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ABSTRACT Digital filters are employed in hand-held robotic instruments to separate the concomitant
involuntary physiological tremor motion from the desired motion of micro-surgeons. Inherent phase-lag
in digital filters induces phase distortion (time-lag/delay) into the separated tremor motion and it adversely
affects the final tremor compensation. Owing to the necessity of digital filters in hand-held instruments,
multi-step prediction of physiological tremor motion is proposed as a solution to counter the induced delay.
In this paper, a quaternion variant for extreme learning machines (QELMs) is developed for multi-step
prediction of the tremor motion. The learning paradigm of the QELM integrates the identified underlying
relationship from 3-D tremor motion in the Hermitian space with the fast learning merits of ELMs theories to
predict the tremor motion for a known horizon. Real tremor data acquired from micro-surgeons and novice
subjects are employed to validate the QELM for various prediction horizons in-line with the delay induced by
the order of digital filters. Prediction inferences underpin that the QELM method elegantly learns the cross-
dimensional coupling of the tremor motion with random quaternion neurons and hence obtained significant
improvement in prediction performance at all prediction horizons compared with existing methods.

INDEX TERMS Surgical robotics, physiological tremor, multi-step prediction, random quaternion neurons,
extreme learning machines.

I. INTRODUCTION
Minimally-invasive surgical procedures require compensa-
tion of micro-surgeon’s intrinsic physiological tremor which
is concomitant with the desired motion [1]–[3]. Physio-
logical tremor motion has amplitude ranges typically from
50µm to 100µm and displays multiple dominant spectral
components in the frequency band of 6Hz to 20Hz [4]–[6].

The requirement of precision and dexterity at micrometer
rangemovements in micro-surgical procedures (about 10µm)
lead to the advent of various smart surgical robotic
instruments/techniques [7]. Hand-heldmicro-surgical robotic
instruments such as the ‘‘Micron’’ [8] and the ‘‘iTrem’’ [9],
[10] among the developed surgical robotic instruments gained
a great-deal of attention lately due to their ability of
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augmenting the required precision into the normal surgical-
flow by compensating the physiological tremor in real-time.

The working principle of a typical smart hand-held instru-
ment is depicted in Fig. 1. The instrument comprises of a
sensing unit which houses inertial sensors for sensing the
micro-meter range motions; and a compensation unit with
piezo-electric actuators to perform manipulations on sub-
millimeter range motions. As the voluntary motion and the
tremor motion share distinct frequency characteristics, these
instruments employ a digital filter at the modeling unit to
separate the voluntary motion from its concomitant tremor
motion acquired with the sensing unit, as shown in Fig. 1(a).
This separated tremor motion is then provided to the com-
pensation unit for manipulating the tip-position and hence
compensate the tremor motion [9].

Experiments conducted with the hand-held instruments
for tremor compensation concluded that the final tremor
compensation is reliable if and only if the performed
manipulations are in-phase with the tremor motion (ideally
zero-phase lag). However, inherent phase delay of the digi-
tal filters employed at the modeling unit resulted in phase-
distorted (in time domain phase distortion causes time-lag
or delay) tremor motion. The final-tremor compensation
efficacy of hand-held instruments with the delayed tremu-
lous motion is no better than the uncompensated motion.
To illustrate the effect of delay on final tremor compen-
sation, manipulated tip-position with and without the pres-
ence of delay (3rd order low-pass filter delay - 40ms) on
a typical tremor motion is depicted in Fig. 1 (a) (sensing
unit and compensation unit schema’s are considered same
as in [9]). Furthermore, the range of delay increases with
increase in filter order, as shown in Fig. 1 (b). Therefore,
a prediction algorithm that mitigates the effect of phase delay
due to the digital filters by accurately predicting the non-
stationary natured physiological tremor motion in real-time is
necessary to enhance the hand-held instrument compensation
capabilities.

