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ABSTRACT In this paper, we propose a new type of non-recursiveMastrovito multiplier for GF(2m) using an
n-termKaratsuba algorithm (KA), where GF(2m) is defined by an irreducible trinomial, xm+xk+1,m = nk .
We show that such a type of trinomial combined with the n-term KA can fully exploit the spatial correlation
of entries in related Mastrovito product matrices and lead to a low-complexity architecture. The optimal
parameter n is further studied. As themain contribution of this paper, the lower bound of the space complexity
of our proposal is about O(m2/2) + m3/2). Meanwhile, the time complexity matches the best Karatsuba
multiplier known to date. To the best of our knowledge, it is the first time that Karatsuba-based multiplier
has reached such a space complexity bound while maintaining a relatively low time delay.

INDEX TERMS N-term Karatsuba algorithm, specific trinomials, bit-parallel multiplier.

I. INTRODUCTION
The finite field GF(2m) arithmetic has many applications in
cryptography and error-correcting code [1], [2]. For instance,
one of the most important applications of GF(2m) is the
elliptic cure cryptosystem (ECC) [3]. Among the GF(2m)
arithmetic operations, multiplication is of most importance
because other costly operations such as exponentiation and
inversion can be carried out by iterative multiplications.
Therefore, it is necessary to design highly efficient multipli-
ers for GF(2m) multiplication.

The choices of the field basis and irreducible polynomi-
als are crucial to multiplier design. Compared with other
bases, polynomial basis (PB) is more promising in the sense
of flexibility in irreducible polynomial selection and hard-
ware optimization [9]. Moreover, some variations of poly-
nomial basis, e.g., shifted polynomial basis (SPB) [5], [13]
and generalized polynomial basis (GPB) [10], are proposed
as well to optimize the multiplier architecture further.
Among these irreducible polynomials in use, irreducible tri-
nomial is one of the most common considerations. During
recent years, many bit-parallel multiplier using PB have
been proposed for GF(2m) generated with an irreducible
trinomial [7], [12], [16], [17], [27].

Generally speaking, the PB multiplication consists of
two steps: polynomial multiplication and modulo reduc-
tion. The polynomial multiplication can be optimized using

a divide-and-conquer algorithm such as Karatsuba algo-
rithm (KA) [4], [18]. Such an algorithm saves coefficient
multiplications at the cost of extra additions compared to the
school-book method. Thus, it can be easily adopted to design
efficient GF(2m) multipliers. Specifically, there exists a
class of Karatsuba based multipliers, named as non-recursive
Karatsuba multiplier, only apply KA once in the polynomial
multiplication and obtain a trade-off between the space and
time complexities. During recent years, several non-recursive
Karatsuba multipliers have been proposed for various type of
irreducible polynomials [14], [15], [21], [24], [28]. On one
hand, such multipliers cost several more XOR gates delay
compared with the fastest bit-parallel multiplier known to
date [6], where no divide-and-conquer algorithm is applied.
On the other hand, the space complexities of these multipliers
are roughly reduced by 1/4.

Empirically, non-recursive Karatsuba multipliers focus-
ing on specific irreducible polynomials usually have bet-
ter space and time complexity than the ones for general
polynomials. Such polynomials include equally-spaced tri-
nomial (EST) [28], all-one polynomial (AOP) [15], etc.
Recently, we explore another special form of trinomial
xm + x

m
3 + 1 combined with a three-term Karatsuba algo-

rithm to obtain an efficient bit-parallel multiplier [25]. The
proposed multiplier roughly costs 2/3 circuit gates of the
fastest multipliers, while its time delay matches the best
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known Karatsuba multiplier. In this study, we take inspiration
from our previous scheme and investigate the construction of
the similar type of multipliers. Consider the GF(2m) multi-
plication defined by an irreducible trinomial xm + xk + 1,
where m = nk, n ≥ 2. We name this type of trinomial
as n-spaced trinomial. Obviously, this type of trinomial is
EST if n = 2. Shou et al. [26] have already investigated
the development of the bit-parallel multiplier for this trino-
mial using a n-term Karatsuba algorithm. But their scheme
requires 3 more XOR gate delays compared with the fastest
one. In this paper, we apply a n-term Karatsuba algorithm
along with the shifted polynomial basis (SPB) to simplify
the field multiplication. Mastrovito approach is utilized for
polynomial reduction. It is demonstrated that the correspond-
ing Mastrovito matrices for different parts of the field mul-
tiplication have relatively simpler forms, which lead to an
efficient architecture. Moreover, we also give the explicit
formulae with respect to the space and time complexity of
the corresponding multipliers. As a result, the lower bound of
our proposal costs approximately O(m

2

2 +m
3/2) circuit gates

compared with the fastest bit-parallel multipliers, while its
time delay matches the Karatsuba based multipliers known
to date.

The rest of this paper is organized as follows:
In Section 2, we briefly review the n-term Karatsuba algo-
rithm, the SPB representation and some pertinent notations.
Then, we present a new bit-parallel multiplier architecture for
n-spaced trinomial in Section 3. After that, a small example
is given. Section 4 presents a comparison between the pro-
posed multiplier and some others. More discussion about the
optimal parameter is also given. Finally, some conclusions
are drawn.

II. PRELIMINARY
In this section, we briefly review some important notations
and related algorithms that used throughout this paper.

A. IRREDUCIBLE n-SPACED TRINOMIAL
We first consider the existence of the irreducible trinomial
xm+ xk + 1,m = nk which are used to define the finite field
GF(2m). The following lemma is useful.
Lemma 1 [2]: Let f1(x), f2(x), · · · , fN (x) be all the dis-

tinct monic irreducible polynomial over Fp of degree m and
order e. Let t ≥ 2 be an integer whose prime factors divide
e but not pm−1

e . Assume also that pm ≡ 1 mod 4 if t ≡
0 mod 4. Then f1(x t ), f2(x t ), · · · , fN (x t ) are all the distinct
monic irreducible polynomials in Fp[x] of degree m · t and
order t · e.
Lemma 1 provides a way to construct an irreducible tri-

nomial of higher degree, i.e., xnk + xk + 1, from the known
irreducible trinomial xn + x + 1. If a trinomial xn + x + 1 is
irreducible over F2, one can find an integer k that satisfies
the above condition, to construct an irreducible trinomial
xnk+xk+1. For example, it is easy to check that both x3+x+1
and x4 + x + 1 are irreducible. Meanwhile, their orders

are 7 and 15, respectively. It follows that x3k+xk+1 (k = 7i)
and x4k + xk + 1 (k = 3i × 5j, i, j ≥ 0) are all irreducible.

B. SHIFTED POLYNOMIAL BASIS
The shifted polynomial basis (SPB) [13] actually is a varia-
tion of the polynomial basis. This notion is originally applied
in the field GF(2m) generated with irreducible trinomials,
and then pentanomials [5]. In this study, we consider the
field GF(2m) generated by a n-spaced trinomial f (x) =
xnk + xk + 1. Let x be a root of f (x), and the set M =

{xnk−1, · · · , x, 1} constitutes a polynomial basis (PB). Then,
the SPB can be obtained by multiplying the setM by a certain
exponentiation of x:
Definition 2 [13]: Let v be an integer and the ordered set

M = {xnk−1, · · · , x, 1} be a polynomial basis of GF(2m)
over F2. The ordered set x−vM := {x i−v|0 ≤ i ≤ nk − 1}
is called the shifted polynomial basis with respect to M.
Under SPB representation, the field multiplication can be
performed as:

C(x)x−v = A(x)x−v · B(x)x−v mod f (x).

