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ABSTRACT The selection of tests required to make complex systems testable is a fundamental of
system-level fault diagnosis. To evaluate the test selection, testability metric estimation (TME) is required.
The influence of unreliable (imperfect) tests, whose outcomes are non-deterministic due to unstable envi-
ronmental conditions, test equipment errors, and component tolerances, should be considered for accurate
TME. Previously, researchers considered a TME model using a Bernoulli distribution with the assumption
that the variations of different test outcomes are independent. However, this assumption is not always true.
To address the issue, a joint distribution-based TME model was developed derived from the copula function
to quantify the influence of dependent outcomes of unreliable tests. The efficacy of the developed TME
model was verified with a linear voltage divider and a negative feedback circuit.

INDEX TERMS Copula theory, fault diagnosis, testability metric estimation, and unreliable tests.

I. INTRODUCTION
With the rapid development of manufacturing techniques,
large and complex systems can be designed and deployed in
critical fields such as aircraft, spacecraft, and nuclear power
plants [1]. To ensure that complex systems run efficiently,
the testability of systems must be considered. Thus, a series
of tests, as well as corresponding physical sensors or inter-
faces, should be clarified during the design phase. These
tests provide the original information for the system, which
is fundamental to system-level fault diagnosis, prognosis,
and health management [2], [3]. The selection of tests can
significantly influence the diagnostic resolution and life cycle
maintenance costs [4]–[6]. To evaluate the potential diag-
nostic resolution of selected tests in the design phase, some
testability metrics (TMs) are needed, such as fault detec-
tion rate (FDR), fault isolation rate (FIR), and false alarm
rate (FAR).

To realize testability metric estimation (TME) for a given
test subset, a fault/test dependency model, which describes
the relationship between faults and tests, should be estab-
lished. Various dependency modeling methods have been
developed, which can be categorized into two groups:
digraph-based methods [7]–[11] and simulation-based

methods [12], [13]. Digraph-basedmethods, which have been
mainly used for large-scale modular systems, establish a
dependency model by extracting fault propagation character-
istics from the functional block diagram of the system. The
well-known digraph-based methods include the information
flow method [8], the multi-signal flow graph method [9],
and the quantitative directed graph method [10]. Simulation-
based methods establish a dependency model by acquiring
fault effects from system simulation. Due to the develop-
ment of electronic design automation (EDA) techniques,
simulation-based methods have been developed rapidly in
small-scale circuit systems [14]–[18]. As a result of these
modeling methods, a dependency matrix (D-matrix) can be
derived. Then, TME for ideal tests can be realized using
Boolean operations on the derived D-matrix.

In the above studies, test outcomes are assumed to be
deterministic under each given fault state. However, test out-
comes in real systems are non-deterministic due to various
uncertainty factors, such as sensor errors, electromagnetic
interference, component tolerances, and environmental con-
ditions [6]. The tests whose outcomes are non-deterministic
are called unreliable tests or imperfect tests [6], [19].
The existence of unreliable tests does not affect the ideal
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value of each test outcome under given fault states. However,
the test outcome will vary at a certain range near the ideal
value, and the diagnostic performance of a given test subset
can also be influenced by unreliable tests. Hence, several
studies have been conducted to quantify the influence of
unreliable tests [6], [20]–[25]. Nachlas et al. [20] presented
unreliable test outcomes in the form of false positives and
false negatives, and the priori probabilities of incorrect test
outcomes were assumed from historical data. The influence
of unreliable tests was then evaluated in terms of incorrect
repairs cost. Raghavan et al. [21] described variations of unre-
liable tests using the detection/false alarm probability pair.
This probability pair was also used as information to decide
the test sequencing for fast fault diagnosis. Ying et al. [22]
and Ruan et al. [23] also used such probability pairs as the
posteriori probabilities in the hidden Markov model to solve
dynamic single-fault diagnosis and multiple-fault diagnosis,
respectively.

Although different methods have been used to represent
unreliable tests, they all regard each test outcome as a specific
Bernoulli distribution instead of a deterministic binary in the
D-matrix. Following the same idea, Zhang et al. [6] first
proposed a Bernoulli distribution-based TME model, which
is also the only TME model for unreliable tests up to now.
The influence of unreliable tests was quantified using a prob-
ability that is the product of a series of probabilities deriving
fromBernoulli distributions of test outcomes. Thismodel was
further adopted to solve the test selection problem [6], [25],
the testability growth problem [26], [27], and the testability
evaluation problem [28].

In the above Bernoulli distribution-based TME model, test
outcomes were assumed to be independent random variables
under given fault states. This assumption indicates that know-
ing the outcome of one test does not change the probability
of the outcome of any other test. However, this is not always
true in the real world. For example, if temperatures in two
terminals of a shaft are tested, these two temperatures should
be dependent since the environmental temperature causes
their variations at the same time. To the best of the authors’
knowledge, no paper has considered such dependency among
test outcomes in TME problem.