Conventional signal processing methods such as autore-
gressive (AR)model, and truncated Fourier series (the eighted
Fourier linear combiner (WFLC) and the band-limited
Fourier linear combiner (BMFLC)) with Kalman filter
are proposed for multi-step prediction of physiological
tremor motion [11], [12]. Recently, a quaternion variant
for WFLC (QwFLC) is proposed to exploit the cross-
dimensional coupling across x, y, and z axes in tremor
motion and thus enhance single-step tremor prediction accu-
racy [13]. For predicting future samples, all these meth-
ods assume that the tremor signal characteristics remain
constant over the prediction horizon. A future value is
then obtained by iterating over the signal model without
receiving any real measurements. Since tremor motion is
non-stationary in nature, this assumption does not hold
true for long prediction horizons [12]. To overcome this
assumption, tremor prediction methods based on machine
learning techniques (least squares support vector machines
(LSSVM-1D) [12] and multi-dimensional variant of extreme

learning machines (ELM-3D) [14]) are developed. Results
showed that, at all prediction horizons, LSSVM-1D and
ELM-1D (one dimensional ELM) yield better predic-
tion inference compared to Kalman filter based adaptive
algorithm [12].

Tremormotion generally resides in three-dimensional (3D)
space and has cross-dimensional coupling. Thus, tremor pre-
diction method must equip with the following abilities to
manipulate the tip position accurately in 3D-space : 1) predict
the tremor motion in all three axes simultaneously; 2) capable
of utilizing the pertained cross-dimensional coupling; and
3) less computationally demanding. Prediction of the tremor
motion in 3D space with LSSVM-1D and ELM-1D methods
can be achieved only by implementation of these methods in
each dimension separately, which does not fit into the above
mentioned abilities. Formulation of a prediction model in 3D
space with these methods forces the optimization problem
to solve for each output-dimension separately, thus cross-
dimensional coupling is not considered. Furthermore, while
optimizing for 3D models, the computational complexity of
LSSVM-3D is three times the computational requirement of
LSSVM-1D whereas the innate structure of ELM keeps the
computational complexity of ELM-3D similar to ELM-1D.

Although ELM-3D is suitable for surgical robotic applica-
tions owing to its generalization capabilities and less com-
putational complexity, it lacks exploiting cross-dimensional
coupling. Furthermore, in the random feature space for-
mulated with 3D measurements, ELM-3D can not regu-
larize the influence of correlation information obtaining
from other axes accurately to improve the overall predic-
tion inference. For various tracking applications, it has been
shown that modelingmulti-dimensional data in the Hermitian
space as quaternions brings an elegant way of handling the
cross-dimensional coupling compared to real-valued multi-
dimensional modeling [15], [16]. In addition, tremor mod-
eling (single-step prediction) results obtained with QwFLC
yielded nearly 60% improvement in accuracy compared to
its real-valued counterpart [13]. Motivated by these develop-
ments, in this work, a quaternion variant for ELM (QELM) is
developed for multi-step prediction of physiological tremor.

The QELM combines the merit of fast learning from ELM
and utilizes the cross-dimensional coupling from quaternion
signal modeling. A proof-of-concept with preliminary results
obtained for modeling (single-step prediction) of tremor
motion with the QELM is reported in [17]. In this work,
the formulated multi-step prediction model with quaternion
variant is detailed. This prediction model is evaluated with
the tremor data collected from five healthy subjects and
five micro-surgeons while performing typical micro-surgical
tasks such as pointing task and tracing tasks. A compar-
ison analysis is performed on the real-tremor data among
ELM-1D, LSSVM-1D, QwFLC, ELM-3D, and QELM for
the prediction horizons in-line with the delay introduced by
low-pass filters in the instrument, i.e., 40ms, 60ms. Results
showed that the QELM significantly improves the tremor
prediction accuracy compared to the other existing methods.
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FIGURE 1. Schematic diagram of a typical hand-held robotic instrument a) working principle and effect of
phase delay; b) delay due to the digital filter.

Analysis conducted on the run-time complexity showed that
the QELM method consumes less computational resources
(less than 1ms) which highlights the advantages of the QELM
for tremor prediction in surgical robotic applications.

The paper is organized as follows. In Section II, the back-
ground theory of QELM and the paradigm for multi-step
prediction of physiological tremor are provided. Section III
presents description of the tremor data used in this work
and the performance evaluation of the proposed methods
along with the inferences. Discussions and conclusions are
provided in Sections IV and V respectively.