If the parameter v is properly selected, the field multiplica-
tion using SPB representation is simpler than that using PB
representation, especially for the field define by irreducible
trinomial or some type of pentanomials [5]. This character-
istic directly lead to a more efficient Mastrovito multiplier
which has lower time complexity compared with classic one
using PB. Furthermore, it has been proved that the optimal
value of v is k or k − 1 for trinomials [13]. To construct an
efficient multiplier for n-spaced trinomials, we choose v = k
and use this denotation thereafter.

C. n-TERM KARATSUBA ALGORITHM
The classic Karatsuba algorithm multiplies two 2-term poly-
nomials using three scalar multiplications at the cost of one
extra addition. Then, Weimerskirch and Paar [8] proposed a
slightly generalized algorithm for the polynomial multiplica-
tion with arbitrary degree. This algorithm has the same idea as
the classic one. We denote such an algorithm as n-term KA
(n > 2). Provide that there are two polynomials of degree
n− 1 over F2:

A(x) =
n−1∑
i=0

aix i, B(x) =
n−1∑
i=0

bix i.

The n-term KA for polynomial multiplication AB is as
follows:

• Compute for each i = 0, · · · , n− 1,

Ei = aibi.

• Compute for each i = 1, · · · , 2n−3 and for all s, t with
s+ t = i and n > t > s ≥ 0,

Es,t = (as + at )(bs + bt ).
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• The coefficients of D(x) = A(x)B(x) =
∑2n−2

i=0 dix i can
be computed as

d0=E0,

d2n−2=En−1,

di=



∑
s+t=i,
n>t>s≥0

Es,t+
∑
s+t=i,
n>t>s≥0

(Es+Et ) (odd i),

∑
s+t=i,
n>t>s≥0

Es,t+
∑
s+t=i,
n>t>s≥0

(Es+Et )+Ei/2 (even i),

where i = 1, 2, · · · , 2n− 3.
The correctness proof about above formulae can be found
in [8]. Merge the similar items for Ei, (i = 0, 1, · · · , n − 1),
D(x) is rewritten as:

D(x) = En−1(x2n−2 + · · · + xn−1)+ En−2(x2n−3

+ · · · + xn−2)+ · · · + E0(xn−1 + · · · + 1)

+

2n−3∑
i=1

(
∑
s+t=i,
n>t>s≥0

Es,t )x i. (1)

One can easily check that the above formula costs about
O( n

2

2 ) coefficient multiplications and O( 5n
2

2 ) additions.
Compared with classic KA, the n-term KA saves more coef-
ficient multiplications at the expense of more coefficient
additions. Besides Weimerskirch and Paar’s algorithm, Fan
et al. [19] and Montgomery [20] proposed more alternative
Karatsuba-like formulae. Their formulae aim to decrease as
many coefficient multiplications as possible. These formu-
lations usually contain complicated linear combinations of
the coefficients, which will lead more gates delay for the
bit-parallel architecture. Thus, we prefer to utilize the above
algorithm to develop bit-parallel multiplier.

In Section 3, we investigate the construction of non-
recursive Karatsuba algorithm using n-term KA for the
n-spaced trinomial. Our main strategy is analogous to
that in [24], which combines Mastrovito approach and
n-term KA. Therefore, some notations pertaining to matrices
and vectors are used as well. Note that these notations have
already been presented in [9] and [24]. Z(i, :),Z(:, j) and
Z(i, j) represent the ith row vector, jth column vector, and
the entry with position (i, j) in matrix Z, respectively. Z[	 i]
represents cyclic shift of Z by upper i rows. Z[� i] represents
appending i zero vectors to the top of Z.

III. EFFICIENT MULTIPLIER BASED ON n-TERM
KARATSUBA ALGORITHM
In this section, we present an efficient non-recursive
Karatsuba multiplier for n-spaced trinomial xnk + xk + 1
using SPB representation. We firstly investigate the struc-
ture of the product matrix for polynomial multiplication
based on n-term KA. Then, reduced matrices are calculated
using Mastrovito approach. Accordingly, we propose the
related multiplier architecture. It is shown that corresponding
matrix-vector multiplications can be implemented efficiently

for n-spaced trinomial. The space and time complexity of the
corresponding multiplier is also discussed.

Provide that the finite field GF(2m) is generated with an
irreducible trinomial xm+ xk +1,m = nk , the field elements
are represented using SPB. Applying n-term KA as presented
previously, we partition two arbitrary field elements A =∑m−1

i=0 aix i−k ,B =
∑m−1

i=0 bix i−k into n parts with each part
consisting of k bits. More explicitly,

A = An−1x(n−2)k + An−2x(n−3)k + · · · + A1 + A0x−k ,

B = Bn−1x(n−2)k + Bn−2x(n−3)k + · · · + B1 + B0x−k ,

where Ai =
∑k−1

j=0 aj+(i−1)kx
j,Bi =

∑k−1
j=0 bj+(i−1)kx

j, for
i = 0, 1, · · · , n− 1.
Then, we multiply A and B using the n-term Karatsuba

algorithm presented in Section 2 and do following transfor-
mation:

AB =
(
En−1 · x(n−2)k + En−2 · x(n−3)k + · · · + E1

+ E0 · x−k
)
· h(x)+

2n−3∑
i=1

( ∑
s+t=i,
n>t>s≥0

Es,t
)
x ik−2k , (2)

where h(x) = x(n−2)k + x(n−1)k + · · · + 1 + x−k , Ei = AiBi
(i = 0, 1, · · · , n − 1) and Es,t = (As + At )(Bs + Bt ). We
partition the above expression into two parts, i.e.,

S1 = (An−1Bn−1x(n−2)k + · · · + A1B1 + A0B0x−k )h(x),

S2 =
2n−3∑
i=1

( ∑
s+t=i,
n>s>t≥0

Es,t
)
x ik−2k ,

and compute them independently. Thus, the field multiplica-
tion C = AB mod f (x) now is rewritten as

C = (S1 + S2) mod f (x).

In order to apply Mastrovito approach, we have to rewrite
both S1 and S2 into matrix-vector forms and then reduce those
matrices. Please note that m = nk and thus corresponding
product matrices are more complicated than those presented
in [24] and [25]. The following subsections give the details.

A. COMPUTATION OF S1 MODULO f (x)
Since

S1 = (An−1Bn−1x(n−2)k + · · · + A1B1 + A0B0x−k )h(x)

= An−1h(x)Bn−1x(n−2)k + · · · + A0h(x)B0x−k ,

it is clear that S1 in fact consists of n parts, each of which can
be recognized as a shift of Aih(x)Bi, for i = 0, 1, · · · , n− 1.
Through constructing the matrix-vector form of Aih(x)Bi, i =
0, 1, · · · , n−1, we can develop the matrix-vector form of S1.
It is noted that

Aih(x)Bi = (Aix(n−2)k + · · · + Ai + Aix−k ) · Bi.

Such an expression can be written as big matrix-vector multi-
plication derived from the matrix-vector form of AiBi. Let Ai
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represents the multiplication matrix related to Aih(x) and bi
represents the coefficient vector of Bi(x). Then, Aih(x)Bi =
Ai · bi, where

Ai =

−k

...

