
Received June 10, 2018, accepted July 18, 2018, date of publication July 25, 2018, date of current version August 20, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2859618

A Novel Strategy of Combining Variable Ordering
Heuristics for Constraint Satisfaction Problems
HONGBO LI 1 AND ZHANSHAN LI2
1School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
2Key Laboratory for Symbol Computation and Knowledge Engineering of National Education Ministry, College of Computer Science and Technology, Jilin
University, Changchun 130012, China

Corresponding author: Zhanshan Li (lizs@jlu.edu.cn)

This work was supported in part by the Fundamental Research Funds for the Central Universities under Grant 2412018JC009, in part by
the Education Department of Jilin Province under Grant JJKH20170911KJ, in part by the Natural Science Foundation of Jilin Province of
China under Grant 20180101043JC, and in part by the Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry
of Education, Jilin University, under Grant 93K172017K06.

ABSTRACT Variable ordering heuristic plays a central role in solving constraint satisfaction problems.
Many heuristics have been proposed and well-studied. In order to take advantage of the fact that many
generic variable ordering heuristics work well for different problems, we propose a novel method in this
paper, namely ParetoHeu, to combine variable ordering heuristics. At each node of the search tree, a set of
candidate variables is generated by a new strategy based on Pareto optimality and a variable is selected from
the set randomly. The method is easy to be implemented in constraint solvers. The experiments on various
benchmark problems show that ParetoHeu is more efficient than both the participant heuristics which are
popular in constraint solvers. It is also more robust than some classical strategies which have been used to
combine variable ordering heuristics.

INDEX TERMS Constraint programming, constraint satisfaction problem, Pareto optimality, variable
ordering heuristic.

I. INTRODUCTION
Constraint programming is a powerful paradigm for solving
combinatorial search problems. It has been widely applied in
Artificial Intelligence, Programming Languages, Databases
and Operations Research. Many classic combinatorial prob-
lems have been successfully solved with constraint program-
ming, such as Scheduling, Planning, Vehicle Routing, and so
on. Constraint satisfaction problem (CSP) is the basis of con-
straint programming. In the most general form, constraint sat-
isfaction problems are NP-Hard. Variable ordering heuristics
are crucial for efficiently solving CSPs. A proper heuristic
may solve a hard CSP instance in a second. Many efficient
variable ordering heuristics have been proposed and well
studied, such as min-dom [1], max-degree [2], dom/deg [3],
dom/wdeg [4], impact-based search (IBS) [5], count-based
search (CBS) [6], activity-based search (ABS) [7] and so on.
ABS, IBS, dom/wdeg and CBS are the most popular searching
strategies in constraint solvers.

Besides these variable ordering heuristics, some strate-
gies of combining multiple heuristics are proposed. The
Brelaz heuristic [8] combines min-dom and max-degree.
It first selects variables according to min-dom and uses

max-degree to break ties if there exists. The dom/deg heuris-
tic is another strategy combining min-dom and max-degree.
It uses domain size over variable degree as its heuristic score.
The dom/deg heuristic was considered as one of the most
efficient variable ordering heuristics. The recent dom/wtdeg
heuristic adds constraint tightness in dom/wdeg. Its heuristic
score combines summation of constraint tightness and the
weighted degree of dom/wdeg. Moreover, hyper-heuristics
are high-level heuristics designed to select an appropriate
one from a number of low-level heuristics in the context
of search. Many hyper-heuristics [9] have been proposed,
such as the machine-learning-based methods [10], [11] and
evolutionary-computation based methods [12], [13]. Some
other methods also exist [14]–[17]. Unfortunately, these
methods have not been implemented in the popular constraint
solvers which are publicly available [18], [19]. In addition,
the technique of algorithm portfolios [20], [21] runs multiple
solving procedures simultaneously and it terminates as soon
as one of the procedures terminates, so such technique is more
efficient than running only one procedure. However, if none
of the participant heuristics works on a problem, the port-
folio strategy does not work either. Therefore, although the

42750
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-2664-4117

H. Li, Z. Li: Novel Strategy of Combining Variable Ordering Heuristics for Constraint Satisfaction Problems

portfolio based methods are efficient, it is still important to
develop new single-thread search strategies.