II. MULTI-STEP PREDICTION OF PHYSIOLOGICAL
TREMOR WITH RANDOM QUATERNION NEURONS
Physiological tremor motion acquired with hand-held instru-
ments at time instant t in the 3-D space (x, y, and z axes)
can be represented by its corresponding axial components
d(t,x), d(t,y) and d(t,z). To utilize cross dimensions information,
a pure quaternion variable is formulated with the three axial
components, can be given as:

x̃t = id(t,x) + jd(t,y) + kd(t,z). (1)

Multi-step prediction of physiological tremor in the
Hermitian space (H) can be considered as a classical learn-
ing problem of estimating an unknown underlying relation
between the elements of an input feature space (S ∈ Hm)
and elements of an target space (T ∈ Hn). The elements
in the input feature space are formulated as quaternions
of the tremor signal (give in (1)), can be given as x̃t =
[x̃t , x̃t−1, · · · , x̃t−p], where p is the order of the modeling.
The elements in target space corresponding to the each ele-
ment in input feature space x̃t is q samples ahead of current
sample, can be given as ỹt = x̃t+q, where the q is the predic-
tion horizon. The formulated input vector and target vector

FIGURE 2. QELM for modeling (a) and prediction (b) of physiological
tremor.

with the training data are provided to the QELM for learning a
nonlinear map that better represents the relationship between
the input feature space and the target vector space, as shown
in Fig.2(a). In the testing phase, the input vector in quaternion
domain will be formulated initially from the unseen tremor
data, as shown in Fig.2(b). The formulated input vector will
be provided to the nonlinearmap attained in the training phase
to yield the q samples ahead predicted value of the tremor
signal.

RANDOM QUATERNION NEURONS: QUATERNION
EXTREME LEARNING MACHINES (QELM)
Extreme learning machine (ELM) is one of the effective
training procedures to tune the single hidden layer feed-
forward networks (SLFN) parameters [19]. It first assigns the
input weights and hidden layer bias randomly, then the output
weights can be solved by using simple generalized inverse
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operation. For a set of Ñ distinct samples S = {(si, t i) | si ∈
Rm, t i ∈ Rn

; i = 1, · · · , Ñ } with si = [si,1, · · · , si,m]T

as input vector, t i = [ti,1, · · · , ti,n]T as its corresponding
target vector, ELM finds the mapping between the input and
its corresponding target through the following equation:

oj = fL(S) =
L∑
i=1

βigi(wisj + bi), for j = 1, · · · , Ñ (2)

where oj represents the predicted signal with the ELM,
wi is the input weights connecting the i-th hidden unit to the
input vector si, bi is the hidden layer bias and βi denotes
output layer weights. The universal approximation of ELM
requires the activation function gi(•) : R → R to be a
bounded non-constant piecewise continuous function [18].
During the training phase, the input weights wi ∈ Rm and
the hidden unit bias bi ∈ R are randomly assigned according
to any continuous probability distribution. Combining all Ñ
equations in Eq.2, we have the following linear system

Hβ = T (3)

where H is a (L × Ñ ) matrix with each row represents the
value of a input being activated through L hidden units.
T contains all Ñ target vector for each input. Thus, the output
weight matrix β can be obtained as

β = H†T (4)

where † denotes theMoore-Penrose generalized matrix inver-
sion. For detailed description about ELM, refer to [19].

RANDOM QUATERNION NEURONS FORMULATION
Quaternion representation of tremor signal is a natural exten-
sion of the traditionally employed complex analysis to handle
3D or 4D signals. A general quaternion variable q ∈ H is
defined as

q = qr + iqi + jqj + kqk

where {qr , qi, qj, qk} ∈ R and i, j, and k are imaginary units
obeying the following rules:

ij = k, jk = i, ki = j,

i2 = j2 = k2 = ijk = −1.

A quaternion variable with qr = 0 is called a pure quaternion.
In this work, we model the tremor signal in the 3D space,
i.e., as only pure quaternions. The conjugate of a quaternion
variable q is defined as q∗ = qr− iqi− jqj−kqk and the norm
of a quaternion variable is given as:

‖q‖ =
√
qq∗ =

√
q2r + q

2
i + q

2
j + q

2
k .