...

nk−1


Ai,L
Ai,L + Ai,H

...

Ai,L + Ai,H

 n−1

Ai,H

.
The labels on the left side indicate the exponent of indetermi-
nate x for each row in Ai, which range from −k to nk − 1.
However, we check that the degrees of x in Aih(x)Bi are
actually in the range [−k, nk− 2]. But the last row of Ai is 0,
which does not affect the result. The matrices Ai,H and Ai,L
are both k × k triangular Toeplitz matrix, i.e.,

Ai,L =


aik+0 0 · · · 0
aik+1 aik+0 · · · 0
...

...
. . .

...

aik+k−1 aik+k−2 · · · aik+0

,
and

Ai,H =


0 aik+k−1 · · · aik+1
0 0 · · · aik+2
...

...
. . .

...

0 0 · · · aik+k−1
0 0 · · · 0

,
for i = 0, 1, · · · , n− 1.

Accordingly, these n submatrix-vector multiplications can
constitute a bigger matrix-vector multiplication pertaining
to S1, denoted by AS1 · b. More explicitly,

S1 = AS1 · b = AS1 · [b0,b1, · · · ,bn−1]
T

=

A0 0k×k · · · 0k×k

0k×k A1
. . . 0(m−2k)×k

0(m−2k)×k 0(m−2k)×k · · · An−1


×

 b0,
...

bn−1

. (3)

For simplicity, we do not write the degree labels of the
product matrix here. Notice that deg(AiBih) = nk − 2,
i = 0, 1, · · · , n− 1, we have deg(S1) = nk − 2+ (n− 2)k =
2m− 2k − 2. One can check that the degrees of the terms of
S1 are in the range [−2k, 2m− 2k − 2]. Based on Mastrovito
scheme, S1 needs a further reduction by f (x). The following
reduction rule is applied:

x i = xm+i + x i+k , for i = −2k, · · · ,−k − 1;
x i = x i−m + x i−m+k , for i = m− k,m− k + 1,
· · · , 2m− 2k − 2.

(4)

The reduction can be regarded as the construction of the
Mastrovito matrix fromAS1 according to (4). LetMS1 denote
the Mastrovito matrix related to S1. In order to analyze the

organization ofMS1 , we introduce a lemma, which is the key
step toward the development of the multiplier architecture.
Lemma 3: Provide that A is an arbitrary (2m − 1) × m

matrix and b is a m × 1 vector over F2. The Mastrovito
matrixM related to A · b modulo xm + xk + 1 using (4) can
be obtained as follows:

M =M1 +M2,

where

M1 = [A(1, :)T+A(m+1, :)T ,A(2, :)T+A(m+2, :)T ,

· · · ,A(2m−1, :)T+A(m−1, :)T ,A(m, :)T ][	 k],

(5)

and

M2 = [A(1, :)T , · · · ,A(k, :)T ,A(k+m+1, :)T ,

· · · ,A(2m− 1, :)T , 0]. (6)
Proof: We notice that the product matrix A here

includes 2m − 1 rows with each row corresponding the
degree from −2k to 2m− 2k − 2. Clearly, the first k rows
and the last m − k − 1 rows correspond to the term
degrees that are out of the range [−k,m − k − 1]. Based
on (4), the reduction steps consist of reducing the row
{−2k,−2k + 1, · · · ,−k − 1} by adding them to the row
{−k, · · · ,−1} and {m− 2k, · · · ,m− k − 1}, and reducing
the row {m− k, · · · , 2m− 2k − 2} by adding them to the
row {0, · · · ,m − k − 2} and {−k, · · · ,m − 2k − 2}. The
explicit reduction process follows the same line as the proof
of Observation 3.1, [24]. Then, we partition these rows into
two categories, let

M1 = [A(k + m+ 1, :)T + A(k + 1, :)T , · · · ,

A(2m− 1, :)T + A(m− 1, :)T ,A(m, :)T ,A(1, :)T

+ A(m+ 1, :)T · · · ,A(k, :)T + A(k + m, :)T ],

and

M2 = [A(1, :)T , · · · ,A(k, :)T ,A(k + m+ 1, :)T ,

· · · ,A(2m− 1, :)T , 0].

We compare the row number and obtain the result
immediately. �

Based on Lemma 3, we immediately give the following
proposition with respect to the structure of MS1 .
Proposition 4: The Mastrovito matrix MS1 can be con-

structed as

MS1 =MS1,1 +MS1,2,

where

MS1,1

=

A0,L + A0,H A1,L + A1,H · · · An−1,L + An−1,H
...

...
. . .

...

A0,L + A0,H A1,L + A1,H · · · An−1,L + An−1,H

,
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and

MS1,2

=


A0,L 0k×k 0k×k · · · 0k×k
0k×k A1,H A2,L + A2,H · · · An−1,L + An−1,H
0k×k 0k×k A2,H · · · An−1,L + An−1,H
...

...
...

. . .
...

0k×k 0k×k 0k×k · · · An−1,H

.
Proof: The proof is the same as the proof of Lemma 3.

We directly get this conclusion by substituting A by AS1 . �
It is noted that there are some overlapped terms between

MS1,1 and MS1,2. By adding these two matrices together,
we can obtain the explicit form of MS1 , which is in (7), as
shown at the bottom of this page.Moreover, the matrix-vector
multiplication S1 = MS1 · b can be computed according to
the strategy used in [25] and overlapped terms are considered
reusing to save more logic gates.

1) DETAILED COMPUTATION OF S1 MODULO f (x)
(i) Perform 2n row-vector products

A0,L ∗ b0,A0,H ∗ b0,A1,L ∗ b1,A1,H ∗ b1,

· · · An−1,L ∗ bn−1,An−1,H ∗ bn−1, (8)

in parallel. The symbol ‘‘*’’ represent only row-vector
product related to Ai,L (or Ai,H ) and bi, i = 0,
1, · · · , n − 1. For instance, A0,H ∗ b0 represents com-
puting the products

[A0,H (i, 1) · b0, · · · ,A0,H (i, k) · bk−1],

for i = 1, 2, · · · , k in parallel.
(ii) Compute

A0,Lb0 + A0,Hb0, · · · ,An−1,Lbn−1 + An−1,Hbn−1

using binary XOR trees in parallel. Meanwhile,
A0,Hb0,A1,Lb1, · · · ,An−1,Lbn−1 are computed using
sub-expression sharing technique.

(iii) Sum up all the n entries of each row using binary XOR
tree to obtain the final result.

Remark: It is clear that the row-vector products in (8)
contain all the possible row-vector products in (7). Only nk2

AND gates are required to compute these expressions.
In addition, Ai,Lbi + Ai,Hbi, (i = 0, · · · , n − 1) con-

tain all the terms of Ai,Lbi or Ai,Hbi. These expressions
can be computed in parallel and more logic gates can be

saved using sub-expression sharing for binary tree. Such an
approach has already been studied in [24]. The authors have
shown that if two binary XOR trees share t common items,
only t − W (t) XOR gates can be saved, where W (t) is the
Hamming weight of t . It is easy to check that the j-th row
(j = 1, 2, · · · , k) ofAi,Lbi shares j terms withAi,Lbi+Ai,Lbi
for i = 1, 2, · · · , n − 1. Meanwhile, the j-th row of Ai,Lbi
includes j terms and originally requires j − 1 XOR gates for
binary XOR tree. Minus the saved XOR gates, we can see
that number of required XOR actually is j− 1− (j−W (j)) =
W (j) − 1. Specifically, the k-th row of Ai,Lbi is identical to
that of Ai,Lbi + Ai,Lbi, no XOR gates is needed here. Based
on similar approach, we can calculate the real number of
XOR gates for the j-th row of A0,Hb0 is W (k − j) − 1 for
j = 1, 2, · · · , k − 1.