This paper proposes a novel method to combine different
variable ordering heuristics, namely ParetoHeu. The aim is to
generate a more robust single-thread search strategy, which is
easy to be implemented in constraint solvers.We consider two
participant heuristics in this paper. Most variable ordering
heuristics generate a candidate variable set according to some
heuristic scores and select one from the candidate set. We use
cand(heu) to denote the set of candidate variables selected by
a variable ordering heuristic heu. The cand(heu) is a set of
variables because the heuristic heu may find more than one
candidate variables which are equivalent under some evalu-
ation criterion, such as they have the same heuristic score.
ParetoHeu combines two participant heuristics, heu1 and
heu2. If cand(heu1)∩cand(heu2) is not empty, then we use
the intersection as the candidate set; otherwise, we generate
a candidate set by a novel strategy combining two heuristics,
which is based on Pareto optimality [22].

The participant heuristics considered in this paper are ABS
and dom/wdeg. The experiments were run on 7 kinds of dif-
ferent benchmark problems. The results show that ParetoHeu
is more robust than both ABS and dom/wdeg. It also outper-
forms some classic combining strategies. Among all the exist-
ing searching strategies we have tested in the experiments,
the A×D strategy is the most efficient one. The average cpu
time of ParetoHeu is about two thirds of that of the A×D
strategy. Besides, ParetoHeu finishes the largest number of
runs in given time durations. To our best knowledge, the par-
ticipants used by the existing combining strategies are sim-
ple heuristics, such as min-dom and max-degree. Therefore,
our contributions are as two fold: 1. we propose a novel
strategy for combining variable ordering heuristics. 2. we
report some experimental results of combining two heuristics
which are the most popular searching strategies in constraint
solvers.

This paper is organized as follows. Section 2 provides
some technical background about CSP and variable ordering
heuristics. The ParetoHeu is introduced in Section 3. The
experimental results and the analysis are in Section 4. Finally,
conclusion is in Section 5.

II. BACKGROUND
A constraint satisfaction problem (CSP) P is a triple P = 〈X,
D, C〉, where X is a set of n variables X ={x1, x2 ... xn}, D is
a set of domains D ={dom(x1), dom(x2) ... dom(xn)}, where
dom(xi) is a finite set of possible values for variable xi, and
C is a set of e constraints C={c1, c2 ... ce}. Each constraint c
consists of two parts, an ordered set of variables scp(c) = {xi1,
xi2 ... xir} and a subset of the Cartesian product dom(xi1) ×
dom(xi2)× ...× dom(xir) that specifies the allowed combina-
tions of values for the variables {xi1, xi2 ... xir}. A solution to
a CSP is an assignment of a value to each variable such that
all the constraints are satisfied.

For example, given a CSP, X={x1, x2, x3}, dom(x1)={1, 2,
3}, dom(x2)={1, 2}, dom(x3)={2, 3}, C={c1, c2} where c1 is

x1>x2 and c2 is x1 + x2=x3. A solution of the CSP is {x1=2,
x2=1, x3=3}.
Solving a CSP P involves either finding a solution of

P or determining that P is unsatisfiable. Backtracking search
performs a depth-first traversal of a search tree to solve a
CSP. In the context of a search tree, each edge is associated
with an assignment, a node at level k is associated with a
set of k assignments which are attached to the path from the
root to this node. During backtracking search, the instanti-
ated variables are called past variables and the uninstantiated
are called future variables. The set of all future variables
is denoted by FutVars. At each node of the search tree,
a future variable xi is selected and a value in dom(xi) is
assigned to xi. Then a new node is generated and some prop-
agation techniques, such as arc consistency [23] and bound
consistency [24], are applied to remove those values that
are no longer consistent. Besides these original propagation
algorithms, some improved propagation algorithms have also
been studied [25]–[29]. A dead-end is reached if the propa-
gation fails, then one or more assignments must be canceled
and backtracking occurs.

It is widely accepted that the order in which variables
are instantiated is crucial to the efficiency of backtracking
search. However, finding an optimal ordering is as difficult
as solving a CSP. Thus, the ordering is usually determined by
heuristics in practice. Variable ordering heuristics are used at
each search tree node to select next future variable. A variable
ordering heuristic usually computes a score for each variable
and selects the next future variable according to the score.
The following subsections recall the two participant variable
ordering heuristics considered in this paper.