Given N distinct quaternion tremor samples in Hermitian
space, given as {(x̃t , ỹt )| x̃t ∈ Hm, ỹt ∈ Hn

; t = 1, · · · , Ñ },
where H denotes the quaternion filed. x̃t = [x̃t,1, · · · , x̃t,m]
and ỹt = [ỹt,1, · · · , ỹt,n] are the quaternion valued feature
vector and its corresponding target vector at time instant
t . Each element in x̃t and ỹt is a quaternion variable.

QELM finds a mapping between the feature vector and the
target vector as:

õt =
L∑
i=1

β̃ifi(w̃ix̃t + b̃i) for t = 1, · · · , Ñ (5)

where õt is the predicted value through the QELM,
w̃i ∈ Hm and b̃i ∈ H are the weight and bias of a quaternion
hidden unit connecting the i-hidden units to a input vector,
f (•) : H→ H is the activation function of a hidden unit and
L represent the total number of hidden units.

There are three main steps in the implementation of the
QELM method. Firstly, random samples of the weights and
bias value of each hidden unit are obtained according to
a continuous probability distribution function. The random
sampling of weights and bias of the hidden unit in quaternion
domain can be considered as generating random points on
a hypersphere as detailed in [20]. The input vector is then
provided to each hidden unit to transform the input into ran-
dom feature space by a nonlinear activation function. In line
with the real-valued ELM, the activation function f (•) is a
bounded non-constant piecewise continuous function. It has
been shown that the function inH space that satisfies the local
analyticity condition (LAC) can be employed as the activation
function in a neural network [16], [21]. Thus, in this work,
the tanh(·) function is employed as the nonlinear activation
in QELM. For a typical quaternion input q, the activation
function can be given as

tanh(q) =
eq − e−q

eq + e−q
.

After mapping the input vector into the random feature space
with the above formulation, as the final step, the output layer
weights are computed as follows:

H̃β̃ = T̃ (6)

where H̃ ∈ HÑ×L and is given as

H̃ =

f1(w̃1x1 + b̃1) · · · fL(w̃Lx1 + b̃L)
...

... · · ·

f1(w̃1xN + b̃1) · · · fL(w̃LxÑ + b̃L)

 (7)

with the output layer weights β̃ ∈ HL×n and T̃ =

[ỹ1, · · · , ỹÑ ]
T . Similar to the real-valued ELM, the norm of β̃

needs to be minimized to give better generation performance
of the QELM. Thus, the minimum norm least squares solu-
tions is employed to solve (6) [22] The minimum norm least
square solution of β̃ is given as:

β̃ = H̃
†
(H̃H̃

†
)−1T̃ (8)

where H̃
†
is the Hermitian adjoint matrix of H̃ with each

element defined as H̃i,j = H̃∗j,i. The solution of a quaternion
matrix equation given in (8) uses the fact that the num-
ber of columns is larger then the number of rows in H̃ ,
i.e. L � Ñ . In the case of L � Ñ , the above solution
is given as β̃ = (H̃

†
H̃)−1H̃

†
T̃ . In the implementation
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of QELM, we can always ensure the relation L � Ñ is
satisfied by choosing the number of hidden units L to be
less than the available training samples. The necessary and
sufficient condition for a quaternion matrix to be invertible
has been established in [22].

III. RESULTS
A. PHYSIOLOGICAL TREMOR DATABASE
Physiological tremor motion was recorded with the Micro
Motion Sensing System (M2S2) and a sensorized stylus with
a reflector ball at its tip [23]. The M2S2 system provides
measurement in a 10×10×10mm3 workspace, with a resolu-
tion of 0.7 µm and minimum accuracy of 98%. The 3-D dis-
placement of the reflector ball is calculated by using reflected
Infrared rays from the ball and photo sensitive diodes (PSDs).
More details about the design and data acquisition withM2S2
is provided in [23]. Two typical microsurgical tasks were
performed by five surgeons and five novice subjects:

i) Pointing task: In this task, two dots were displayed on
the monitor screen. One dot was white in color and
fixed while the another dot was orange in color and
moved according to the user’s tool tip movement. Sub-
jects were instructed to keep the orange dot overlapping
the white dot for 30s.

ii) Tracing task: In this task, a circle with 4 mm diameter
was displayed on the monitor screen. Subjects were
instructed to trace the circumference of the circle in the
clockwise direction as accurately as possible for 30s
with a speed that is realistic for surgical manipulation
tasks.

