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ABSTRACT The large-scale deployment of wireless sensor networks is indispensable to the success of
Internet of Things. Considering dynamic spectrum access and the limited spectrum resources in cognitive
radio sensor networks, sub-Nyquist spectrum sensing based on the modulated wideband converter is intro-
duced. Since the transmission signals are usually modulated by different carrier frequencies, the interested
spectrum can be modeled as the multiband signal. Modulated wideband converter (MWC) is an attractive
alternative among several sub-Nyquist sampling systems because it has been implemented in practice and
the frequency support reconstruction algorithm is the most important part in MWC. However, most existing
reconstruction methods require the sparse information, which is difficult to acquire in practical scenarios.
In this paper, we propose a blind multiband signal reconstruction method, referred to as the statistics multiple
measurement vectors (MMV) iterative algorithm to bypasses the above problem. By exploiting the jointly
sparse property of MMV model, the supports can be obtained by statistical analysis for the reconstruction
results. Simulation results show that, without the sparse prior, the statistics MMV iterative algorithm can
accurately determine the support of the multiband signal in a wide range of signal-to-noise ratio by using
various numbers of sampling channels.

INDEX TERMS Cognitive radio sensor networks, blind multiband signal reconstruction, sub-Nyquist
sampling, multiple measurement vectors, modulated wideband converter.

I. INTRODUCTION
As the Internet of Things develops into globalization grad-
ually, the ubiquity of wireless sensor networks (WSN) is
becoming imperative. In order to achieve efficient spectrum
utilization, the new paradigm of the cognitive radio sensor
networks (CRSN) has been drawn more attentions, which
integrates cognitive radio (CR) into WSN. This concept aims
to fuse the benefits of dynamic spectrum access into WSN.
Sensor networks are usually densely deployed, with hun-
dreds of nodes. However, there are few nodes transmitting
signals at a certain time, so it is not reasonable to allocate
spectrum for each node. Due to the scarcity of spectrum
resource, the best way to utilize spectrum resources is to share
spectrum, which is based on spectrum sensing technology.
Wideband spectrum sensing (WSS) has been widely rec-
ognized as an effective means to deal with the increasing
demand for broadband access and the scarcity of available

spectrum [1]. However, the increasing bandwidth brings a
great challenge to the implementation of conventional WSS
techniques, thus sub-Nyquist spectrum sensing attracts sig-
nificant attentions.

In CRSN, the active nodes achieve dynamic spectrum
access on spectrum holes. Therefore, the transmission signals
in CRSN are radio frequency (RF) signals, modulated by dif-
ferent carrier frequencies randomly. Many RF signals reside
within several continuous frequency intervals spreading over
a board spectrum range, which is modeled as the multi-
band signal [2], [3], depicted in Fig.1. The multiband signal
model is also an important signal in radar and communication
systems [4]–[6].

Landau [7] developed a minimal rate, called the Landau
rate for multiband signal to achieve prefect reconstruction
with the prior knowledge of bands locations and their band-
width. The Landau rate is equal to the total bandwidth of
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FIGURE 1. Illustration of the multiband signal model in a CRSN.

multiband signal. However, it is just a minimal sampling rate
requirement for an arbitrary sampling mode. The multiband
feature of the signals in the frequency domain is exploited
to achieve the signal reconstruction from finite samples and
the uniform sampling rate is set by the bandwidth of single
sub-band, which can reduce the sampling rate [8].

Periodically nonuniform sampling was studied in [9]–[12],
which allowed the lower average rate approaching the Landau
rate for bandpass and multiband signals. In [9], nonuniform
periodic sampling was given as a generalization of the classi-
cal sampling theorem and coest sampling was proposed as a
representative. And periodic nonuniform samples from sev-
eral components with different phases were used to achieve
exact reconstruction, but its sampling pattern, called mini-
mum rate sampling must satisfy the relevant theorem [10].
Minimum rate sampling also can process themultiband signal
with arbitrary frequency support [11]. Periodically Nonuni-
form Sampling of Lth-order can be considered as the pro-
totype of multicoest sampling, which can recover a broader
class of bandpass or multiband signals [12]. At this point,
based on periodically nonuniform sampling, a theoretical
study on sub-Nyquist sampling ofmultiband signals is carried
out and some conclusions are given, such as perfect recon-
struction formula, bounds on aliasing error and a necessary
condition on the optimal sampling density [13]–[16]. All
above mentioned sampling schemes require exact knowledge
of the spectrum support to recover the original multiband
signal from the samples.