A. ACTIVITY-BASED SEARCH
ABS [7] considers the most active variables should be instan-
tiated first. Given a CSP P = 〈X, D, C〉, the backtracking
search applies a constraint propagation technique F after each
assignment. Some inconsistent values are removed from the
corresponding domains due to this propagation. A subset X’
⊆ X records those affected variables whose domains were
reduced by this propagation. The activity of xi, denoted by
A(xi), is updated at each search tree node by the following
rules:

∀xi ∈ X s.t. |dom(xi)| > 1 : A[xi] = A[xi]× γ

∀xi ∈ X ′ : A[xi] = A[xi]+ 1 (1)

where γ ∈ [0, 1] is an aging decay parameter. The activity of
an assignment at a search tree node is defined as:

A[xi = a] = |X ′| (2)

which is the number of affected variables when applying F
after the assignment. The activity of an assignment also can
be estimated by the average of all observed activities of this
assignment. The ABS heuristic selects the variable xi with the
largest ratio A[xi]

|dom(xi)|
which is its heuristic score.

VOLUME 6, 2018 42751

H. Li, Z. Li: Novel Strategy of Combining Variable Ordering Heuristics for Constraint Satisfaction Problems

B. DOM/WDEG
dom/wdeg [4] has been well studied for more than 10 years.
It selects the variables which are most likely to lead to a
failure. A weight[c] is associated with each constraint c,
whenever a domain wipeout is reached, the weight of the con-
straint that leads to the wipeout is incremented. The weighted
degree of a variable xi is defined as:

wdeg[xi] =
∑
c∈C

weight[c]
∣∣∣xi ∈ scp(c) ∧ |FutScp(c)| > 1

(3)

where |futScp(c)| denotes the number of future variables
in scp(c). Combining the weighted degree with domain
size, dom/wdeg uses the ratio of the current domain size
to wdeg[xi],

|dom(xi)|
wdeg(xi)

, as its heuristic score and selects the
variable with the smallest score.

C. CLASSICAL COMBINING STRATEGIES
The strategy of Brelaz [8] heuristic can be used to combine
two heuristics, heu1 and heu2. It first selects candidate vari-
ables by heu1. Then it uses heu2 to select a variable from
cand(heu1). We denote this strategy as ADD(heu1, heu2). It is
obvious that heu1 is much more important than heu2. If heu1
makes bad decisions, heu2 can not help. The problem is that
we usually do not know which heuristic works better on a
problem before solving it, so it is not easy to decide which
heuristic is heu1.

The strategy of dom/deg [3] has been shown to be suc-
cessful. The dom/deg heuristic is no longer as popular as
before, because its participants, min-dom and max-degree,
are simple. But its combining strategy is still useful. It uses
multiplication (or division) to combine the heuristic scores.
In this way, the two heuristic scores contribute equally to the
final score. We denote this strategy as MUL(heu1, heu2).

III. PARETOHEU: A METHOD FOR COMBINING TWO
VARIABLE ORDERING HEURISTICS
When we are combining heuristic scores, the aim is to find
the variable which maximizes both scores simultaneously.
If such variables do not exist, we should balance the scores to
make the selection of the next variable, e. g., the scores should
contribute equally to the decision. We employ the notion of
Pareto optimality which is the well-studied tradeoff strategy
from multi-objective optimization problem [22]. Given two
variable ordering heuristics heu1 and heu2, sc1[xi] and sc2[xi]
are the heuristic scores of variable xi calculated by heu1 and
heu2 respectively.
Definition 1: Given two future variables xi and xj, we say

that xi dominates xj with respect to heu1 and heu2 iff either

sc1[xi] ≥ sc1[xj] and sc2[xi] > sc2[xj], or

sc2[xi] ≥ sc2[xj] and sc1[xi] > sc1[xj].
A future variable xi is called a Pareto candidate iff there

is no variable xj ∈ FutVars such that xj dominates xi. The set
of all Pareto candidates is called a Pareto front, denoted by
cand(PARETO(heu1, heu2)).