In view of the above, the scope of this study mainly
focuses on addressing issues of TME with unreliable tests,
which assumes that the specific dependency model has been
given already. The main contributions of this study are to
prove dependent relationships among outcomes of unreliable
tests and to develop a joint distribution-based TME model
to address the dependency among test outcomes. In contrast
with Bernoulli distribution, which is a univariate distribu-
tion, the joint distribution refers to the distribution of mul-
tivariables. It regards all test outcomes as a whole, thus the
dependent relationships that were ignored in the Bernoulli
distribution-based TME model can be considered. Among
various joint distributions, a specific joint distribution con-
structed by the copula theory was also derived in the TME

model, because of its high adaptability of variables and sim-
plicity of construction.

The rest of this paper is organized as follows. Section II
presents the dependent relationships among test outcomes by
enumerating several examples and establishing a qualitative
model of the test outcome. Section III describes the joint
distribution-based TME model. In addition, a copula joint
distribution-based TMEmodel is provided. In Section IV, two
examples are used to demonstrate the construction process of
the developed TMEmodel and validate its efficacy. Section V
summarizes the main contributions.

II. DEPENDENT RELATIONSHIPS AMONG
TEST OUTCOMES
Due to the existence of unreliable tests, each test outcome
can be treated as a random variable, and uncertainty factors
are treated as input variables. Previous studies treated test
outcomes as independent random variables, which means
knowing the outcome of one specific test does not change
the probability of the outcome of any other test. However,
this situation is impractical. To prove this point of view,
several examples that show the incongruence of an indepen-
dent relationship between two test outcomes are presented.
Then, a qualitative model of the test outcomes is established,
which explains the relationship between the test outcomes
and uncertainty factors and generalizes the causes of depen-
dent relationships among test outcomes.

A. OUTCOMES OF TWO TESTS DERIVED FROM
THE SAME TEST EQUIPMENT
For a complex system, several tests related to the same type
of signal can be conducted using the same test equipment.
For example, if several voltage-related tests are needed in a
circuit, only one oscilloscope or one data acquisition (DAQ)
card is enough to monitor all these voltage signals. The test
equipment introduces uncertainty to the test outcomes. Since
the same test equipment is used to conduct different tests,
the outcome shifts of these tests should be the same.

FIGURE 1. Example circuit to show the influence of the dependency
between two test outcomes.

Using the electronic circuit in Fig. 1 as an example,
the voltage test of physical points a and b is defined as
two tests, which are referred to as ta and tb, respectively.
According to electronic theory, the ideal values ta0 and tb0
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can be derived as:{
ta0 = VDC · (R2 + R3) / (R1 + R2 + R3)
tb0 = VDC · R3/ (R1 + R2 + R3)

(1)

For voltage measurement, a reference voltage is required in
the test equipment (oscilloscope or DAQ card). The reference
voltage may fluctuate slightly, which can further affect the
outcomes of these two tests. Thus, the outcomes of the two
tests can be modified as:{

ta = ta0 + δs
tb = tb0 + δs

(2)

where δs denotes the error introduced by the reference voltage
in the test equipment. In this case, variations of both test out-
comes are caused by the fluctuation of the reference voltage.
δs is the same in both equations. If ta is observed to be higher
than ta0, then the observation of tb must be higher than tb0.
Since the observation of ta determines the probability of the
observation of tb, the two test outcomes do not satisfy the
independent random variables assumption.

B. OUTCOMES OF TWO TESTS RELATED TO
THE SAME COMPONENTS
In the complex system, the outcomes of different tests can
also be influenced by the same components. Tolerance can
cause the parameters of these components to vary, which
in turn can result in variations of different test outcomes.
Taking the same circuit in Fig. 1 as an example, the resistance
fluctuation of R1 can affect both voltage tests. Considering
the tolerance influence of R1, the outcomes of the two tests
should be:{

ta = VDC · (R2 + R3) / (R1 + δc + R2 + R3)
tb = VDC · R3/ (R1 + δc + R2 + R3)

(3)

where δc denotes the resistance shift introduced by com-
ponent tolerance. In this case, variations of these two test
outcomes are only caused by δc. Given a specific observation
of ta, the observation of tb will also be determined. Thus,
the two test outcomes also do not satisfy the independent
random variables assumption.

C. OUTCOMES OF TWO TESTS INFLUENCED
BY THE TEST ENVIRONMENT
Another case is related to the test environment. During the test
process, environment conditions can affect most of the test
outcomes, since the environment can influence the state of
the system under test (SUT). Assuming that only the voltage
source is affected by temperature with a positive temperature
coefficientKT in the above circuit example, the test outcomes
can be modified as:{

ta=VDC ·(1+KT ·δT )·(R2+R3) / (R1+R2+R3)
tb=VDC ·(1+KT ·δT )·R3/ (R1+R2+R3)

(4)

where δT denotes the fluctuation of environment temperature.
If an observation of ta is higher than the ideal value ta0,

it indicates that the environment temperature is higher than
normal (δT > 0). At the same time, it can cause the observa-
tion of tb to be higher than tb0. Again, the two test outcomes
do not satisfy the independent random variable assumption.

