: Real-Time Stereo Vision System: Multi-Block Matching on GPU

VI. CONCLUSION
In this paper, we have proposed a real-time stereo vision
system on GPU. Its processing speed is much faster than
previous ones, and it is the first GPU system that enables the
real-time processing of high resolution images. The acceler-
ation method was originally designed for GTX 780 Ti, but
it could be easily ported on GTX 1080 Ti, and showed good
performance on the two different GPU architectures. The per-
formance gain by new architecture is 3X, and this is that we
can expect from the difference of their maximum throughput.
This means that it can be expected that our method can also
achieve higher performance on upcoming new GPUs.

In our current implementation, the accuracy and the pro-
cessing speed are still limited by the size of the shared mem-
ory. The improvement of the memory usage by further tuning
the algorithms used in our implementation is one of our main
future work.

REFERENCES
[1] D. Zha, X. Jin, and T. Xiang, ‘‘A real-time global stereo-matching on

FPGA,’’Microprocessors Microsyst., vol. 47, pp. 419–428, Nov. 2016.
[2] M. P. Patricio, A. Aguilar-González, M. Arias-Estrada,

H. R. Hernández-De León, J. L. Camas-Anzueto, and J. A. de Jesús
Osuna-Coutiño, ‘‘An FPGA stereo matching unit based on fuzzy logic,’’
Microprocessors Microsyst., vol. 42, pp. 87–99, May 2016.

[3] A. Kendall et al. (2017). ‘‘End-to-end learning of geometry and
context for deep stereo regression.’’ [Online]. Available: https://arxiv.
org/abs/1703.04309

[4] W. Qiao and J. C. Créput, ‘‘Stereo matching by using self-distributed
segmentation and massively parallel GPU computing,’’ in Proc. Int. Conf.
Artif. Intell. Soft Comput., 2016, pp. 723–733.

[5] J. Žbontar and Y. LeCun, ‘‘Stereo matching by training a convolutional
neural network to compare image patches,’’ J. Mach. Learn. Res., vol. 17,
no. 1, pp. 2287–2318, 2016.

[6] X. Ye, J. Li, H. Wang, H. Huang, and X. Zhang, ‘‘Efficient stereo matching
leveraging deep local and context information,’’ IEEE Access, vol. 5,
pp. 18745–18755, 2017.

[7] M. Dehnavi and M. Eshghi, ‘‘FPGA based real-time on-road stereo vision
system,’’ J. Syst. Archit., vol. 81, pp. 32–43, Nov. 2017.

[8] L. Puglia, M. Vigliar, and G. Raiconi, ‘‘Real-time low-power FPGA
architecture for stereo vision,’’ IEEE Trans. Circuits Syst., II, Exp. Briefs,
vol. 64, no. 11, pp. 1307–1311, Nov. 2017.

[9] N. Einecke and J. Eggert, ‘‘A multi-block-matching approach for stereo,’’
in Proc. Intell. Vehicles Symp., Jun./Jul. 2015, pp. 585–592.

[10] A. Kuzmin, D. Mikushin, and V. Lempitsky. (2016). ‘‘End-to-end learning
of cost-volume aggregation for real-time dense stereo.’’ [Online]. Avail-
able: https://arxiv.org/abs/1611.05689

[11] D. Hernandez-Juarez, A. Chacón, A. Espinosa, D. Vázquez, J. C. Moure,
and A. M. López, ‘‘Embedded real-time stereo estimation via semi-
global matching on the GPU,’’ in Proc. Int. Conf. Comput. Sci., 2016,
pp. 143–153.

[12] M. Jin and T. Maruyama, ‘‘Fast and accurate stereo vision system on
FPGA,’’ ACM Trans. Reconfigurable Technol. Syst., vol. 7, no. 1, 2014,
Art. no. 3.

[13] J. Kowalczuk, E. Psota, and L. C. Perez, ‘‘Real-time stereo matching on
CUDA using an iterative refinement method for adaptive support-weight
correspondences,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 23, no. 1,
pp. 94–104, Jan. 2013.