We are going to use a novel strategy, namely ParetoHeu,
to select the next future variable. It first generates the Pareto
front cand(PARETO(heu1, heu2)), then randomly select a variable
from the set. It is obvious that cand(PARETO(heu1, heu2)) and
cand(PARETO(heu2, heu1)) are the same set. In this strategy, heu1
and heu2 contribute equally. The following Algorithm 1 gen-
erates a Pareto front.

Algorithm 1 Pareto(FutVars, sc1, sc2)
1: ParetoFront← ∅;
2: for each variable xi in FutVars do
3: isPareto← true;
4: for each variable xj in ParetoFront do
5: if xi dominates xj then
6: ParetoFront← ParetoFront \ {xj};
7: else
8: if xj dominates xi then
9: isPareto← false;
10: end if
11: break;
12: end if
13: end for
14: if isPareto then
15: ParetoFront← ParetoFront ∪ {xi};
16: end if
17: end for
18: return ParetoFront;

The algorithm compares every variable xi in FutVars with
the variables xj in ParetoFront . If xi is not dominated by any
xj, it is added into ParetoFront , otherwise, it will not be added
into ParetoFront . All the variables xj that are dominated by
xi will be removed from the set. If xi and xj have same scores
of both heuristics, both them are Pareto candidates and xi is
added into ParetoFront . It is straightforward to see that the
worst case time complexity of Algorithm 1 is O(kp), where k
is the size ofFutVars and p is the size ofParetoFront. Because
the outer loop at line 2 costs O(k) time and the inner loop at
line 4 costs O(p) time.
Proposition 1: cand(PARETO(heu1, heu2)) is a superset of

both cand(ADD(heu1, heu2)) and cand(MUL(heu1, heu2)).
Proof: Each variable xi in cand(ADD(heu1, heu2)) is a

Pareto candidate, because if there exists another variable xj
dominating xi, then xj is in cand(ADD(heu1, heu2) and xi is not.
It is the same reason for cand(MUL(heu1, heu2)).

It is well known that a single heuristic has the risk be
trapped in heavy-tailed phenomena. The randomization based
searching strategy randomly selects a variable from a set
of top-ranked variables [30]. The searching equipped with
randomization may not be stuck to the top-ranked variable,
because it always randomly selects a variable from the set of
top-ranked variables. The ParetoHeu has a nice feature that it
selects a variable from a set in most cases. This is because
the Pareto front usually contains more than one candidate
variables. Thus the risk of being trapped in heavy-tailed

42752 VOLUME 6, 2018

H. Li, Z. Li: Novel Strategy of Combining Variable Ordering Heuristics for Constraint Satisfaction Problems

phenomena is reduced. The only case where the Pareto front
contains one variable is that the best variables selected by the
participant heuristics are the same one. In this case, we should
select the unique variable.

IV. EXPERIMENTS
The experiments were run in Choco [18], an open source con-
straint solver written in Java. The environment is JDK8 under
CentOS 6.4 with Intel Xeon CPU E7-4820@2.00GHz pro-
cessor and 58 GB RAM.

A. PARTICIPANT HEURISTICS
We choose ABS and dom/wdeg (DW) as the participant
heuristics, because they have been themost popular heuristics
used in constraint solvers and it is cheap to calculate the
heuristic scores. We did not select dom/wtdeg [31], count-
based search (CBS) [6] and the Explanation-Based Weighted
Degree [32], because it is heavy to calculate the heuristic
scores. Moreover, they have not been implemented in pub-
licly available solvers. We choose the solver-built-in heuris-
tics makes the comparison fair and justified.

In order to make both participants select the variables
with the highest scores, we use wdeg(xi)

|dom(xi)|
as the score of

dom/wdeg. Besides the participant heuristics, we compared
the following classic combining strategies with ParetoHeu.

• A+D: ADD(ABS, DW), the ABS heuristic with
DW breaking ties.

• D+A: ADD(DW, ABS), the DW heuristic with ABS break-
ing ties.

• A×D: MUL(DW, ABS), it uses ABS×DW as the heuristic
score.