D. GENERALIZATION OF CAUSES FOR DEPENDENCIES
AMONG TEST OUTCOMES
In all of the above three cases, the test outcomes are not
independent random variables. However, these cases do not
fully represent this issue. In general, as long as two test out-
comes are influenced by the same input variable(s), they are
not independent random variables. To generalize the causes
for the dependency among test outcomes, the relationship
between the test outcome and uncertainty factors should be
modeled.
During the test process, the principal sources of unreli-

able tests are the state uncertainty of the SUT, environmen-
tal uncertainty, measuring method uncertainty, and inherent
uncertainty of the measurement equipment. The qualitative
relationship between the test outcome t and these uncertainty
factors can be expressed as follows:

t = T
[
ϕ (F,U) , S, δm

]
+ δe (5)

where F denotes the system fault state, U denotes the param-
eters of system components or functional modules, S denotes
operating environmental stress, δm denotes the error from
the measuring method uncertainty, and δe denotes the error
introduced by the uncertainty of measurement equipment. ϕ()
represents the state of the SUT, which is a function of F and
U . T () is the function expressing the relationship between
the test outcomes and the state of the SUT. In (5), δe, δm, S,
and U are uncertain, among which U is variable due to the
component tolerances of the system, and S is determined by
environmental factors such as temperature and humidity. The
test outcomes can then be regarded as random variables due
to the uncertainties that arose from δe, δm, S, and U .
Similarly, the outcomes of two specific tests t1 and t2 can

be expressed, respectively, as:{
t1 = T1

[
ϕ(F,U ), S, δm1

]
+ δe1

t2 = T2
[
ϕ(F,U ), S, δm2

]
+ δe2

(6)

where T1 and T2 represent different measuring methods refer-
ring to different tests. Since these two random variables t1
and t2 contain the same input variables of S and U , they are
mathematically dependent. Therefore, any factor that causes
variations of S or U can make test outcomes be dependent
random variables.

III. A JOINT DISTRIBUTION-BASED TESTABILITY METRIC
ESTIMATION MODEL USING THE COPULA FUNCTION
Section II proved that test outcomes can be dependent random
variables, and thus the conventional Bernoulli distribution-
based TME model with the assumption of independent
random variables is no longer useful. In this section, the draw-
backs of the conventional model are shown using an example
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first. Then the developed joint distribution-based TMEmodel
is presented to solve these drawbacks. Three of the most used
TMs—FDR, FAR, and FIR—are considered. In addition,
the copula function is used to construct the joint distribution
in the developed model.

A. DRAWBACKS OF THE CONVENTIONAL TME MODEL
As mentioned in Section I, the Bernoulli distribution was
developed in the D-matrix to consider the influence of unre-
liable tests. The D-matrix can be expressed as follows:

Dm×n =

t1 t2 · · · tn
ft1
ft2
...

ftm


r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
. . .

...

rm1 rm2 · · · rmn

 (7)

where tj and fti represent the j-th test and i-th fault, respec-
tively. The element rij denotes whether tj responds to fti. Let
rij = 1 (fail) if tj responds to fti, and otherwise rij = 0 (pass).
In the Bernoulli distribution-based TME model, the prob-

abilistic relationship between faults and test outcomes is
represented by element dij:

dij = rij · Pdij + (1− rij) · Pfij (8)

where Pdij and Pfij refer to the correct detection probability
and the false-alarm probability of tj for fti, respectively [21].
Hence, dij can indicate the response probability of tj when fti
occurs. The estimation of FDR and FIR with unreliable tests
can be expressed as follows [6]:

PDi = 1−
∏n

j=1

(
1− dij

)
(9)

PIi =
∏m

k=1,k 6=i

(
1−

∏n

j=1

[
(1− dij)(1− dkj)+ dijdkj

])
(10)

where n is the total test amount, m is the total fault amount,
and PDi and PIi refer to the FDR and FIR of fti, respectively.
To set up (9) and (10), the test outcomes must be assumed

to be independent random variables based on the probability
theory. Thus, the conventional Bernoulli distribution-based
TME model cannot be applied to solve the cases wherein test
outcomes are dependent.

To illustrate the dependency problem, the electronic circuit
in Fig. 1 is used as an example. The resistance tolerance of
R2 is assumed to be the only uncertainty factor in this case.
When R2 fluctuates, ta and tb obey the normal distributions
shown in Fig. 2. Assuming that the fault response criteria of
the two tests are specified as ta < 5 V and tb > 2.5 V, respec-
tively, then the estimated fault detection probability is
1 – (1 – 50%)× (1 – 50%)= 75% according to (9). However,
ta and tb are positively correlated no matter what R2 is, which
means tbmust be lower than 2.5V if ta is lower than 5V. Thus,
the probability of the event that ta < 5 V and tb > 2.5 V
should be 0%, and the expected fault detection probability
should be 1 – 0% = 100%.