TABLE 1. Space and time complexities of S1 mod f (x).

Table 1 summarizes the space and time complexity of
S1 mod f (x) for all the steps. One can notice that after cal-
culation of the row-vector products in (8), each row of Ai,L ∗

bi + Ai,H ∗ bi consists of k terms. Thus, the inner product
of Ai,Lbi + Ai,Hbi will be obtained using a binary XOR
tree with a delay of dlog2 keTX . Finally, we have to perform
additions among the n entries to obtain the coefficient vector
with respect to S1. More partial additions can be saved using
the same sub-expression sharing. For simplicity, we put the
details to the Appendix A.

2) AN EXAMPLE OF S1 mod f (x)
Firstly we have an irreducible 4-spaced trinomial x4 +
x + 1 over F2. Then, we can construct another irreducible
4-spaced trinomial of higher degree according to Lemma 4,
i.e., x12 + x3 + 1.

S1 mod f (x) = MS1 · b

×



A0,H A1,L + A1,H A2,L + A2,H · · · An−2,L + An−2,H An−1,L + An−1,H
A0,L + A0,H A1,L 0k×k · · · 0k×k 0k×k
A0,L + A0,H A1,L + A1,H A2,L · · · 0k×k 0k×k

...
...

...
. . .

...
...

A0,L + A0,H A1,L + A1,H A2,L + A2,H · · · An−2,L 0k×k
A0,L + A0,H A1,L + A1,H A2,L + A2,H · · · An−2,L + An−2,H An−1,L


·


b0
b1
...

bn−2
bn−1

. (7)
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
A0,H A1,L + A1,H A2,L + A2,H A3,L + A3H

A0,L + A0,H A1,L 0k×k 0k×k
A0,L + A0,H A1,L + A1,H A2,L 0k×k
A0,L + A0,H A1,L + A1,H A2,L + A2,H A3,L



=



0 a2 a1

--- a3 a5 a4

--- a6 a8 a7

--- a9 a11 a10

0 0 a2

-----

a4 a3 a5

--- a7 a6 a8

--- a10 a9 a11

0 0 0

--- a5 a4 a3

--- a8 a7 a6

--- a11 a10 a9
- - - - - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - - - - -
--- - - - - - - - - - - - - - - - - - -

a0 a2 a1

--- a3 0 0

--- 0 0 0
--- 0 0 0

a1 a0 a2

--- a4 a3 0

--- 0 0 0

--- 0 0 0
a2 a1 a0

--- a5 a4 a3

--- 0 0 0

--- 0 0 0
- - - - - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - - - - -
a0 a2 a1

--- a3 a5 a4

--- a6 0 0

--- 0 0 0
a1 a0 a2

--- a4 a3 a5

--- a7 a6 0

--- 0 0 0
a2 a1 a0

--- a5 a4 a3
--- a8 a7 a6

--- 0 0 0
- - - - - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - - - - -
--- - - - - - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - - - - -
a0 a2 a1

--- a3 a5 a4

--- a6 a8 a7

--- a9 0 0
a1 a0 a2

--- a4 a3 a5

--- a7 a6 a8

--- a10 a9 0
a2 a1 a0

--- a5 a4 a3

--- a8 a7 a6

--- a11 a10 a9



.

Consider the field multiplication using SPB represen-
tation over GF(212) defined by the previous trinomial.
We have the SPB parameter k = 3 and SPB is defined as
{x−3, x−2, · · · , x7, x8}. Assume that A =

∑11
i=0 aix

i−3 and
B =

∑11
i=0 bix

i−3 are two elements in GF(212). A,B are
partitioned as

A = A3x6 + A2x3 + A1 + A0x−3,

B = B3x6 + B2x3 + B1 + B0x−3,

whereAi = a2+3ix2+a1+3ix+a0+3i,Bi = b2+3ix2+b1+3ix+
b0+3i, for i = 0, 1, 2, 3.

Based on equation (2) and previous description, it is obvi-
ously that AB = S1 + S2 and the explicit form of S1 and S2
are as follows:

S1 = A3B3hx6 + A2B2hx3 + A1B1h+ A0B0hx−3,

S2 = E3,2x9 + E3,1x6 + (E3,0 + E2,1)x3 + E2,0 + E1,0x−3,

where h(x) = x6+x3+1+x−3 and Es,t = (As+At )(Bs+Bt )
for 3 ≥ s > t ≥ 0. Let

Ai,L =

 a3i+0 0 0
a3i+1 a3i+0 0
a3i+2 a3i+1 a3i+0

,
and

Ai,H =

 0 a3i+2 a3i+1
0 0 a3i+2
0 0 0

.
Accordingly, it is easy to compute the matrices AS1 ,
MS1,1 and MS1,2, which are presented in the appendix.

The Mastrovito matrix related to S1 mod f (x) is as shown at
the top of this page.

Therefore, one can check that the exact number of logic
gates requried by every step of S1 mod f (x):
• Computation of A0,L ∗ b0,A0,H ∗ b0, · · · ,A3,L ∗

b3,A3,H ∗ b3 requires 36 AND gates with one TA gate
delay.

• Computation of A0,Lb0 + A0,Hb0, · · · ,A3,Lb3 +
A3,Hb3 costs 24 XOR gates in all. Meanwhile,
no XOR gates are needed for the computation of
A0,Hb0,A1,Lb1,A2,Lb2,A3,Lb3 using sub-expression
sharing, as the binary XOR tree for these expressions
can be embedded into those of Ai,Lbi + Ai,Hbi for
i = 0, 1, 2, 3. These operations requires 2TX delay in
parallel.

• The final additions among 4 entries of each row costs
21 XOR gates using the trick presented in the appendix,
which cost another 2TX delay in parallel.

As a result, the calculation of MS1,1 · b totally requires
36 AND gates and 45 XOR gates, with TA + 4TX gate delay.
This result meets the complexity formulae shown in Table 1.

B. COMPUTATION OF S2 MODULO xnk + xk + 1
We then consider the computation of S2 mod f (x) in details.
Note that

S2 =
2n−3∑
i=1

( ∑
s+t=i,
n>s>t≥0

Es,t
)
x ik−2k ,

and Es,t = (As + At )(Bs + Bt ), (n > s > t ≥ 0) consist
of k bits. Each of these expressions can be recognized as
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a small matrix-vector multiplication. Let
∑k−1

i=0 u
(s,t)
i x i and∑k−1

i=0 v
(s,t)
i x i denote the result of As + At and Bs + Bt ,

respectively. We have Es,t = Us,t · vs,t , where Us,t is the
product matrix constructed from

∑k−1
i=0 u

(s,t)
i x i and vs,t is the

coefficient vector [v(s,t)0 , v(s,t)1 , · · · , v(s,t)k−1]
T , i.e.,

Es,t = Us,t · vs,t

=



u(s,t)0 0 · · · 0 0
u(s,t)1 u(s,t)0 · · · 0 0
...