B. IMPLEMENTATION DETAILS
The binary branching strategy is used by all the heuris-
tics [33]. The value heuristic of dom/wdeg is lexicographical.
For the other strategies involving ABS, the value heuristic
is the value selector of ABS, which selects the value with
the least activity. The initialization procedure of ABS is per-
formed for all the strategies involving ABS. The parameters
of ABS are set as α = 8, γ = 0.999 and δ = 0.2, which are
the setting used in the ABS paper [7]. This is also the default
settings in Choco.

We also tested the heuristics with two geometric restart
strategies [30], [34]. With a geometric restart strategy, every
time the searching reaches a failure limit, it restarts from the
root. After each restart, the limit is increased by an increasing
factor ρ, e. g., limitafter = ρ× limitbefore. One of restart strate-
gies we have tested is a fast-restart strategy with increasing
factor ρ = 1.1. The other one is a slow-restart strategy with
increasing factor ρ = 2. The initial failure limit of them is set
to 3× |X |. All remaining ties are broken randomly.

C. DATASETS
In order to examine the robustness of the proposed strat-
egy, we tested 7 different kinds of benchmark problems

FIGURE 1. Number of runs finished in different time periods. The x-axis
of the first spots is 10 seconds.

in the experiments:

• NumberPartitioning: This problem consists in finding a
partition of numbers 1, 2, . . ., N into two sets A and B
such that: (1) A and B have the same cardinality, (2) The

VOLUME 6, 2018 42753

H. Li, Z. Li: Novel Strategy of Combining Variable Ordering Heuristics for Constraint Satisfaction Problems

TABLE 1. Average of cpu time on different problem classes.

TABLE 2. Detailed results of some representative instances.

sum of numbers in A equals to that in B, (3) The sum of
squares of numbers in A equals to that in B. There is no
solution for N<8 and from N≥8, there is no solution
if N is not a multiple of 4. So we tested some solvable
instances with N from 100 to 132.

• SocialGolfer: This is a problem from Operations
Research. The problem is to schedule g groups
of s golfers over w weeks, such that no golfer
plays in the same group as any other golfer twice.
A SocialGolfer instance is specified by its parameters
(w-s-g).

• MagicSquare: An order nmagic square is a n by nmatrix
containing the numbers 1 to n2, with each row, column
and main diagonal equal the same sum.

• Balanced Incomplete Block Designs (BIBD): This is
a standard combinatorial problem from design theory.
A BIBD is defined as an arrangement of v distinct
objects into b blocks such that each block contains
exactly k distinct objects, each object occurs in exactly
r different blocks, and every two distinct objects occur
together in exactly λ blocks. A BIBD is therefore
specified by its parameters (v, b, r , k , λ).

42754 VOLUME 6, 2018

H. Li, Z. Li: Novel Strategy of Combining Variable Ordering Heuristics for Constraint Satisfaction Problems

• SchurLemma: The problem is to put n balls labelled 1,
. . ., n into k boxes so that for any triple of balls (x, y, z)
with x+y=z, not all are in the same box. A SchurLemma
instance is specified by its parameters (n, k).

• Job-Shop-e0ddr: This is the Job Shop Scheduling prob-
lem studied in [35]. The instances are presented with
binary extensional constraints. We have tested the
e0ddr1 and e0ddr2 series.

• Quasi-group With Holes (QWH20): This is a variant of
the LatinSquare problem. A Latinsquare is an n×n array
filled with n different symbols, each occurring exactly
once in each row and exactly once in each column.
Given a partial Latinsquarewhere some of the grids have
already been filled, the task is to extend it to a complete
LatinSquare. The partial LatinSquares are generated in
such a way that they are guaranteed to be extended to
complete ones. The instances were used in a CSP solver
competition.

The Job-Shop and QWH problems are from http://www.
cril.univ-artois.fr/~lecoutre/#/benchmarks and the others are
from http://www.csplib.org/. More details about the bench-
marks can be found from the web sites.

D. METRICS
The performance of searching for the first solution or proving
unsatisfiable are measured by cpu time in seconds and search
tree nodes. Timeout is set to 1200 seconds. For each instances,
we run 20 times with different random seeds (1-20) and
use the average of the 20 runs as the result of the instance.
The time cost of a timeout run is count as 1200 seconds.
If all 20 runs are timeout, the heuristic for this instance is
considered as timeout. We have eliminated those instances
for which all the tested heuristics are timeout. There are
88 remaining instances, so we have 1760 runs in total.