With the emergence of the compressed sensing (CS) the-
ory, it brings an opportunity for blind processing of the multi-
band signal, in which the exact location of each sub-band is
no longer needed. Meanwhile, the sparse multiband structure
is also considered as the basis for exploiting the CS theory
and the requirement for realizing the sub-Nyquist sampling.
There are several common sub-Nyquist sampling systems,
such as an analog to information converter (AIC), a multi-rate
sampling (MRS), a multicoset sampling (MCS) and a mod-
ulated wideband converter (MWC). AIC system has single
sampling channel, which contains a pseudorandom demodu-
lator and a low rate sampler [17]. But it can only deal with dis-
crete multitone signal (i.e. sinusoids with sparse frequencies),
unable to process the signal with wideband sub-bands.

The other three sub-Nyquist systems belong to multi-
channel structure. MRS includes multi-rate asynchronous
sampling [18] and multi-rate synchronous sampling [19].
The asynchronous sampling scheme does not require
the knowledge of the time offset between the sam-
pling channels, which makes hardware implementation
simple. The sufficient condition for an accurate reconstruc-
tion is that the frequency support of the multiband signal
must be unaliased in at least one of the sampling channels.
However, the synchronous scheme is more complex because
of synchronization. But it can reconstruct a signal in many
cases, not limited to the above case in the asynchronous
scheme. MCS system has a universal sampling pattern,
in which there are a bank of ADCs clocked at the same
rate to sample signals at different delays [20]. The accurate
control of time delay becomes the biggest obstacle for the
success reconstruction, and it also makes the system more
complex and expensive. Asynchronous coprime sampling
was proposed in [6]. Compared to the conventional MCS,
it has fewer samplers and does not require synchronous clock
phase, but the clock phase needs to be compensated in the
reconstruction stage and the start time differences between
two samplers should be measured. MWC system also can
achieve blind processing for the multiband signal [21]. It has
a fixed analog front end to pre-process the input multiband
signal in multiple channels simultaneously, in which the input
signal is multiplied by a bank of periodic waveforms, filtered
by a lowpass filter, and then sampled uniformly by a low-rate
ADC. Meanwhile, both ADC and DSP rates are substantially
belowNyquist. Above all, MWC hardware has been available
and it can be implemented with off-the-shelf ADCs [22].
Though the precision that MWC can achieve is lower than
that ofMCS at the same total sampling rate, its error range can
be accepted in practice applications and MWC has attracted
increasingly more attention.

Since most sub-Nyquist sampling systems are based on
the CS theory, many CS reconstruction algorithms can
be used for reference. A partial list includes orthogo-
nal matching pursuit (OMP) [23], regularized orthogonal
matching pursuit (ROMP) [24], stagewise orthogonal match-
ing pursuit (StOMP) [25], subspace pursuit (SP) [26] and
CoSaMP [27]. These algorithms are proposed to solve the
single measurement vector (SMV) problem, which do not
apply to the multiband signal. However, the reconstruction
for the multiband signal can be transformed to multiple mea-
surement vectors (MMV) problem [20]. There are several
reconstruction algorithms to solve MMV problem for the
multiband spectrum processing [28]. In [29], it has devel-
oped performance limits for support reconstruction of sparse
signals based on MMV and the proposed methodology also
has the potential to address other theoretical and practical
issues associated to sparse signal reconstruction. In order to
solve the problem of jointly sparse reconstruction, five greedy
algorithms designed for SMV sparse approximation problem
have been extended to the MMV problem [30]. Another
novel approach to obtain the solution of a sequence of SMV
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problems with a joint support has been presented, which
could be adaptive to solve it as a sequence of weighted SMV
problems rather than collecting the measurement vectors and
solving the MMV problem [31]. The multiband signal has
the feature of the group sparsity, which can be used to achieve
reconstruction, such as blockMMV algorithm [32] and group
binary compressive sensing method [33]. And block MMV
algorithm uses block coherence to recover multiband signals,
making computational process easy. Since MWC has drawn
more attentions, many other improved algorithms based on
MWChave been proposed, including simultaneous smoothed
`0 norm (SL0) [34], iterative support detection (ISD) [35] and
sparse Bayesian learning (SBL) [36].