[14] Q. Yang, L. Wang, R. Yang, H. Stewénius, and D. Nistér, ‘‘Stereo match-
ing with color-weighted correlation, hierarchical belief propagation, and
occlusion handling,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 31,
no. 3, pp. 492–504, Mar. 2009.

[15] H. Hirschmüller andD. Scharstein, ‘‘Evaluation of cost functions for stereo
matching,’’ in Proc. CVPR, Jun. 2007, pp. 1–8.

[16] D. Scharstein et al., ‘‘High-resolution stereo datasets with subpixel-
accurate ground truth,’’ in Proc. German Conf. Pattern Recognit. (GCPR),
Münster, Germany, Sep. 2014.

[17] P. Knöbelreiter, C. Reinbacher, A. Shekhovtsov, and T. Pock, ‘‘End-to-
end training of hybrid CNN-CRF models for stereo,’’ in Proc. CVPR,
Jun. 2017, pp. 2339–2348.

[18] S. Tulyakov, A. Ivanov, and F. Fleuret, ‘‘Weakly supervised learning
of deep metrics for stereo reconstruction,’’ in Proc. ICCV, Oct. 2017,
pp. 1348–1357.

[19] H. Hirschmüller, ‘‘Accurate and efficient stereo processing by semi-global
matching and mutual information,’’ in Proc. CVPR, vol. 2, Jun. 2005,
pp. 807–814.

[20] N. Einecke and J. Eggert, ‘‘A two-stage correlationmethod for stereoscopic
depth estimation,’’ in Proc. Int. Conf. Digit. Image Comput., Techn. Appl.,
Dec. 2010, pp. 227–234.

[21] A. Geiger, M. Roser, and R. Urtasun, ‘‘Efficient large-scale stereo match-
ing,’’ in Proc. Asian Conf. Comput. Vis., 2010, pp. 25–38.

[22] S. Zhang and P. Huang, ‘‘High-resolution, real-time 3D shape acquisition,’’
in Proc. CVPR, Jun./Jul. 2004, p. 28.

[23] H. Nguyen, D. Nguyen, Z. Wang, H. Kieu, and M. Le, ‘‘Real-time, high-
accuracy 3D imaging and shape measurement,’’ Appl. Opt., vol. 54, no. 1,
pp. A9–A17, 2015.

[24] X. Luo, U. L. Jayarathne, S. E. Pautler, and T. M. Peters, ‘‘Binocular
endoscopic 3-D scene reconstruction using color and gradient-boosted
aggregation stereo matching for robotic surgery,’’ in Proc. Int. Conf. Image
Graph., 2015, pp. 664–676.

[25] C. C. Pham, V. Q. Dinh, and J. W. Jeon, ‘‘Robust non-local stereo matching
for outdoor driving images using segment-simple-tree,’’ Signal Process.,
Image Commun., vol. 39, pp. 173–184, Nov. 2015.

[26] A. Geiger, P. Lenz, and R. Urtasun, ‘‘Are we ready for autonomous
driving? The KITTI vision benchmark suite,’’ in Proc. CVPR, Jun. 2012,
pp. 3354–3361.

[27] M. Menze and A. Geiger, ‘‘Object scene flow for autonomous vehicles,’’
in Proc. CVPR, Jun. 2015, pp. 3061–3070.

[28] P. J. Fleming and J. J. Wallace, ‘‘How not to lie with statistics: The correct
way to summarize benchmark results,’’ Commun. ACM, vol. 29, no. 3,
pp. 218–221, 1986.

[29] Z. Liang et al. (2018). ‘‘Learning for disparity estimation through feature
constancy,’’ [Online]. Available: https://arxiv.org/abs/1712.01039

[30] C. Stentoumis, L. Grammatikopoulos, I. Kalisperakis, and G. Karras,
‘‘On accurate dense stereo-matching using a local adaptive multi-cost
approach,’’ ISPRS J. Photogramm. Remote Sens., vol. 91, pp. 29–49,
May 2014.

[31] S. Hadfield, K. Lebeda, and R. Bowden, ‘‘Stereo reconstruction using
top-down cues,’’ Comput. Vis. Image Understand., vol. 157, pp. 206–222,
Apr. 2017.