Each task was performed at three visual magnifications:
1x, 10x and 20x, and with grip force of 1 to 2 N. Sampling
frequency of 250 Hz was employed.

B. PERFORMANCE MEASURES
Prediction performance of all methods is quantified by using
%Accuracy. For 1D signals, the %Accuracy defined as:

%Accuracy(sx) =
RMS(sx)− RMS(ex)

RMS(sx)
× 100; (9)

where RMS(sx) =
√
(
∑k=m

k=1 (sx,k )2/m) with m is the number
of samples, sx,k is the x-axis input signal at instant k and ex is
the obtained estimation error with a tremor modeling method.
Since we are considering modeling the tremor signal in the
3-D space, the reported %Accuracy is the mean value across
all 3-axis, defined as

%Accuracy =
3DAccuracy

3
; (10)

where 3DAccuracy = %Accuracy(sx) + %Accuracy(sy) +
%Accuracy(sz).

C. HYPER-PARAMETER SELECTION
To identify the optimal initialization for hyper-parameters of
all methods, 10 randomly selected trials from both micro-
surgeon and novice subject groups are chosen. The first

four seconds data (1000 samples) is considered as the train-
ing dataset and the rest 25 seconds as the testing data
set. ELM-1D and LSSVM-1D formulates input vector with
tremor signal in all three-axes separately. Thus, both these
methods are employed on three-axes separately and the
over-all prediction accuracy is computed according to (10).
ELM-3D formulates the input vector by cascading all three-
axes data into one single real-value vector and performs
prediction for three-axis simultaneously. QELM and QwFLC
formulate the input vector by representing the three-axes data
into three orthogonal axes in the complex domain and then
performs prediction for three-axes simultaneously.

Grid search is conducted on the training data with QELM
(as shown in Fig. 2(a)) for each trace separately with a wide
range of values for the L and the p as 1 ≤ L ≤ 200 and
1 ≤ m ≤ 100 with a step size of 10, respectively. The
obtained nonlinear mapping with each combination was later
employed for modeling the testing data. For each combina-
tion, RMS of prediction error obtained according to (9) is
computed. The pair (L, p) that provides the least RMS of
prediction error was considered as the optimal pair for ini-
tialization. Variations in the identified hyper-parameters over
the traces are not significant. Furthermore, the variations in
the identified optimal parameters across the groups (surgeons
and novice subjects) is negligible. Although the variations
across the identified parameters are small, to obtain a uni-
fied value for initialization, we computed the mean for the
identified hyper-parameters of all the traces and then consid-
ered the obtained mean as the optimal hyper-parameters for
initialization. Based on the analysis conducted on 20 traces,
we determined the optimal hyper-parameters of QELM and
ELM as L = 100 and p = 20. For illustration, analysis on the
average performance of the selected 10 trials with the whole
range of (L, p) is shown in Fig. 3. Results demonstrated

FIGURE 3. Hyper-parameter selection a) QELM, b) ELM, and c) optimal
number of training samples. The color code represents %Accuracy (Mean
over standard deviation) for single-step prediction error.
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that the real valued ELM is robust with respect to the hyper-
parameter, whereas the QELM shows a clear improvement
in performance with the increased number of hidden units.
The similar analysis is adopted on these trials with various
number of training samples (N ) to verify whether any statis-
tically significant variations in the size of training data set are
present. Results showed that the variations are not significant,
as shown in Fig. 3(c). Thus, in this work, N = 1000 is
identified as the optimal size of training set for all subjects.