...
. . .

...
...

u(s,t)k−2 u(s,t)k−3 · · · u(s,t)0 0
u(s,t)k−1 u(s,t)k−2 · · · u(s,t)1 u(s,t)0
0 u(s,t)k−1 · · · u(s,t)2 u(s,t)1
...

...
. . .

...
...

0 0 · · · u(s,t)k−1 u(s,t)k−2
0 0 · · · 0 u(s,t)k−1


·


v(s,t)0
v(s,t)1
...

v(s,t)k−2
v(s,t)k−1

.

(9)

It is noted that these matrix-vector multiplications are inde-
pendent and thus can be implemented in parallel. However, S2
contains

(n
2

)
different expressions in all, each of which has a

different degree. In order to simplify the reduction process,
we first classify these expressions into several categories,
where the expressions in the same category can constitute a
bigger matrix-vector multiplication. Then we can perform a
reduction with each category. In addition, the classification
has already been studied in [23]. Here, we can utilize the
result directly. Let

S(n) = S2 · x2k =
2n−3∑
i=1

( ∑
s+t=i,
n>s>t≥0

Es,t
)
x ik .

The classification lemma is as follows:
Lemma 5 [23]: S(n) can be expressed as the plus

of g1x(2λ−1)k , g2x(2λ−3)k , · · · , gλxk for λ =
n
2 (n is

even) or λ = n−1
2 (n is odd), where

g1 = C (1)
n−2x

(n−2)k
+ C (1)

n−3x
(n−3)k

+ · · · + C (1)
0 ,

g2 = C (2)
n−2x

(n−2)k
+ C (2)

n−3x
(n−3)k

+ · · · + C (2)
0 ,

...

g n
2
= C

( n2 )
n−2x

(n−2)k
+ C

( n2 )
n−3x

(n−3)k
+ · · · + C

( n2 )
0 ,

or
g1 = C (1)

n−1x
(n−1)k

+ C (1)
n−2x

(n−2)k
+ · · · + C (1)

0 ,

g2 = C (2)
n−1x

(n−1)k
+ C (2)

n−2x
(n−2)k

+ · · · + C (2)
0 ,

...

g n−1
2
= C

( n−12 )
n−1 x(n−1)k + C

( n−12 )
n−2 x(n−2)k + · · · + C

( n−12 )
0 ,

where C (i)
j ∈ {Es,t }, n > s > t ≥ 0.

Proof: See [23, Sec. 3.2]. �
Based on the above lemma, it is obvious that S2 can be

partitioned into λ parts and all these parts are independent.
More explicitly, S2 = g1x(2λ−3)k +g2x(2λ−5)k +· · ·+gλx−k .

Obviously, g1, g2, · · · , gλ contain all the nonzero terms of S2,
where the number of such terms equals (n − 2)k + 2k −
2 + 1 = m − 1 terms if n is even or (n − 1)k + 2k − 2 +
1 = m + k − 1 if n is odd. We can first compute these
expressions in parallel, then, perform reductions related to
g1x(2λ−3)k , g2x(2λ−5)k , · · · , gλx−k .

1) DETAILED COMPUTATION OF S2 mod f (x)
(i) Perform bitwise addition As + At ,Bs + Bt , (n > s >

t ≥ 0) in parallel.
(ii) Perform

(n
2

)
matrix-vector bitwise multiplications,

i.e, Es,t = Us,t ∗ vs,t in parallel.
(iii) Classify these

(n
2

)
matrices Es,t into λ parts according

to Lemma 5 and constitute the small matrices of the
same category into λ big matrices Eg1 , · · · ,Egλ , which
correspond to g1, g2, · · · , gλ.

(iv) Add all the entries of the same row in Eg1 , · · · ,Egλ
using binary XOR tree, and obtain the coefficients of
g1, g2, · · · , gλ.

(v) Perform reduction for g1x(2λ−3)k , g2x(2λ−5)k , · · · ,
gλx−k modulo f (x) using (4).

(vi) Add all these results binary XOR tree to obtain the
S2 mod f (x).

Remark: According to (9), it is clear that after performing
bitwise multiplication, Es,t are all (2k − 1) × k matrices.
When we classify these matrices and constitute them to λ
big matrices, one can check that the number of entries for
each row of Eg1 , · · · ,Egλ is equal to k . Thus, the coeffi-
cients of g1, g2, · · · , gλ will be obtained with dlog2 keTX
delay. Whereafter, we can perform the modular reduction
for g1x(2λ−3)k , g2x(2λ−5)k , · · · , gλx−k . Such reductions also
rely on equation (4). We have following observations for the
computation of S2 mod f (x).
Observation 6: To compute g1x(2λ−3)k , g2x(2λ−5)k , · · · ,

gλx−k modulo f (x), we only need to reduce these expressions
at most once.

Proof: Apparently, the minimal and maximal degrees
of the terms in g1x(2λ−3)k , g2x(2λ−5)k , · · · , gλx−k are−k and
2m − 3k − 2, respectively. Apply reducing formulae of (4),
we have

xm−k = x0 + x−k ,

xm−k+1 = x1 + x−k+1,
...

x2m−3k−2 = xm−2k−2 + xm−3k−2.

The exponents of x in the right side now are all in the range
[−k,m− k − 1], no further reduction is needed. �
Observation 7: When the modular reduction and addition

are combined, Step (v) and (vi) can be calculated with at most
dlog2 neTX delay.

Proof: We know g1x(2λ−3)k , g2x(2λ−5)k , · · · , gλx−k

modulo f (x) only need to reduced once. But, gi contains
different number of nonzero terms according to the par-
ity of n, which lead to different reduction formulations.
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For simplicity, we only consider the case of odd n here and
put the analysis about other case in Appendix.

If n is odd, we have λ = n−1
2 , and the degree of gi is nk +

k − 2. Let gi =
∑nk+k−2

j=0 h(i)j x
j. Then,

gix(n−2i−2)k

=

2ik+k−1∑
j=0

h(i)j x
j+(n−2i−2)k

+

nk−1∑
j=2ik+k

h(i)j x
j+(n−2i−2)k

+

nk+k−2∑
j=nk

h(i)j x
j+(n−2i−2)k ,

for i = 1, 2, · · · , n−12 . When we reduce above expression
modulo f (x) = xnk + xk + 1, only two parts are needed to be
reduced. Then,
nk−1∑

j=2ik+k

h(i)j x
j+(n−2i−2)k

=

nk−1∑
j=2ik+k

h(i)j (x j−2ik−2k + x j−2ik−k ),

nk+k−2∑
j=nk

h(i)j x
j+(n−2i−2)k

=

nk+k−2∑
j=nk

h(i)j (x j−2ik−2k + x j−2ik−k ).

By combining non-overlapped parts of above expressions,
the result of gix(n−2i−2)k mod f (x) is given by

gix(n−2i−2)k mod f (x) = p(i)1 (x)+ p(i)2 (x)+ p(i)3 (x),

where

p(i)1 =
2ik+k−1∑
j=0

h(i)j x
j+nk−2ik−2k

+

nk−1∑
j=2ik+k

h(i)j x
j−2ik−2k ,

p(i)2 =
nk+k−2∑
j=2ik+k

h(i)j x
j−2ik−k ,

p(i)3 =
nk+k−2∑
j=nk

h(i)j x
j−2ik−2k .