[32] N. Ma, Y. Men, C. Men, and X. Li, ‘‘Accurate dense stereo matching based
on image segmentation using an adaptive multi-cost approach,’’ Symmetry,
vol. 8, no. 12, p. 159, 2016.

[33] K. Zhang, J. Li, Y. Li, W. Hu, L. Sun, and S. Yang, ‘‘Binary stereo
matching,’’ in Proc. ICPR, 2012, pp. 356–359.

[34] K. Batsos, C. Cai, and P. Mordohai. (2018). ‘‘CBMV: A coalesced bidi-
rectional matching volume for disparity estimation.’’ [Online]. Available:
https://arxiv.org/abs/1804.01967

[35] A. Li, D. Chen, Y. Liu, and Z. Yuan, ‘‘Coordinating multiple dis-
parity proposals for stereo computation,’’ in Proc. CVPR, Jun. 2016,
pp. 4022–4030.

[36] H. Lu, H. Xu, L. Zhang, and Y. Zhao. (2018). ‘‘Cascaded multi-scale
and multi-dimension convolutional neural network for stereo matching.’’
[Online]. Available: https://arxiv.org/abs/1803.09437

[37] C. Zhang, Z. Li, Y. Cheng, R. Cai, H. Chao, and Y. Rui, ‘‘MeshStereo: A
global stereo model with mesh alignment regularization for view interpo-
lation,’’ in Proc. ICCV, Dec. 2015, pp. 2057–2065.

[38] J.-R. Chang and Y.-S. Chen. (2018). ‘‘Pyramid stereo matching network.’’
[Online]. Available: https://arxiv.org/abs/1803.08669

[39] C. Çiǧla, ‘‘Recursive edge-aware filters for stereo matching,’’ in Proc.
CVPR, Jun. 2015, pp. 27–34.

[40] R. A. Hamzah, H. Ibrahim, and A. H. A. Hassan, ‘‘Stereo matching
algorithm based on per pixel difference adjustment, iterative guided filter
and graph segmentation,’’ J. Vis. Commun. Image Represent., vol. 42,
pp. 145–160, Jan. 2017.

[41] L. Li, X. Yu, S. Zhang, X. Zhao, and L. Zhang, ‘‘3D cost aggregation with
multiple minimum spanning trees for stereomatching,’’Appl. Opt., vol. 56,
no. 12, pp. 3411–3420, 2017.

[42] S. K. Gehrig, R. Stalder, and N. Schneider, ‘‘A flexible high-resolution
real-time low-power stereo vision engine,’’ in Proc. Int. Conf. Comput. Vis.
Syst., 2015, pp. 69–79.

VOLUME 6, 2018 42045

Q. Chang, T. Maruyama: Real-Time Stereo Vision System: Multi-Block Matching on GPU

[43] W. Wang, J. Yan, N. Xu, Y. Wang, and F.-H. Hsu, ‘‘Real-time high-quality
stereo vision system in FPGA,’’ IEEE Trans. Circuits Syst. Video Technol.
vol. 25, no. 10, pp. 1696–1708, Oct. 2015.

[44] S. Michalik, S. Michalik, J. Naghmouchi, and M. Berekovic, ‘‘Real-
time smart stereo camera based on FPGA-SoC,’’ in Proc. Humanoids,
Nov. 2017, pp. 311–317.

[45] K.-R. Bae and B. Moon, ‘‘An accurate and cost-effective stereo matching
algorithm and processor for real-time embedded multimedia systems,’’
Multimedia Tools Appl., vol. 76, no. 17, pp. 17907–17922, 2017.

[46] L.Wang, R. Yang, M. Gong, andM. Liao, ‘‘Real-time stereo using approx-
imated joint bilateral filtering and dynamic programming,’’ J. Real-Time
Image Process., vol. 9, no. 3, pp. 447–461, 2014.