The above detailed procedure is employed for identify-
ing optimal initialization of LSSVM-1D parameters, namely
regularization parameter C and Kernel parameter (γ ). For
QwFLC, the parameter set reported in [13] is used.

D. COMPARISON ANALYSIS
The whole motion acquired from all three axes was filtered
with a zero-phase third-order Butterworth band-pass filter
with a pass-band of 6 Hz to 20 Hz for this analysis to
separate the tremulous motion from the voluntary motion.
To model the tremor signal characteristics for multi-step pre-
diction, we induced various delays that are in-line with the
delays introduced by the digital filters. The delayed tremor
signal is provided as an input to the prediction methods to
perform multi-step prediction with the prediction horizon
similar to that of the introduced delay. In this work, four
prediction horizons are considered i.e., 4 ms, 20 ms, 40 ms,
and 60 ms. With a sampling frequency of 250 Hz, the chosen
horizons are equivalent to prediction of the tremor signal
for 1 sample, 5 samples, 10 samples, and 15 samples ahead
respectively. The predicted tremor signal was compared with
the actual tremor motion to compute the prediction error,
as shown in Fig. 4. Comparisons analysis was conducted on
tremor data set for four prediction methods 1) QwFLC, 2)
ELM-1D (real-valued one dimensional modeling with ELM),
3) ELM-3D (real-valued three dimensional modeling with
ELM), and QELM. The block diagram representation of the
simulation study conducted in this work is shown in Fig. 4.
All these methods are quantified according to (9) and (10).

Prediction performance of QELM and ELM for 40ms
(10 samples) horizon on a typical tremor motion acquired
from a novice subject while performing tracing task is shown
in Fig. 5. The predicted trace obtained from QELM and
ELMwere shown in Fig. 5(b). The estimation errors obtained

FIGURE 4. Block diagram of the simulation study.

FIGURE 5. a) Tremor signal (in x-axis) from a typical novice subject in the
tracing task; b) tracking performance of QELM and ELM for 40ms horizon;
c) prediction error with QELM; d) prediction error with ELM.

with real-valued ELM and QELM are shown in in Fig. 5(c)
and Fig. 5(d), respectively. Due to cross-dimensional cou-
pling, QELM tracks the tremor signal characteristics more
accurately compared to ELM especially when there are
sudden changes in the tremor characteristics, as shown
in Fig. 5(b). The reduction in prediction error obtained with
QELM (Fig. 5(c)) compared to the error of ELM (Fig. 5(d))
highlights the influence of cross-dimension coupling to attain
accurate tremor prediction.

All the fivemethods have been employed for the tremulous
motion estimation (4ms horizon) and prediction tasks (20ms,
40 ms, and 60 ms as horizons) for all trials with the optimal
hyper-parameter set. Since the QwFLC algorithm was devel-
oped mainly for the purpose of modeling the tremor signal,
the results were only reported at 4 ms ahead estimation and
not considered for multi-step prediction tasks. The results are
shown in Fig. 6. The bar plot shows the average performance
and standard error for all methods obtained with all the trials
for a given task. The median accuracies for QELM, ELM-3D,
ELM-1D, LSSVM-1D, and QwFLC at the horizon of 4ms are
98.39%, 96.36%, 96.02%, 94.39%, and 63.35% respectively.
Results show that QELM outperforms real-valued counter-
parts LSSVM-1D, ELM-1D, & ELM-3D, and QwFLC for all
prediction horizons as shown in Fig. 6.

Comparison analysis performed between the variants of
ELM highlight the improvement in prediction accuracy with
the quaternion domain based modeling of tremor. Scat-
ter plots obtained with the prediction accuracy of QELM
for plotted against the prediction accuracies obtained with
ELM-1D and ELM-3D for all horizons and all trails are
shown in Fig. 7. For example if a circle marker (blue/red)
lies below the diagonal line, it denotes that QELM outper-
forms ELM-1D/ELM-3D. From Fig. 7, it can be seen that
for most of the trials, QELM provides better prediction accu-
racy compared to the real-domain counterparts. The better
prediction accuracy with QELM further highlights that the
QELM has successfully integrated the fast learning merits of
ELMand the cross-dimensional coupling from the quaternion
domain.