FIGURE 2. Distribution of two test outcomes.

In the example, the Bernoulli distribution-based TME
model resulted in a totally incorrect fault detection probabil-
ity (0%), which is far away from the expected value (100%).
The example proved that the conventional TME model has a
severe drawback if dependent relationships exist among test
outcomes.

B. TME MODEL WITH THE JOINT DISTRIBUTION
To address the dependency among test outcomes, the joint
distribution should be considered instead of Bernoulli dis-
tribution. The joint distribution of n-dimensional random
variables X = (X1,X2, . . . ,Xn) gives the probability that
each random variable in X falls in any particular range. The
continuous joint distribution function can be expressed as:

FX (x) = P
(⋂n

j=1
Xj ≤ xj

)
(11)

where x is the particular upper limit vector of X .
This joint distribution function is the core of the developed

TME model in this paper. When constructing the joint dis-
tribution, the dependency among test outcomes can be fully
considered to address the drawbacks of previous models.
Before estimating TMs with the joint distribution, the follow-
ing notations and assumptions should be made:
1) The system faults are represented as FT = (ft0,

ft1, . . . , ftm), where ft0 denotes the fault-free state.
2) The full test set (including all candidate tests) is T =

(t1, t2, . . . , tn), of which the outcome of each test is
assumed to be a continuous variable, and the corre-
sponding test thresholds are represented as THR = (thr1,
thr2, . . . , thrn).

3) Suppose fti occurred, if the outcome of tj (represented
as tji) is greater than the specified thrj, then tj is believed
to have the ability to respond to fti, which can be
expressed as rij = 1. Otherwise, rij = 0.

4) The test selection vector is defined as S =

(s1, s2, . . . , sn), where sj = 1 if tj is selected, otherwise
sj = 0.

1) FDR AND FAR ESTIMATION
For a specific fault fti, the equivalent condition of fault detec-
tion success is that at least one test does respond to fti when
fti occurs. Thus, the FDR of fti is expressed as:

FDR(fti) = 1− P
(
t ij ≤ thrj|j ∈ [1, n]

)
(12)
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where t ij represents the outcome of tj when fi occurs.
Then, the FDR can be expressed using a joint distribution
function as:

FDR(fti) = 1− FX (x)
X = (X1,X2, · · · ,Xn) , Xj = t ij
x = (x1, x2, · · · , xn) , xj = thrj

(13)

where the test outcomes of fi and the test thresholds are
defined as the n-dimensional random variables X and the par-
ticular upper limit vector x of the joint distribution function,
respectively.

When the test selection is considered, the upper limits
of the tests that are not selected should be modified to the
positive infinite (+∞). Therefore, the equation can be modi-
fied as:

FDR(fti; S) = 1− P
(
t ij ≤ thrj|sj = 1 ∩ t ij ≤ +∞|sj = 0

)
(14)

To keep the input dimension consistent, the part of sj = 0
should also be reserved in the joint distribution function.
Thus, an operator � is defined to solve this issue as follows:

a� b =

{
a b = 1
+∞ b = 0

(15)

Then, the FDR with a specific test selection vector S can be
represented as:

FDR(fti; S) = 1− FX (x∗)
X = (X1,X2, · · · ,Xn) , Xj = t ij
x∗ =

(
x∗1 , x

∗

2 , · · · , x
∗
n
)
, x∗j = thrj � sj

(16)

The equivalent condition of false alarm is that at least
one test incorrectly responds to the fault-free state ft0. Thus,
the FAR can be regarded as the FDR of ft0. Then, the FAR
with a specific S can be represented as:

FAR(S) = FDR(ft0; S) = 1− FX (x∗)
X = (X1,X2, · · · ,Xn) , Xj = t0j
x∗ =

(
x∗1 , x

∗

2 , · · · , x
∗
n
)
, x∗j = thrj � sj

(17)

2) FIR ESTIMATION
For a specific fti, the fault isolation success must satisfy the
following two conditions: (C1) the test pattern of fti must be
unique, i.e., in the Boolean D-matrix, the row of fti must be
different from any other row, and (C2) the test outcomes must
be the same as the expected test pattern of fti.
Aiming at (C1), a similarity value LIik is defined to

describe the diversity of test patterns between fti and ftk ,
which is expressed as follows:

LIik =
∏n

j=1

[(
1− rij

) (
1− rkj

)
+ rijrkj

]
(18)

When the test patterns of fti and ftk are the same, then
LIik = 1. Thus, (C1) can be expressed as:

LIi =
∏m

k=1,k 6=i
(1− LIik) (19)

where LIi = 1 if (C1) is satisfied.