Firstly, we present the number of runs finished in given
time limits in Figure 1. From the Figure, we can see that
the fast-restart strategy is the best restart strategy for these
problems. With different restart strategies, the performance
of ABS and A + D are close, while D + A performs much
better than DW . A×D and ParetoHeu always perform best.
With both the fast and the slow restart strategies, Pareto-
Heu performs better than A×D. The ParetoHeu with fast-
restart strategy has the largest number of runs, 1757, finished
in 1200s.

Secondly, we present the average time cost of each type
of problems in Table 1. The best one of each row is in bold.
The integer in the brackets under each problem name is the
number of instances of the problem. From the last group,
the average of all the 88 instances, we can see that ParetoHeu
has the best performance. Although it loses a little when
no restart strategy is used, it dominates the other searching
strategies when equippedwith restart strategies. For each type
of problems, we have 3 rows of results, so we have 21 rows in
total. In the 21 rows, we can see that ParetoHeu performs best
in 10 rows, which is clearly more than that of other searching

strategies. Despite the W + A gets the best performance in
e0ddr andMagicSquare problems, its performance is poor in
SocialGolfer and BIBD problems, so its average performance
is much worse than A×W and ParetoHeu.

Finally, we present the detailed results of some represen-
tative instances in Table 2, where µ(cpu) is the average cpu
time of the 20 runs, σ (cpu) is the standard deviation of the cpu
time and µ(nodes) is the average search tree nodes. If any
of the 20 runs is timeout, then the µ(nodes) is present as -
. It has been shown that the fast-restart strategy is the most
efficient one in the experiments, so the results in the table
are the detailed results with the fast-restart strategy. From the
table, we can see that ParetoHeu gets the best performance
on the Partition, SocialGolfer and BIBD instances. It gets no
worst performance. While W + A gets the best performance
on the e0ddr , QWH andMagicSquare instances, it gets poor
performance on the SchurLemma and SocialGolfer instances.
Note that e0ddr and QWH are binary problems and the heu1
ofW + A is the state of the art heuristic for binary problems,
so W + A gets the best performances on them. From the
previous results, we know that A×W and ParetoHeu are the
best strategies. On these representative instances, A×W is
clearly outperformed by ParetoHeu.
In summary, fast-restart is the best restart strategy on most

of the tested problems. Generally speaking, the combining
strategy of breaking ties, A+D and D+A, are outperformed
by the other two combining strategies, A×D and ParetoHeu.
It is shown that ParetoHeu is more efficient than A×D, so it
is the most robust one in general.

V. CONCLUSION AND FUTURE WORK
We propose a method ParetoHeu combining two
variable ordering heuristics for constraint satisfaction prob-
lems. A novel strategy based on Pareto optimality of multi-
objective optimization problem is employed to combine
the scores. The proposed method has a nice feature that
it is equipped with randomized search naturally, because
its candidate variable set, the Pareto front, usually con-
tains more than one candidate variables. The experiments
were run with the popular constraint solver Choco. The
results of 7 well-known benchmarks show that ParetoHeu
outperforms the participant heuristics and it is in gen-
eral more robust than some classical strategies combining
variable ordering heuristics. Its average cpu time is one
third less than that of the best of the existing combining
strategies.

To generate more robust searching strategies, we will
investigate using Pareto optimality to combine more heuristic
scores in the future.

REFERENCES
[1] R. M. Haralick and G. L. Elliott, ‘‘Increasing tree search efficiency for

constraint satisfaction problems,’’ Artif. Intell., vol. 14, no. 3, pp. 263–313,
1980.

[2] R. Dechter and I. Meiri, ‘‘Experimental evaluation of preprocessing algo-
rithms for constraint satisfaction problems,’’ Artif. Intell., vol. 68, no. 2,
pp. 211–241, 1994.