Moreover, it is noted that the term degrees of p(i)3 are in the
range [nk − 2ik − 2k, nk − 2ik − k − 2]. One can check
that these ranges are [−k,−2], [k, 2k − 2], · · · , [(n − 4)k,
(n− 3)k − 2]. Therefore, there is no overlapped term among
all the p(i)3 , which cost no XOR gates to add them up. Denoted

by r the addition of p(1)3 , p
(2)
3 , · · · , p

( n−12 )
3 .

Consequently, to obtain S2 mod f (x), we only need to

add p(1)1 , p
(1)
2 , · · · , p

( n−12 )
1 , p

( n−12 )
2 and r in parallel, which cost

dlog2 ne XOR gate delay. We directly conclude the observa-
tion. �

We next analyze the space and time complexity related
to S2. Firstly, 2k ·

(n
2

)
= (n2 − n)k XOR gates are needed

for pre-computation of As + At and Bs + Bt , (n > t >
s ≥ 0) in Step (i), which cost one TX in parallel. Then,
the

(n
2

)
matrix-vector bitwise multiplications in Step (ii) cost

k2 ·
(n
2

)
= (n2 − n)k2/2 AND gates with TA gate delay.

The classification in Step (iii) does not cost any logic
gates. Step (iv) includes adding all the entries of the same

row in Eg1 , · · · ,Egλ . Since these matrices are determined
by g1, g2, · · · , gλ, the required XOR gates varies according
to parity of n. If n is even, each of g1, g2, · · · , g n

2
con-

sists of n− 1 sub-polynomials. That is to say, Egi , (i =
1, 2, · · · , n2 corresponds a combination of n−1 matricesEs,t .
Thus the coefficient computation for each gi costs nk2 −
k2 − m + 1 XOR gates with dlog2 keTX delay. If n is odd,
g1, g2, · · · , g n−1

2
consists of n sub-polynomials. Similarly,

it costs nk2−k−m+1 XOR gates for each gi with dlog2 keTX
delay.

Step (v) and (vi) follow the description in Observation
3.2.2. We only add n (or n − 1) vectors together to obtain
S2 mod f (x). The space and time complexity for all the steps
is stated in Table 2.

TABLE 2. Space and time complexities of S2 mod f (x).

2) AN EXAMPLE OF S2 mod f (x)
To illustrate our classification and reduction strategy, we give
a small example here. Consider S2 presented in former exam-
ple. According to Lemma 5, S1 can be rewritten as

S1 = g1x3 + g2 x−3,

where g1 = E3,2x6+E3,1x3+E3,0, g2 = E2,1x6+E2,0x3+
E1,0. Let As+At =

∑2
i=0 u

(s,t)x i and Bs+Bt =
∑2

i=0 v
(s,t)x i

for 3 ≥ s > t ≥ 0. The explicit form of Eg1 is given by

Eg1 =



u(3,0)0 v(3,0)0 0 0
u(3,0)1 v(3,0)0 u(3,0)0 v(3,0)1 0
u(3,0)2 v(3,0)0 u(3,0)1 v(3,0)1 u(3,0)0 v(3,0)2

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
u(3,1)0 v(3,1)0 u(3,0)2 v(3,0)1 u(3,0)1 v(3,0)2
u(3,1)1 v(3,1)0 u(3,1)0 v(3,1)1 u(3,0)2 v(3,0)2
u(3,1)2 v(3,1)0 u(3,1)1 v(3,1)1 u(3,1)0 v(3,1)2

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
u(3,2)0 v(3,2)0 u(3,1)2 v(3,1)1 u(3,1)1 v(3,1)2
u(3,2)1 v(3,2)0 u(3,2)0 v(3,2)1 u(3,1)2 v(3,1)2
u(3,2)2 v(3,2)0 u(3,2)1 v(3,2)1 u(3,2)0 v(3,2)2

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0 u(3,2)2 v(3,2)1 u(3,2)1 v(3,2)2
0 0 u(3,2)2 v(3,2)2
0 0 0



.
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The organization of Eg2 is almost the same as Eg1 . It is
easy to see that the computation of g1, g2 in Step (iv) cost
32 XOR gates with 2TX delay. In addition, 17 more XOR
gates are needed as well for Step (v) and (vi) with 2TX
delay. Combined with the number of logic gates required in
Step (i), (ii), it totally requires 54 AND and 85 XOR gates for
S2 mod f (x), with TA + 5TX delay.

C. THEORETIC COMPLEXITY
After the computation of S1 and S2 modulo f (x), other m
XOR gates are needed to add two results together. From
Table 1 and 2, it is clear that the delay of S2 mod f (x) cost one
more TX than S1 mod f (x). Thus, in parallel implementation
of S1, S2 modulo f (x), the delay is TA + (1 + dlog2 ke +
dlog2 ne)TX (or TA + (1 + dlog2 ke + dlog2(n − 1)e)TX for
even n). Plus one more TX that cost in the final addition,
we obtain the time complexity of our proposed architecture as

Time delay = TA + (2+ dlog2 ke + dlog2 ne)TX .

The space complexity is

# AND =
m2

2
+
mk
2
,

# XOR =
m2

2
+
mk
2
+

5mn
4
+ n

k−1∑
i=1

W (i)+ n

+ k
n−2∑
i=1

W (i)+ kW (n− 2)−
5m
2
+ 1,

# XOR∗ =
m2

2
+
mk
2
+

5mn
4
+ n

k−1∑
i=1

W (i)+
n
2

+
k
4
+ k

n−2∑
i=1

W (i)+ kW (n− 2)−
5m
2
+

1
2
.

(10)

The symbol ‘‘*’’ represent the case of odd n. The formula-
tion for the number of XOR varies according to the parity
of n. We note that these formulae contain sums of hamming
weights related to k − 1 or n − 2. In fact, the expression∑δ

i=0W (i) can be roughly written as δ
2 log2 δ [22], where δ

is a nonzero integer. Thus, the hamming weight formulations
related to n roughly equalO(m log2 n), while the formulations
related to k are roughly equal to O(m log2 k). Omit the linear
parts, the number of required XOR gates can be rewritten as:

m2

2
+
mk
2
+

5mn
4
+ O(m log2 k)+ O(m log2 n). (11)

The above formula reveals the lower bound of the space com-
plexity of our proposal. Based on (10) and (11), it is obvious
that with the increase of the parameter n, the number of
required AND gates is decreasing. If n = m, #AND achieves
its lower bound, i.e., m

2
+m
2 . But at this time, the number of

required XOR gates is more than 7m2

4 . Therefore, the optimal
parameter n should be the one that minimizes both the number

of XOR and AND gates. We combine the two formulations
with respect to #AND and #XOR, define a function:

M (n) = m2
+ mk +

5mn
4

1
.

Please note that m = nk . Obviously, M (n) = m2
+

m2

n +
5mn
4 . When m2

n =
5mn
4 , namely, n = 2(m5 )

1/2, we obtain the
minimal value of M (n), which indicate the best asymptotic
space complexity of our proposal. In this case, we see that k
is almost equal to n. The space complexity is

# AND =
m2

2
+

√
5m3/2

4
,

# XOR =
m2

2
+

3
√
5m3/2

4
+ O(m log2 k).