Aiming at (C2), the probability that test outcomes are the
same as the expected test pattern of fti can be expressed asPIi:

PIi = P
(
t ip ≤ thrp|rip = 0 ∩ t iq ≥ thrq|riq = 1

)
(20)

To unify the form of input variables, an item, (–1)rij in (21),
is added and the FIR can be expressed as:

FIR(fti) = LIi · P
(
(−1)rij t ij ≤ (−1)

rij thrj|j ∈ [1, n]
)

(21)

Then, the FIR can be expressed using a joint distribution
function as:
FIR(fti) == LIi · FX (x)

LIi =
∏m

k=1,k 6=i

(
1−

∏n
j=1

[(
1− rij

) (
1− rkj

)
+ rijrkj

])
X = (X1, X2, · · · ,Xn) ,Xj = (−1)rij t ij
x = (x1, x2, · · · , xn) , xj = (−1)rij thrj

(22)

The FIR with a specific S can be represented as:
FIR(fti; S) == LI∗i · FX (x

∗)

LI∗i =
∏m

k=1,k 6=i

(
1−

∏n
j=1

[(
1− rij

) (
1− rkj

)
+ rijrkj

]sj)
X = (X1,X2, · · · ,Xn) , Xj = (−1)rij t ij
x∗ =

(
x∗1 , x

∗

2 , · · · , x
∗
n
)
, x∗j = (−1)

rij thrj � sj
(23)

C. COPULA THEORY IN THE JOINT
DISTRIBUTION CONSTRUCTION
The copula theory is widely used to construct the joint dis-
tribution. In theory, any multivariate joint distribution can
be written in terms of univariate marginal distributions and
a copula function [29]. Let H (x1, x2, . . . , xn) represent the
joint distribution function of n-dimensional variables X =
(X1,X2, . . . ,Xn), and FXi(xi) represents the marginal distri-
bution of the variable Xi, where i = 1, 2, . . . , n. Then a given
H () can be expressed with a unique copula function C() as
follows:

H (x1, x2,· · · , xn)=C(FX1(x1),FX2(x2),· · · ,FXn(xn)) (24)

where FXi(xi) ∈ [0, 1], and the copula function can be
regarded as an n-dimensional joint distribution function
whose variables all obey uniform distribution within [0, 1].
Copula theory is interpreted to transform the original
n-dimensional variables to the space of [0, 1]n via their
respective marginal distribution probability, and then uses a
specific function C() to describe the dependency of trans-
formed multiple random variables.

To estimate various unknown parameters in the copula
function, the joint probability density function (PDF) is
needed, which can be expressed as h():

h (x)=
∂nH

∂x1 · · · ∂xn
=c

({
uj|j ∈ [1, n]

})
·

n∏
i=1

fXi(xi; θi) (25)
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where c() is the copula density function; fXi() is the marginal
PDF of Xi; and ui and θi represent the marginal distribu-
tion probability and the marginal distribution parameter of
Xi, respectively. Utilizing the maximum likelihood estima-
tion (MLE) or any other methods, the given sample data can
be used to estimate unknown parameters [30]. The logarith-
mic likelihood function of h(x) is expressed as:

lnL() =
k∑
i=1

ln c ({uji|j ∈ [1, n]
}
; θc
)
+

n∑
j=1

ln fXj(xji; θj)


(26)

where xji is the i-th sample of Xj, uji is the corresponding
marginal distribution probability of xji, and θc represents the
dependence structure parameters of the copula function.

D. COPULA-CONSTRUCTED TME MODEL
The joint distribution-based TME model can be constructed
based on the copula theory. In this model, the upper limits of
unselected tests are modified as the positive infinite. In the
copula function, the upper limits can be modified by setting
the marginal distribution probabilities of corresponding tests
to 1 as follows:

C (FX1 (x1) , · · · , 1, · · · ,FXn (xn))

= FX (x1, · · · ,+∞, · · · , xn) (27)

Then, the copula-constructed TME model is as follows:
FDR(fti; S) = 1− C (u1, u2, · · · , un)
uj = FXj

(
thrj

)sj , Xj = t ij
i ∈ [0,m], j ∈ [1, n]

(28)


FIR(fti; S) = LI∗i · C (u1, u2, · · · , un)

LI∗i =
∏m

k=1,k 6=i

(
1−

∏n
j=1

[
(1− rij)(1− rkj)+ rijrkj

]sj)
uj = FXj

(
(−1)rij thrj

)sj , Xj = (−1)rij t ij
i ∈ [1,m], j ∈ [1, n]

(29)

Several copula functions can be used, such as Gaussian
copula, t-copula, and Archimedean copulas. Due to the sim-
ple structure and the similarity to the well-known Gaussian
distribution function, the Gaussian copula function is used in
this paper:{
C(u1, · · · , un; θc) = 8R

(
8−1(u1), · · · ,8−1(un); θc

)
uj = FXj

(
xj
)
, j ∈ [1, n]