[47] S.Madeo, R. Pelliccia, C. Salvadori, J.M. del Rincon, and J.-C. Nebel, ‘‘An
optimized stereo vision implementation for embedded systems: Applica-
tion to RGB and infra-red images,’’ J. Real-Time Image Process. vol. 12,
no. 4, pp. 725–746, 2016.

[48] C. Ttofis and T. Theocharides, ‘‘High-quality real-time hardware stereo
matching based on guided image filtering,’’ in Proc. DATE, Mar. 2014,
pp. 1–6.

[49] M. Nguyen,W. Q. Yan, R. Gong, and P. Delmas, ‘‘Toward a real-time belief
propagation stereo reconstruction for computers, robots, and beyond,’’ in
Proc. IVCNZ, Nov. 2015, pp. 1–6.

[50] V. C. Sekhar, S. Bora, M. Das, P. K. Manchi, S. Josephine, and R. Paily,
‘‘Design and implementation of blind assistance system using real time
stereo vision algorithms,’’ in Proc. VLSID, Jan. 2016, pp. 421–426.

[51] K. J. Lee, K. Bong, C. Kim, J. Park, and H.-J. Yoo, ‘‘An energy-efficient
parallel multi-core ADAS processor with robust visual attention and
workload-prediction DVFS for real-time HD stereo stream,’’ in Proc. IEEE
Symp. Low-Power High-Speed Chips, Apr. 2016, pp. 1–3.

[52] J. Hofmann, J. Korinth, and A. Koch, ‘‘A scalable high-performance hard-
ware architecture for real-time stereo vision by semi-global matching,’’ in
Proc. CVPR, Jun./Jul. 2016, pp. 845–853.

[53] L. F. S. Cambuim, J. P. F. Barbosa, and E. N. S. Barros, ‘‘Hardware
module for low-resource and real-time stereo vision engine using semi-
global matching approach,’’ in Proc. SBCCI, Aug./Sep. 2017, pp. 53–58.

[54] C. Yang, Y. Li, W. Zhong, and S. Chen, ‘‘Real-time hardware stereo
matching using guided image filter,’’ in Proc. Int. Great Lakes Symp.
VLSI (GLSVLSI), May 2016, pp. 105–108.

[55] R. Kalarot and J. Morris, ‘‘Comparison of FPGA and GPU implementa-
tions of real-time stereo vision,’’ in Proc. CVPR, Jun. 2010, pp. 9–15.

QIONG CHANG received the master’s degree
in engineering from the University of Tsukuba
in 2013, where he is currently pursuing the Ph.D.
degree with the Graduate School of Systems and
Information Engineering. His research interest is
in reconfigurable parallel computing systems.

TSUTOMU MARUYAMA received the
Ph.D. degree in engineering from The University
of Tokyo in 1987. He is currently a Professor with
the Graduate School of Systems and Information
Engineering, University of Tsukuba. His research
interest is in reconfigurable parallel computing
systems.

42046 VOLUME 6, 2018

	INTRODUCTION
	BACKGROUND
	OUR ALGORITHM
	SCALING DOWN
	MATCHING COST COMPUTATION
	COST AGGREGATION
	SECONDARY MATCHING AND SCALING UP
	SECONDARY MATCHING
	BILATERAL ESTIMATION

	CROSS_CHECK
	DISPARITY MAP IMPROVEMENT

	IMPLEMENTATION ON GPU
	THE GPU ARCHITECTURE
	SYSTEM PIPELINE
	TASK ASSIGNMENT AND DATA MAPPING ON GPU
	EFFECTIVE MATCHING PROCESSING ON GPU
	MAKING FULL USE OF ON-CHIP MEMORY
	REUSING THE INTERMEDIATE RESULTS

	SUBSEQUENT PROCESSING ON GPU

	EXPERIMENTAL RESULTS
	MIDDLEBURY BENCHMARK
	KITTI BENCHMARK
	ACCURACY COMPARISON BETWEEN DIFFERENT SYSTEMS
	SPEED COMPARISON BETWEEN DIFFERENT SYSTEMS

	CONCLUSION
	REFERENCES
	Biographies
	QIONG CHANG
	TSUTOMU MARUYAMA