VOLUME 6, 2018 42755

H. Li, Z. Li: Novel Strategy of Combining Variable Ordering Heuristics for Constraint Satisfaction Problems

[3] C. Bessière and J.-C. Régin, ‘‘MAC and combined heuristics: Two reasons
to forsake FC (and CBJ?) on hard problems,’’ in Proc. Int. Conf. Princ.
Pract. Constraint Program. Berlin, Germany: Springer, 1996, pp. 61–75.

[4] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais, ‘‘Boosting sys-
tematic search by weighting constraints,’’ in Proc. ECAI, vol. 16, 2004,
pp. 146–150.

[5] P. Refalo, ‘‘Impact-based search strategies for constraint programming,’’
in Proc. Int. Conf. Princ. Pract. Constraint Program. Berlin, Germany:
Springer, 2004, pp. 557–571.

[6] G. Pesant, C.-G. Quimper, and A. Zanarini, ‘‘Counting-based search:
Branching heuristics for constraint satisfaction problems,’’ J. Artif. Intell.
Res., vol. 43, pp. 173–210, Feb. 2012.

[7] L. Michel and P. Van Hentenryck, ‘‘Activity-based search for black-box
constraint programming solvers,’’ in Proc. CPAIOR. Berlin, Germany:
Springer, 2012, pp. 228–243.

[8] D. Brélaz, ‘‘Newmethods to color the vertices of a graph,’’Commun. ACM,
vol. 22, no. 4, pp. 251–256, 1979.

[9] E. K. Burke et al., ‘‘Hyper-heuristics: A survey of the state of the art,’’
J. Oper. Res. Soc., vol. 64, no. 12, pp. 1695–1724, 2013.

[10] A. Arbelaez, Y. Hamadi, and M. Sebag, ‘‘Online heuristic selection in
constraint programming,’’ in Proc. Int. Symp. Combinat. Search, 2009.
[Online]. Available: https://hal.inria.fr/inria-00392752/document

[11] J. C. Ortiz-Bayliss, H. Terashima-Marín, and S. E. Conant-Pablos,
‘‘A supervised learning approach to construct hyper-heuristics for con-
straint satisfaction,’’ in Proc. Mexican Conf. Pattern Recognit. Berlin,
Germany: Springer, 2013, pp. 284–293.

[12] H. Terashima-Marín, J. C. Ortiz-Bayliss, P. Ross, and
M. Valenzuela-Rendón, ‘‘Hyper-heuristics for the dynamic variable
ordering in constraint satisfaction problems,’’ in Proc. 10th Annu. Conf.
Genetic Evol. Comput., 2008, pp. 571–578.

[13] J. C. Ortiz-Bayliss, H. Terashima-Marín, and S. E. Conant-Pablos,
‘‘Combine and conquer: An evolutionary hyper-heuristic approach for
solving constraint satisfaction problems,’’ Artif. Intell. Rev., vol. 46, no. 3,
pp. 327–349, 2016.

[14] M. Streeter, D. Golovin, and S. F. Smith, ‘‘Combining multiple heuristics
online,’’ in Proc. AAAI, 2007, pp. 1197–1203.

[15] N. R. Sabar, M. Ayob, R. Qu, and G. Kendall, ‘‘A graph coloring construc-
tive hyper-heuristic for examination timetabling problems,’’ Appl. Intell.,
vol. 37, no. 1, pp. 1–11, 2012.

[16] M. Loth, M. Sebag, Y. Hamadi, and M. Schoenauer, ‘‘Bandit-based search
for constraint programming,’’ in Proc. Int. Conf. Princ. Pract. Constraint
Program. Springer, 2013, pp. 464–480.

[17] W. Xia and R. H. C. Yap, ‘‘Learning robust search strategies using a bandit-
based approach,’’ in Proc. AAAI, 2018, pp. 431–437.

[18] C. Prud’homme, J.-G. Fages, and X. Lorca. (2016).Choco Documentation,
TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S. [Online].
Available: http://www.choco-solver.org

[19] C. Schulte, G. Tack, and M. Z. Lagerkvist. (2018). Modeling and
Programming With Gecode. [Online]. Available: http://www.gecode.org/
documentation.html

[20] C. P. Gomes and B. Selman, ‘‘Algorithm portfolios,’’ Artif. Intell., vol. 126,
nos. 1–2, pp. 43–62, 2001.