(30)

where θc is the covariance matrix, 8R is the n-dimensional
standard normal distribution function (µ = 0, σ = 1), and
8−1 is the inverse function of the one-dimensional standard
normal distribution function. Then, the Gaussian copula-
constructed TME model can be derived as follows:

FDR(fti; S)=1−8R
({
8−1

(
uj
)
|j∈ [1, n]

}
; θc
)

uj = FXj
(
thrj

)sj , Xj = t ij
i ∈ [0,m], j ∈ [1, n]

(31)


FIR(fti; S) = LI∗i ·8R

({
8−1

(
uj
)
|j ∈ [1, n]

}
; θc
)

LI∗i =
∏m

k=1,k 6=i

(
1−

∏n
j=1

[(
1−rij

) (
1−rkj

)
+rijrkj

]sj)
uj = FXj

(
(−1)rij thrj

)sj , Xj = (−1)rij t ij
i ∈ [1,m], j ∈ [1, n]

(32)

IV. EFFICACY VALIDATION OF THE DEVELOPED
TESTABILITY METRIC ESTIMATION MODEL
To show the accuracy improvement of TME when using the
developed model, this section uses two electronic circuits as
examples. TME results with both the conventional model and
the developed model are compared with statistical TMs. The
validation procedure is shown in Fig. 3.

FIGURE 3. Efficacy validation process of the developed TME model.

To generate test outcomes of the circuits, the simulation
software PSpice is used. For real applications, the fault seed-
ing experimental data and historical data can also be used.
The component tolerance is used as an uncertainty factor of
unreliable tests. 10% of all simulation results are randomly
selected to estimate distribution parameters, which is used
to establish the Boolean D-matrix and two TME models.
To establish the Boolean D-matrix, only marginal distribu-
tions are needed to extract ideal values of test outcomes.
Then, the Boolean D-matrix and corresponding test threshold
vector can be obtained. M1 and M2 are used in Fig. 3 to
represent two TME models need to be compared, respec-
tively. Besides the information required by the conventional
model, dependence structure parameters are also needed for
the developed model.

For these two circuits, the test outcomes are pre-confirmed
to be dependent so as to induce the dependency issue for
TME. Although the distribution parameter estimation errors
can also influence TME results, these errors should equally
influence both models. Thus, it is fair to say that the depen-
dency among tests is the main factor influencing TME accu-
racy of these two circuits.

A. TME FOR A LINEAR VOLTAGE DIVIDER
In theory, most complex systems can be simplified using
series and/or parallel connections. In analog circuits, the
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linear voltage divider is such a circuit that includes both types
of connections. Although it is simple, it still possesses the
same structural characteristics as complex systems. Thus it is
used as an example to validate the developed model.

1) TEST OUTCOMES SIMULATION
The schematic of the linear voltage divider, which includes
10 resistors, is shown in Fig. 4. Five types of faults were
simulated (parameter drift faults R2, R4, R6, R8, and R10),
and five tests (referring to the voltage values of the five test
points shown in Fig. 4) were considered as candidates. For
each resistor, the tolerance was set at 2%, and each fault
was simulated by positively shifting 10% of the nominal
value of the corresponding resistor. To represent the tolerance
influence, 103-times simulations were run utilizing theMonte
Carlo technique for each fault state.

FIGURE 4. Linear voltage divider circuit.

2) BOOLEAN D-MATRIX CONSTRUCTION
Based on the acquired simulation data, the ideal value (mean
value) vectors of test outcomes for each fault state can be
estimated statistically, as shown in Table 1.

TABLE 1. Ideal values of test outcomes under different faults for the
linear voltage divider.

To construct the Boolean D-matrix, test thresholds are
needed. In real applications, test thresholds should be deter-
mined due to a series of requirements. In this paper, the test
threshold is arbitrarily set as the value of µ + 3σ of each
test outcome under ft0, where µ and σ denote the mean value
and the standard deviation of the corresponding test outcome.
With this criteria, the FAR can be limited at a low level since
the majority of test outcomes under ft0 will be 0 as they are
expected. The determined test threshold vector THR is:

THR = (16.187, 8.124, 4.072, 2.041, 1.025) (33)

Then the test outcome ideal value vector of each fault
is compared with THR, respectively. If the ideal value of
tj under fti is greater than the corresponding test threshold,

TABLE 2. Constructed boolean D-matrix for the linear voltage divider.

tj is believed to be able to respond to fti. Thus, the Boolean
D-matrix can be constructed as shown in Table 2.

3) BERNOULLI DISTRIBUTION-BASED TME MODELING
To construct the Bernoulli distribution-based TME model,
both the Boolean D-matrix and the marginal distributions of
test outcomes are needed.

To estimate the marginal distributions, various estimation
algorithms, such as MLE and kernel density estimation, can
be used. In this example, the marginal distributions all obey
normal distributions well. Hence, mean values and standard
deviations can be used to describe these distributions. The
mean values of test outcomes are shown in Table 1, and
standard deviations are shown in Table 3.