The similar analysis performed with ELM-1D and
ELM-3D show that both these methods have comparable
prediction performance, as shown in Fig 8. One plausible
reason is that the high-dimensional vectors in the feature
space generally pose challenge for learning algorithms to
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FIGURE 6. Performance comparison of QELM, ELM-1D, ELM-3D, and QwFLC for various prediction horizons. a)
Surgeon poin!ng task. b) Surgeon tracing task. c) Novice pointing task. d) Novice tracing task.

FIGURE 7. Comparison Analysis: QELM Vs ELM-1D and ELM-3D.

yield better generalization. For the tremor modeling with
ELM-3D, when an input vector is formulated by cascading
all three-axes information, the tremor modeling becomes

FIGURE 8. Comparison Analysis: ELM-1D Vs ELM-3D.

a high-dimensional feature space problem. A better regu-
larization technique is therefore required to train ELM-3D
for learning a better representation of the cross-dimensional
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couping in the feature space. Results obtained with QELM
underpin that the modeling in quaternion domain provides
better a representation of cross-dimensional coupling to
learn and hence obtains a better generalization compared
to ELM-3D.

All three variants of ELM outperformed the QwFLC for
tremor modeling, which underscores the merits of modeling
tremor motion with machine learning techniques. All the
methods showed larger standard deviation in error for large
prediction horizons, especially ELM-3D. With the increase
in prediction horizon, hypothetically, the complexity of map-
ping between the input and the target increases and it hamper
the performance of the employed method. The better per-
formance of QELM as compared to its real-valued counter-
parts demonstrates the suitability of quaternion domain based
method is suitable for modeling the tremulous motion. Com-
paring the results across pointing and tracing tasks, QELM
showed robust performance for all prediction horizons and
tasks. For completeness, we report that the QELM showed
larger standard deviation in error with the surgeon group as
compared to the novice subjects.

Statistical analysis (Wilcoxon sign-rank test [24]) was
conducted to assess the performance of QELM, ELM-3D,
ELM-1D, LSSVM-1D, and QwFLC at all the prediction
horizons. In this analysis, all the traces from both pointing
and tracing tasks are considered as one set for each algorithm.
The total number of samples for each algorithm are thus
equal to the number of trials in the experiment (N = 58).
Analysis was conducted by pairing-up two prediction meth-
ods at a time. Results obtained for each pair along with the
p-value and the effect size are tabulated in Table 1. ELM
variants when paired-up with QwFLC yielded a large effect
size, for example at prediction horizon of 4ms the effect size
of 0.87 is obtained (effect size of 0.5 is generally considered
as a large one). This large effect size highlights the signifi-
cant improvement in prediction accuracy with ELM variants
compared to the QwFLC. The pairs formed with QELM and

TABLE 1. Wilcoxin sign-rank test for tremor prediction.

TABLE 2. Computational Complexity for QELM, ELM-1D and ELM-3D.

other variants of ELM yielded large effect size irrespective
of prediction horizon, this highlights that the QELM out-
performs ELM-1D and ELM-3D on all prediction horizons.
The pair formed with QELM and LSSVM-1D yielded similar
effect-size of the pair formed with QELM and ELM variants.
However, at large prediction horizons, the p-value of QELM
is small and its effect size is almost similar to the median
effect. The small effect size obtained with the pair formed
by ELM-1D & ELM-3D and ELM-1D & LSSVM-1D for
all prediction horizons underline the similar performance
obtained with these methods.