Figure 1 shows the space complexity tendency with the
increase of n. It is clear that n could not always increase. Com-
bined with the lowest asymptotic space complexity analysis,
we can see that our proposal is more suitable for xnk+xk+1,
where n is smaller than k .

FIGURE 1. Space complexity tendency with increase of n.

IV. SPEEDUP STRATEGY
As shown in previous section, the time delay of our proposal
is TA + (2+ dlog2 ke + dlog2 ne)TX . Since

dlog2 ke + dlog2 ne ≤ dlog2 me + 1,

the upper bound of the delay is TA + (3+ dlog2 me)TX . This
result is worse than the multiplier using classic Karatsuba
algorithm. The main reason is the delay of S2 is bigger than
that of S1. Indeed, we can add the intermediate values in
advance during the computation process of S1, S2 to speed up
the whole architecture. For better comprehension, we define
some additional notations.
• qS1,0,qS1,1, · · · ,qS1,n−1 represent the coordinate vec-
tors of MS1 (:, i ∼ ik) · bi+1 in (7) after the computation
of Ai,Lbi + Ai,Hbi, i = 0, 1, · · · , n− 1.

1Here, we assume that the XOR and AND consist of the same number
of transistors. In practical application, one can modify this function by
multiplying different weight factors.
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FIGURE 2. Speedup strategy related to our architecture.

TABLE 3. Comparison of bit-parallel multipliers for GF (2m) generated with xm + xk + 1, (m = nk).

• qS2,0,qS2,1, · · · ,qS2,n−1 represent the coordinate vec-
tors corresponding to the polynomials p(1)1 , p

(1)
2 , · · · ,

p
( n−12 )
1 , p

( n−12 )
2 and r1 after we compute the entries addi-

tions of Step (v).
For example,

qS1,0=
[
A0,Hb0, (A0,L+A0,H )b0, · · · , (A0,L + A0,H )b0 ]T ,

qS2,0 =
[
h(1)3k , · · · , h

(1)
nk−1, h

(1)
0 , · · · , h

(1)
3k−1 ]

T .

According to Table 1 and 2, it is easy to see
that the computation of qS1,0,qS1,1, · · · ,qS1,n−1 cost
TA + dlog2 keTX , while qS2,0,qS2,1, · · · ,qS2,n−1 cost
TA + (1+ dlog2 ke)TX .
Our speedup strategy is adding these vector qS1,i and qS2,i

directly before completing S1 and S2. Since the computation

1If n is even, there only n − 1 coordinate vectors corresponding to

p(1)1 , p(1)2 , · · · , p
( n2−1)
1 , p

( n2−1)
2 , g n

2
x−k .

of qS2,i cost one more TX than qS1,i, we can perform one
more addition for each two vectors, i.e., qS1,i + qS1,i+1 for
i = 0, 2, · · · , n − 2 (or i = 0, 2, · · · , n − 3 if n is odd).
After this addition, we obtain d n2e column vectors. Plus n (or
n− 1) coordinate vectors qS2,0,qS2,1, · · · ,qS2,n−1, there are
at most d 3n2 e vectors need to be added, which requires only
dlog2d

3n
2 eeTX . The computation sequence of our architecture

is arranged as shown in Fig.1.
As a result, the whole time delay is

TA + (1+ dlog2 ke + dlog2d
3n
2
ee)TX .

Furthermore, based on a related Lemma of [11], we have 1+
dlog2d

3n
2 ee = dlog2 3ne. Thus, the time delay formulation

can be simplified as

TA + (dlog2 ke + dlog2 3ne)TX .
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V. COMPARISON AND DISCUSSION
According to the descriptions in the previous section, it is
clear that the time delay of our proposal using speedup strat-
egy is TA+(dlog2 ke+dlog2 3ne)TX . However, it is especially
attractive if

dlog2 ke + dlog2 3ne = dlog2 3n · ke = dlog2 3me. (12)

At this time, the corresponding time delay is TA +
dlog2 3me)TX , which approximately equals the fastest 2-term
Karatsuba based multiplier [24]. In fact, we have checked all
the irreducible xnk + xk + 1, k > 1 of degree m = nk ∈
[100, 1023] over F2, and found about 54% such trinomials
satisfy (12), and the rest of them requires at most one TX than
than the fastest Karatsuba multiplier so far.

Table 3 gives a comparison of different implementations
of bit-parallel multipliers in the fields generated by trinomials
xm+xk+1,m = nk . More explicitly, we omit the expression
O(m log2 n) in (11), as n is usually smaller than k shown
in Section 3.3. Based on this table, it is easy to see that
our proposal has better space complexity while maintains
relatively low time complexity. The best of our result only
costs about m2

2 + O(m3/2) circuit gates compared with the
previous architectures without using a divide-and-conquer
algorithm. On the other hand, the time complexity of the
proposedmultiplier is very closed to the fastest result utilizing
classic Karatsuba algorithm.

VI. CONCLUSION
In this paper, we investigate the application of a n-term
Karatsuba algorithm and develop a new type of bit-parallel
multiplier for a class of irreducible trinomials. The proposed
architecture shows that specific type of trinomials combined
with Karatsuba algorithm variations can reduce the space
complexity further compared with classic Karatsuba multi-
pliers. We next work on the construction of n-term Karatsuba
multiplier for general trinomials.

APPENDIX A
THE SUB-EXPRESSION SHARING
FOR ENTRIES ADDITION IN S1
Let Pi denote the coordinate vector of Ai,Lbi+Ai,Hbi and P′i
denote the coordinate vector of Ai,Lbi (or Ai,Hbi for i = 0).
Clearly, both Pi and P′i are k × 1 vectors. Therefore, (7) can
be rewritten as:

MS1 · b =



P′0 P1 P2 · · · Pn−2 Pn−1
P0 P′1 0 · · · 0 0
P0 P1 P′2 · · · 0 0
...

...
...

. . .
...

...

P0 P1 P2 · · · P′n−2 0
P0 P1 P2 · · · Pn−2 P′n−1


.

So we only need to compute entries additions for k interme-
diate coordinate vectors

P0 + P1 + · · · + Pn−2 + P′n−1 (13)

TABLE 4. Saved XOR gates about the entries addition.

and all the entries additions can be computed through reusing
these values. Table 4 indicates the overlapped values and the
number of saved XOR gates.

Note that the additions between these vectors without
sub-expression sharing require 2(n − 1)k − k

∑n−2
i=1 i XOR

gates. By subtracting the number of saved XOR gates,
the number of required XOR gates actually is

m+ k
n−2∑
i=1

W (i)+ kW (n− 2).

APPENDIX B
RELATED MATRICES OF THE EXAMPLE IN SECTION 3.1.2
As we know the form ofAi,L andAi,H , it is easy to obtain the
explicit formulae with respect to Ai (i = 0, 1, 2, 3), and AS1 .
For the size of the above matrix, we do not present the line

number in the left side. One should note that the rows of AS1
correspond the term degree [−6, 17].