TABLE 3. Standard deviation of each test outcome under different faults.

Then, the probabilistic elements dij in (8) can be calculated,
and corresponding TMs can be estimated using (9) and (10).

4) JOINT DISTRIBUTION-BASED TME MODEL
Besides the Boolean D-matrix and the marginal distribu-
tions, the construction of the developed TME model also
needs dependence parameters of test outcomes. In the copula
function, the dependence parameters are called dependence
structure parameters.

To estimate the dependence structure parameters in a cop-
ula function, first the raw sample data should be transformed,
then some general estimation algorithms can be used. Taking
the Gaussian copula function as an instance, the raw data
should be transformed into the space of [0, 1]n using Fxj().
Subsequently, the transformed data should be transformed
again using 8−1().

Using the data after two-step transformation, the PDF
parameters of the following n-dimensional standard normal
distribution can be estimated:

fX (x) = (2π)−
n
2 |ρ|−

1
2 exp

(
−
1
2
xTρ−1x

)
(34)
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FIGURE 5. Comparison of FDR estimation results for the linear voltage divider using the conventional model vs.
the joint distribution-based model.

FIGURE 6. Comparison of FAR estimation results for the linear voltage divider using the conventional model vs.
the joint distribution-based model.

FIGURE 7. Comparison of FIR estimation results for the linear voltage divider using the conventional model vs.
the joint distribution-based model.

where X denotes n-dimensional data after transforming and ρ
denotes the covariance matrix, which is the structure param-
eter that needs to be estimated.

Since the test outcomes are transformed, the test thresholds
should also be transformed with the same process. Then,
the transformed test thresholds can be brought into (31)
and (32) for TME. The only thing to note is that during the
transforming process for FIR, the item (–1)rij in (32) should
be first added to the raw test outcomes and thresholds.

5) TME RESULTS COMPARISON
Using statistical TMs as the reference, the estimation results
based on the developed TME model are compared with those

of the conventional TME model. To show the improvement
of TME better, various test subsets are used. In this exam-
ple, the total number of non-void subsets is 31. Since test
subsets with one single test do not have the dependency
problem, they are not considered. Therefore, 26 test subsets
are selected, and TME results are shown in Figs. 5–7. Test
subsets are sorted from {0, 0, 0, 1, 1}, {0, 0, 1, 0, 1}, . . ., to
{1, 1, 1, 1, 0}, {1, 1, 1, 1, 1}, and are labeled as 1–26. Five
bars in each subset group of Fig. 5 and Fig. 7 represent the
results for five fault states, respectively. The relative errors
(REs) of these 130 conditions coming from two models are
listed in Table 4, where M1 represents the conventional TME
model and M2 represents the developed TME model.
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TABLE 4. TME results comparison for the linear voltage divider.

For the FDR, the REs of 33 out of 130 conditions are
higher than 5% when M1 is used. Moreover, the REs
of 10 out of these 33 conditions are even higher than
10%, and the maximum RE exceeds 31.93%. When M2 is
used, only 2 conditions have an RE slightly higher than
5% (5.32% and 5.22%), and the maximum RE decreases to
5.32%. For the FIR, the REs of 33 conditions are higher than
2% when M1 is used. Moreover, the REs of 5 out of these
33 conditions are even higher than 5%, and the maximum
RE exceeds 14.34%. When M2 is used, all REs decrease
to less than 2%. The average REs of FDR and FIR using
M2 are 0.514% and 0.532%, respectively, which are much
lower than those of M1 (4.590% and 3.144%, respectively).
For the FAR (FDR of ft0), the average RE decreases from
17.13% to 13.89%.Although the REs of the first 4 test subsets
using M2 are higher even than 20%, the absolute errors are
all less than 1.0%.

Briefly speaking, the developed model gets higher TME
accuracy of the voltage divider than the conventional model,
which makes 8.9-fold, 1.2-fold, and 5.9-fold reduction in
terms of average TME errors (FDR, FAR, FIR), respectively.

B. TME FOR A NEGATIVE FEEDBACK CIRCUIT
The negative feedback circuit is a basic analog circuit that
is widely used for amplifying voltage, current, and power
signals in electronic systems.

FIGURE 8. Negative feedback circuit.

1) TEST OUTCOMES SIMULATION
A specific multistage negative feedback circuit is shown
in Fig. 8. The input signal (Vin) is a 1-kHz 7-mV sinusoidal
waveform, and Vcc is 15 V. Six types of fault (listed in
Table 5) were simulated, and DC voltage values of seven test
points (pointed out in Fig. 8) were recorded as test outcomes.

TABLE 5. Simulated faults in the negative feedback circuit.

The component tolerance level of resistors was set as 5%. For
each fault state, 103-timesMonte Carlo simulations were run.

TABLE 6. Constructed boolean D-matrix for the negative feedback circuit.