[21] R. Amadini, M. Gabbrielli, and J. Mauro, ‘‘A multicore tool for constraint
solving,’’ in Proc. IJCAI, 2015, pp. 232–238.

[22] K. Miettinen, Nonlinear Multiobjective Optimization, vol. 12. New York,
NY, USA: Springer, 2012.

[23] A. K. Mackworth, ‘‘Consistency in networks of relations,’’ Artif. Intell.,
vol. 8, no. 1, pp. 99–118, 1977.

[24] H. Collavizza, F. Delobel, and M. Rueher, ‘‘A note on partial consistencies
over continuous domains,’’ in Proc. Int. Conf. Princ. Pract. Constraint
Program. Berlin, Germany: Springer, 1998, pp. 147–161.

[25] C. Lecoutre and F. Hemery, ‘‘A study of residual supports in arc consis-
tency,’’ in Proc. IJCAI, 2007, pp. 125–130.

[26] C. Lecoutre, ‘‘STR2: Optimized simple tabular reduction for table con-
straints,’’ Constraints, vol. 16, no. 4, pp. 341–371, 2011.

[27] H. Li, Y. Liang, J. Guo, and Z. Li, ‘‘Making simple tabular reductionworks
on negative table constraints,’’ in Proc. AAAI, 2013, pp. 1629–1630.

[28] H. Li, ‘‘Narrowing support searching range in maintaining arc consis-
tency for solving constraint satisfaction problems,’’ IEEE Access, vol. 5,
pp. 5798–5803, 2017.

[29] H. Li, R. Li, and M. Yin, ‘‘Saving constraint checks in maintaining coarse-
grained generalized arc consistency,’’ Neural Comput. Appl., pp. 1–10,
May 2017, doi: 10.1007/s00521-017-3015-7.

[30] C. P. Gomes, B. Selman, and H. Kautz, ‘‘Boosting combinatorial search
through randomization,’’ in Proc. AAAI, 1998, pp. 431–437.

[31] H. Li, Y. Liang, N. Zhang, J. Guo, D. Xu, and Z. Li, ‘‘Improving degree-
based variable ordering heuristics for solving constraint satisfaction prob-
lems,’’ J. Heuristics, vol. 22, no. 2, pp. 125–145, 2016.

[32] E. Hebrard and M. Siala, ‘‘Explanation-based weighted degree,’’ in Proc.
CPAIOR. Cham, Switzerland: Springer, 2017, pp. 167–175.

[33] J. Hwang and D. G. Mitchell, ‘‘2-way vs. D-way branching for CSP,’’
in Proc. Int. Conf. Princ. Pract. Constraint Program. Berlin, Germany:
Springer, 2005, pp. 343–357.

[34] T.Walsh, ‘‘Search in a small world,’’ in Proc. IJCAI, 1999, pp. 1172–1177.
[35] N. Sadeh and M. S. Fox, ‘‘Variable and value ordering heuristics for the

job shop scheduling constraint satisfaction problem,’’ Artif. Intell., vol. 86,
no. 1, pp. 1–41, 1996.

HONGBO LI received the Ph.D. degree in com-
puter science from Jilin University, China. He
is currently a Post-Doctoral Researcher with the
School of Information Science and Technology,
Northeast Normal University, Changchun, China.
His research interests include constraint program-
ming, local consistencies, and heuristics for solv-
ing constraint satisfaction problems.

ZHANSHAN LI is currently a Professor of com-
puter science with Jilin University. His main
research interests include constraint reasoning and
machine learning.

42756 VOLUME 6, 2018

http://dx.doi.org/10.1007/s00521-017-3015-7

	INTRODUCTION
	BACKGROUND
	ACTIVITY-BASED SEARCH
	DOM/WDEG
	CLASSICAL COMBINING STRATEGIES

	PARETOHEU: A METHOD FOR COMBINING TWO VARIABLE ORDERING HEURISTICS
	EXPERIMENTS
	PARTICIPANT HEURISTICS
	IMPLEMENTATION DETAILS
	DATASETS
	METRICS

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	HONGBO LI
	ZHANSHAN LI