Ai =

−3
−2
−1

0
1
2

3
4
5

6
7
8

9
10
11



a3i+0 0 0
a3i+1 a3i+0 0
a3i+2 a3i+1 a3i+0
- - - - - - - - - - - - - - - - - - - -
a3i+0 a3i+2 a3i+1
a3i+1 a3i+0 a3i+2
a3i+2 a3i+1 a3i+0
- - - - - - - - - - - - - - - - - - - -
a3i+0 a3i+2 a3i+1
a3i+1 a3i+0 a3i+2
a3i+2 a3i+1 a3i+0
- - - - - - - - - - - - - - - - - - - -
a3i+0 a3i+2 a3i+1
a3i+1 a3i+0 a3i+2
a3i+2 a3i+1 a3i+0
- - - - - - - - - - - - - - - - - - - -

0 a3i+2 a3i+1
0 0 a3i+2
0 0 0



,

and AS1 , as shown at the top of the next page.
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AS1 =



a0 0 0

--- 0 0 0

--- 0 0 0

--- 0 0 0
a1 a0 0

--- 0 0 0

--- 0 0 0

--- 0 0 0
a2 a1 a0

--- 0 0 0

--- 0 0 0

--- 0 0 0
- - - - - - - - - - - - - - - -

---

---

---

a0 a2 a1

--- a3 0 0

--- 0 0 0

--- 0 0 0
a1 a0 a2

--- a4 a3 0

--- 0 0 0

--- 0 0 0
a2 a1 a0

--- a5 a4 a3

--- 0 0 0

--- 0 0 0
- - - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - - -

---

---
a0 a2 a1

--- a3 a5 a4

--- a6 0 0
--- 0 0 0

a1 a0 a2

--- a4 a3 a5

--- a7 a6 0
--- 0 0 0

a2 a1 a0

--- a5 a4 a3

--- a8 a7 a6

--- 0 0 0
- - - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - - -

---

a0 a2 a1

--- a3 a5 a4

--- a6 a8 a7

--- a9 0 0
a1 a0 a2

--- a4 a3 a5

--- a7 a6 a8

--- a10 a9 0
a2 a1 a0

--- a5 a4 a3

--- a8 a7 a6

--- a11 a10 a9
- - - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - - -
--- - - - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - - -
0 a2 a1

--- a3 a5 a4
--- a6 a8 a7

--- a9 a11 a10
0 0 a2

--- a4 a3 a5

--- a7 a6 a8

--- a10 a9 a11
0 0 0

--- a5 a4 a3

--- a8 a7 a6

--- a11 a10 a9--- - - - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - - -
0 0 0

--- 0 a5 a4

--- a6 a8 a7

--- a9 a11 a10
0 0 0

--- 0 0 a5

--- a7 a6 a8

--- a10 a9 a11
0 0 0

--- 0 0 0

--- a8 a7 a6

--- a11 a10 a9---

--- - - - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - - -
0 0 0

--- 0 0 0

--- 0 a8 a7

--- a9 a11 a10
0 0 0

--- 0 0 0

--- 0 0 a8

--- a10 a9 a11
0 0 0

--- 0 0 0

--- 0 0 0

--- a11 a10 a9---

---

--- - - - - - - - - - - - - - - - -
0 0 0

--- 0 0 0

--- 0 0 0

--- 0 a11 a10
0 0 0

--- 0 0 0

--- 0 0 0

--- 0 0 a11
0 0 0

--- 0 0 0

--- 0 0 0

--- 0 0 0



.

After reduction process, the explicit form of MS1,1 and
MS1,2 are presented as shown at the top of the next page.

APPENDIX C
PROOF OF OBSERVATION FOR EVEN n
If n is even, we have λ = n

2 , and the degree of gi is nk − 2.
Let gi =

∑nk−2
j=0 h(i)j x

j. Then

gix(n−2i−1)k =
2ik−1∑
j=0

h(i)j x
j+(n−2i−1)k

+

nk−2∑
j=2ik

h(i)j x
j+(n−2i−1)k ,

for i = 1, 2, · · · , n2 − 1. Similar with case of odd n, only one
part of the above expression needs reduction by f (x).We have

nk−2∑
j=2ik

h(i)j x
j+(n−2i−1)k

=

nk−2∑
j=2ik

h(i)j (x j−2ik−k + x j−2ik ).

We note that if i = n
2 , all the term degrees of g n

2
x−k are in the

range [−k, nk − k − 1]. No further reduction is needed.
By combining non-overlapped parts of above expressions,

the result of gix(n−2i−1)k mod f (x) is given by

g n
2
x−k mod f (x) = g n

2
x−k

gix(n−2i−1)k mod f (x) = p(i)1 (x)+ p(i)2 (x),

where

p(i)1 =
2ik−1∑
j=0

h(i)j x
j+nk−2ik−k

+

nk−1∑
j=2ik

h(i)j x
j−2ik−k ,

p(i)2 =
nk−2∑
j=2ik

h(i)j x
j−2ik ,

for i = 1, 2, · · · , n2 − 1. Therefore, in this case, to obtain

S2 mod f (x), we only need to add p(1)1 , p
(1)
2 , · · · , p

( n2−1)
1 ,
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MS1,1 =



a0 a2 a1

--- a3 a5 a4

--- a6 a8 a7

--- a9 a11 a10
a1 a0 a2

--- a4 a3 a5

--- a7 a6 a8

--- a10 a9 a11
a2 a1 a0

--- a5 a4 a3

--- a8 a7 a6

--- a11 a10 a9
- - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - -
a0 a2 a1

--- a3 a5 a4

--- a6 a8 a7

--- a9 a11 a10
a1 a0 a2

--- a4 a3 a5

--- a7 a6 a8

--- a10 a9 a11
a2 a1 a0

--- a5 a4 a3

--- a8 a7 a6

--- a11 a10 a9
- - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - -
a0 a2 a1

--- a3 a5 a4

--- a6 a8 a7
--- a9 a11 a10

a1 a0 a2

--- a4 a3 a5

--- a7 a6 a8
--- a10 a9 a11

a2 a1 a0

--- a5 a4 a3

--- a8 a7 a6

--- a11 a10 a9
- - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - -
a0 a2 a1

--- a3 a5 a4

--- a6 a8 a7

--- a9 a11 a10
a1 a0 a2

--- a4 a3 a5

--- a7 a6 a8

--- a10 a9 a11
a2 a1 a0

--- a5 a4 a3
--- a8 a7 a6

--- a11 a10 a9



,

MS1,2 =



a0 0 0

--- 0 0 0
--- 0 0 0

--- 0 0 0
a1 a0 0

--- 0 0 0

--- 0 0 0

--- 0 0 0
a2 a1 a0

--- 0 0 0

--- 0 0 0

--- 0 0 0
- - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - -
0 0 0

--- 0 a5 a4

--- a6 a8 a7

--- a9 a11 a10
0 0 0

--- 0 0 a5

--- a7 a6 a8

--- a10 a9 a11
0 0 0

--- 0 0 0

--- a8 a7 a6

--- a11 a10 a9--- - - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - -
0 0 0

--- 0 0 0

--- 0 a8 a7

--- a9 a11 a10
0 0 0

--- 0 0 0

--- 0 0 a8

--- a10 a9 a11
0 0 0

--- 0 0 0

--- 0 0 0

--- a11 a10 a9---

--- - - - - - - - - - - - - - - -

--- - - - - - - - - - - - - - - -
0 0 0

--- 0 0 0

--- 0 0 0

--- 0 a11 a10
0 0 0

--- 0 0 0

--- 0 0 0

--- 0 0 a11
0 0 0

--- 0 0 0

--- 0 0 0

--- 0 0 0



.

p
( n2−1)
2 and g n

2
x−k in parallel, which cost dlog2(n− 1)e XOR

gate delay.
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