2) BOOLEAN D-MATRIX CONSTRUCTION
Following the same procedure as mentioned in Section IV.A,
given the test threshold vector in (35), the Boolean D-matrix
can be obtained as in Table 6.

THR = (6.75, 6.10, 0.07, 5.57, 4.95, 7.76, 12.25) (35)

3) CONSTRUCTION OF TWO TME MODELS
For the construction of the conventional TME model and the
developed TME model, the process is the same as mentioned
in Section IV.A.

4) TME RESULTS COMPARISON
In this example, the total number of subsets including more
than one test is 120. Constrained by the figure resolution, it is
impossible to put so many results in a single figure. Thus,
only subsets including more than four tests are considered
in this example. Therefore, TME results of 29 test subsets
are shown in Figs. 9-11. Six bars in each subset group of
Fig. 9 and Fig. 11 represent the results for six fault states,
respectively. The REs coming from two models are listed
in Table 7.

For the FDR, the maximum RE decreases from
51.03% to 13.86% when using the developed TME model,
and the average RE decreases from 3.06% to 0.76%. For the
FAR (FDR of ft0), the maximum RE decreases from 47.12%
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FIGURE 9. Comparison of FDR estimation results for the negative feedback circuit using the conventional model vs.
the joint distribution-based model.

FIGURE 10. Comparison of FAR estimation results for the negative feedback circuit using the conventional model vs.
the joint distribution-based model.

FIGURE 11. Comparison of FIR estimation results for the negative feedback circuit using the conventional model vs.
the joint distribution-based model.

TABLE 7. TME results comparison for the negative feedback circuit.

to 19.98%, and the average RE decreases from 18.76% to
10.79%. For the FIR, the maximum RE decreases from
11.30% to 4.79%, and the average RE decreases from 2.77%
to 1.14%.

In short, the developed model improves the TME accu-
racy of the negative feedback circuit, which makes 4-fold,
1.6-fold, and 2.4-fold reduction in terms of average TME
errors (FDR, FAR, FIR), respectively.
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C. DISCUSSIONS
Although most of the REs using the developed TME
model are much lower than the conventional TME model
in both examples, there are still several worse results.
In Section IV.A, the REs of some test subsets containing only
two tests increase slightly after using the developed TME
model. This situation occurs when certain test outcomes have
a weak dependent relationship between each other and errors
from marginal distribution estimation and Monte Carlo sam-
pling dominate the estimation errors. For large errors coming
from the FAR estimation, it is mainly caused by the relatively
small value of real FAR. On the other hand, the estimation
results for the negative feedback circuit are higher than those
for the linear voltage divider. As the test dimension increases,
the distribution parameters estimation errors also increase.

Nevertheless, the estimation errors using the developed
TME model are still within reasonable limits and can be
further refined by increasing sample numbers, improving the
estimation confidence of marginal distributions and depen-
dence structure parameters, and introducing another type of
copula function.

V. CONCLUSIONS
Unreliable tests can significantly influence the testability
metric estimation (TME) for complex systems. The only
TME model for unreliable tests using Bernoulli distributions
adopted an impractical assumption that test outcomes are
independent. Therefore, it is ineffective since test outcomes
are always dependent. This paper developed a TME model
with the joint distribution constructed by the copula theory
to eliminate the impractical independent assumption in the
conventional model.

In the paper, test outcomes were first proved to be depen-
dent in many cases. Any factor that can simultaneously cause
variations of two (or more) test outcomes makes these test
outcomes dependent. Such factors include but are not limited
to the test equipment error, the fluctuation of environmental
conditions, and component tolerances in the system. The joint
distribution was then first used for TME. Compared with the
Bernoulli distribution-based TME model for unreliable tests,
the developed TME model using the joint distribution can
quantify the dependent relationships among test outcomes.
Thus, the developed TME model can be adopted in any
application no matter whether the test outcomes are inde-
pendent or not. Specifically, a joint distribution construction
method—the copula—was also used, which is effective even
if a different type of marginal distribution is needed for each
test outcome.

The efficacy of the developedmodel was verified using two
electronic circuits with dependency among test outcomes.
Testability metrics (including FDR, FAR, and FIR) were
estimated using both the conventional and the developed
model. For the linear voltage divider, the developed model
made 8.9-fold, 1.2-fold, and 5.9-fold improvements of TME
accuracy, respectively, when compared with the conventional

model. For the negative feedback circuit, the developed
model also made 4-fold, 1.6-fold, and 2.4-fold improve-
ments of TME accuracy, respectively. The comparison results
showed the conventional model is incorrect when test out-
comes are dependent, whereas the developed model can
correctly estimate testability metrics.

TME is not only important for the test selection in the
design phase, but also necessary for the testability validation
in the demonstration phase and the test sequencing in the
fault diagnosis phase. The developed TME model can also
be extended to these problems. On the other hand, by set-
ting multiple thresholds, the developed model can be further
extended to multi-outcome issues.
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