E. RUN-TIME COMPUTATIONAL COMPLEXITY
Quaternion domain algorithms, in theory, are computation-
ally demanding compared to its real-domain counterparts.
As the tremor compensation necessitates real-time imple-
mentation, we analyzed the run-time computational complex-
ity of all prediction algorithms to demonstrate their real-time
applicability. For the sake of comparison, we used same num-
ber of training samples and hidden neurons for all algorithms.
Run-time computational complexity while training phase is
the time required to compute the mapping for QELM and
ELM methods; whereas in testing phase the amount of time
required to yield the prediction for every input sample is con-
sidered as the run-time. The experiments were conducted on
a platform with Intel Core(R) i7 processor and 32GB RAM.
The obtained run-time computational requirements are pro-
vided in Table 2. In line with theoretical analysis, the real-
domain counterparts of ELM are approximately 10 times
faster than the QELM while training phase. Training phase
however need not to be computed in real-time. After identi-
fying the mapping in training phase, the real-time applicabil-
ity is governed by the run-time complexity of algorithm in
testing phase. In surgical robotics applications, the hand-held
instruments has a sampling period of 4ms, thus the prediction
of future tremor samples must be computed in this limit. The
results shown in Table 2 highlight that all methods are capable
of predicting the future tremor samples within 1ms. This
runtime complexity provides adequate time for compensation
unit in hand-held instruments to generate the control signals
for accurate compensation. This analysis demonstrates the
real-time applicability of the proposed QELM algorithm for
surgical robotics applications.

IV. DISCUSSIONS
Multi-step prediction with the QELM was developed in this
work to counter the phase delay introduced by the digital
filters. Results showed that for all the prediction horizons,
the developed method yields better prediction accuracy than
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existing methods. Results further highlighted that the cross-
dimensional information learnt via the quaternion transfor-
mation improved the prediction accuracy compared to the
real-valued variants of ELM.

The instrument (iTrem2) has a specially designed all-
accelerometer inertial measurement unit to measure the
instrument tool tip position in 3-DOF according to the fixed
microscope reference frame [10]. For more details about the
inertial measurement unit of iTrem2, refer to [10]. The tremor
modeling method provides the control signal to manipulate
the tip position in 3D space based on the measured tip
position. The motion-space considered for the instrument is
therefore three dimensional (in position domain) and hence
the quaternion version of ELM is employed to model the
tremor in 3-DOF position domain. However, other variants
of hand-held instruments, for example Micron [8] and steady
hand [25], have incorporated 6-DOF (position and orienta-
tion) sensing units. With the innate parallel processing struc-
ture of ELMs, this approach can be extended to 6-DOF mod-
eling for other variants of hand-held instruments. However,
the success of this extension to 6-DOF depends on accurate
identification of the dependency across the six dimensions
and the formulated of embedded space for learning.

Although the performance of the proposed QELM is supe-
rior to the real-valued variants of ELM, all these variants
lack model-adaptation scheme to address the non-stationary
nature of tremor. The prediction performance therefore suf-
fers over the time, especially for large prediction horizons.
Adapting to the non-stationary characteristics of tremor sig-
nal can be addressed by a sequential learning scheme. This
learning scheme is readily available for real-domain vari-
ants of ELM [26]. However this scheme can not be readily
extended to the quaternion domain as the universal approx-
imation for ELM is yet to be established in the Hermitian
space. With the recent progress in the theory of quaternion
reproducing Kernel Hilbert space [27] and optimization in
quaternion domain [28], the kernel version of the QELMwill
be developed for tremor modeling across the six dimensions
in our future work and discussed elsewhere.

In this work, our prime focus is on physiological tremor
compensation with QELM. Subsequently, the QELMmethod
found applications in classification arena and obtained better
performance compared to its real-domain counter parts [29].
As such, the QELM method can be successfully applicable
to wide variety of applications such as prediction/filtering
of pathological tremor [30] and estimation of physiological
signals for wearable senors [31], [32] etc. Customization of
QELM for these applications and for the issues therein will
be discussed elsewhere.

V. CONCLUSIONS
Quaternion variant of ELM was proposed for multi-step pre-
diction of physiological tremor to counter the phase delay
induced by the digital filters in hand-held instruments. Suit-
ability of the QELM was evaluated by considering various
prediction horizons in-line with the delays of digital filters.

The improvement in tremor prediction performance with
QELM demonstrated that the QELM successfully integrated
the fast learning merits from ELM and the cross-dimensional
coupling from quaternion domain, as hypothesized. Com-
parison analysis and statistical tests preformed for various
prediction horizons highlighted that the QELM yielded better
prediction performance compared to the real-valued counter-
parts of ELM and other existing tremor modeling methods.
Run-time computational complexity of QELM ascertain its
real-time applicability.
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