As mentioned above, MWC system is an attractive alter-
native among several sub-Nyquist sampling systems because
it has been implemented in practice and most reconstruction
algorithms are proposed to solve the MMV problem based on
MWC. In MWC, the interested spectrum is divided into sev-
eral intervals and each interval has its label. All labels of the
occupied spectrum intervals make up a frequency support set.
Therefore, to recover the frequency support is to acquire the
spectrum status occupancy information, which is the pur-
pose of spectrum sensing. In order to recover the accurate
frequency support, several MMV-based reconstruction algo-
rithms need the sparse prior information, namely the number
of sub-bands. According to the prior knowledge, the new
data frame must be constructed by the sub-Nyquist samples
and this data frame is used to recover the frequency support
through the reconstruction algorithms. Specially, this opera-
tion is necessary for the accuracy of reconstruction results.
However, the number of sub-bands is difficult to obtain in
practical applications, especially in spectrum sensing scenar-
ios. In CRSN, we consider a distributedMWC-based scheme,
which regards one sensor node as one sampling channel and
combines MWC technology with a sub-Nyquist spectrum
sensing network perfectly [37]. In this paper, we propose a
blind multiband signal reconstruction method, referred to as
the statisticsMMV iterative algorithm to achieve sub-Nyquist
spectrum sensing. This method can recover the frequency
support without the prior information about the number of
sub-bands. Different from other MMV-based reconstruction
algorithms, the MMV model is no longer used to simplify
the algorithm in the proposed algorithm. Each measurement
vector inMMVmodel is used to recover the information as an
individual respectively, and then combining the characteristic
of MMV jointly sparse, we analyze all the reconstruction
results from a statistical point of view. Finally, the frequency
support set of the multiband signal can be obtained. For each
measurement vector reconstruction, the optimization iterative
method is exploited. By statistical analysis, the proposed
algorithm can be used to realize the support information
reconstruction without the sparsity prior.

The remainder of this paper is organized as follows.
In Section II, the MWC sub-Nyquist sampling system is first
briefly reviewed. Then, the statistics MMV iterative algo-
rithm is proposed in Section III. Finally, simulation results are

presented in Section IV for demonstrating the performance of
the proposed approach.

II. MODULATED WIDEBAND CONVERTER
The multiband signal x (t) is continuous and bandlimited
to F=

[
−1
/
2T , 1

/
2T
]
. Formally, the Fourier transform of

x (t) is defined by

X (f ) =
∫
∞

−∞

x (t) e−j2π ftdt (1)

The Nyquist rate of x (t) is denoted by fNyq = 1
/
T . For

the multiband signal x (t), X (f ) = 0 for every f /∈ F and
the frequency support of X (f ) contains within a union of N
disjoint bands in F , as well the bandwidth of each sub-band
does not exceed B.

MWC system is considered as an attractive alternative to
process the multiband signal and it is also the successful
example to extend the CS theory from discrete domain to
analog domain. Since the energy of multiband signal does not
cover the whole frequency range, it provides the opportunity
to sample such a signal at low rate below the Nyquist rate.
Meanwhile, the sparse characteristic of the multiband signal
is the basis for adopting the CS theory. InMWC system, there
are two parts, namely the sub-sampling stage and the signal
reconstruction phase.

A. SUB-SAMPLING
MWC system has a fixed analog mixing front-end, which
belongs to multichannel parallel structure. There are a mixer,
a low pass filter and a sampler in each sampling channel.
As shown in Fig.2, MWC system contains m parallel sam-
pling channels.

FIGURE 2. The sub-Nyquist sampling stage in MWC.

The purpose of mixer operation is to make the spectrum
of the multiband signal extend periodically and the spectrum
portion from each sub-band can appear in the baseband. This
operation is similar to spread-spectrum technology.

The mixing function pi (t) is Tp-periodic and piecewise
smooth, like a pseudo-random sequence. Here, pi (t) is cho-
sen as a piecewise constant function that alternates between
the levels ±1 for each of M equal time intervals, depicted
in Fig.3. Formally,

pi (t) = αik , k
Tp
M
≤ t ≤ (k + 1)

Tp
M
, 0 ≤ k ≤ M − 1

(2)
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FIGURE 3. The mixing function pi
(
t
)
.

with αik ∈ {+1, −1} and pi
(
t + nTp

)
= pi (t) for every

n ∈ Z .
For the ith channel, the mixing function pi (t) has a Fourier

expansion,

pi (t) =
∞∑

l=−∞

cile
j 2πTp lt (3)

where,

cil =
1
Tp

∫ Tp

0
pi (t) e

−j 2πTp ltdt (4)

Next, themixing function is applied to themultiband signal
x (t), obtaining the modulated signal x̃i (t) = x (t) pi (t).
Its Fourier transform is evaluated as

X̃i (f ) =
∫
∞

−∞

x̃i (t) e−j2π ftdt

=

∫
∞

−∞

x (t)

(
∞∑

l=−∞

cile
j 2πTp lt

)
e−j2π ftdt

=

∞∑
l=−∞

cilX
(
f − lfp

)
(5)

where X (f ) is the Fourier representation of x (t) and
fp = 1

/
Tp.

After mixer, the spectrum of the modulated signal achieves
periodic expansion, causing spectrum aliasing. Subsequently,
a linear combination of fp-shift copies of X (f ) is acted as the
input of low pass filter with cutoff 1

/
(2Ts), as shown in Fig.4.

After low-pass filtered, only the spectrum in baseband is
retained, containing spectrum information from each sub-
band. Finally, the filtered signal is sampled uniformly at low
rate fs = 1

/
Ts. The sampling rate is matched to the cutoff

frequency of low pass filter.
The period Tp determines the aliasing of X (f ) by setting

the shift intervals to fp = 1
/
Tp and we choose fp ≥ B so that

FIGURE 4. Frequency response of low pass filter.

each sub-band itself is no aliasing. In practice fp is chosen
slightly more than B to avoid edge effects. In order to get the
whole information of each sub-band, the relationship between
fp and fs must satisfy fs ≥ fp. The simplest choice fs = fp ' B
allows the lowest sampling rate of each sampling channel.
The overall sampling rate of MWC is equal to the product
of channel number m and single channel sampling rate fs,
namely fsys = m · fs. Actually, this sampling rate is much
lower than the Nyquist rate, so it is called a sub-Nyquist rate.

B. RECONSTRUCTION
The uniform sequence yi [n] from the ith channel contains
only frequency in F and its discrete-time Fourier trans-
form (DTFT) is expressed as

Yi
(
ej2π f Ts

)
=

∞∑
n=−∞

yi [n] e−j2π fnTs

=

+L0∑
l=−L0

cilX
(
f − lfp

)
(6)

L = 2L0 + 1 denotes the amount of periodic spread spec-
trum in the Nyquist frequency range. Rewrite (6) in matrix
form as

Y (f ) = Az (f ) (7)

where Y (f ) is a vector of length m with ith element yi (f ) =
Yi
(
ej2π f Ts

)
, the DTFT of yi [n]. The matrix A contains the

coefficients cil and z (f ) consists of fp-shifted copies of X (f ).
Equation (7) is similar to the typical CS problem and

can be solved referring to the CS reconstruction algorithms.
In MWC, continuous to finite (CTF) block is used to recover
the frequency support, depicted in Fig.5.

FIGURE 5. Continuous to finite block.

First, a data frame V is constructed as follows,

Q =
∫
f ∈Fs

y(f )yH (f )df =
+∞∑

n=−∞

y[n]yT [n] (8)

The matrix V is obtained by Q = VVH . Then, next step is
to solve V = AU for the sparsest matrix Ū and get its support
S = ∪supp

(
Ū
)
. It can be proved that the sparsest matrix Ū

has the same frequency support as X (f ). According to the
support information, the analog multiband signal x (t) can be
recovered.

However, in order to recover the accurate frequency sup-
port, the frame V construction must meet the requirement,
which is rank (V ) ≤ 2N in terms of the prior knowledge.
This operation is to separate the signal space and noise
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space, so as to reduce the influence of noise on the sup-
port reconstruction. Otherwise, it will have a huge impact
on the reconstruction results. It means that the sparse prior
information is required by both data frame construction and
the support reconstruction process. In the support recon-
struction stage, the prior is used to terminate the iteration
process.

Section III describes another algorithm to solve (7), which
can avoid the above problem.

III. ALGORITHM DESCRIPTIONS
InMWC, the frequency support reconstruction is transformed
into solving MMV problem. For many cases in CS theory
framework, MMV is considered as a potential condition to
simplify the CS reconstruction algorithms. Several meth-
ods based on MMV model can improve the reconstruction
performance and fewer measurements are needed. However,
in this paper, it can be used to realize the support information
reconstruction without the sparsity prior. In MMV model,
nonzero locations in each measurement vector are similar
to each other. With no prior knowledge, the position of the
nonzero can be found by comprehensive analysis of the result
from each measurement vector and then the signal frequency
support set is obtained.

A. MMV SIGNAL MODEL
In the MMV setting, the typical problem is described as
follow,

Y = A · X (9)

where Y is a combination of s measurements and vector xi,
1 ≤ i ≤ s is the column of matrix X .
Specially, each vector xi is k-sparse and exhibit the same

indices for their nonzero locations. This is the so-called
jointly sparse. There will be at most k nonzero rows in X ,
which means the nonzero values occur on a common location
set. An example of such a matrix X is depicted in Fig.6.
In Fig.6 (a), the sparse vectors (s = 6) share a common sup-
port. Each square corresponds to a vector entry, in which the
filled squares represent nonzero elements and blank squares
indicate zeros. The corresponding matrix X = [x1 x2 · · · xs]
has a small number of nonzero rows in Fig.6 (b).

B. OPTIMIZATION PROBLEM ANALYSIS
Referring to the classical formula of CS theory, equation (7)
can be written,

ẑ (f ) = argmin ‖z (f )‖0 s.t. Y (f ) = Az (f ) (10)

where

Y (f ) =


y1 (f )
y2 (f )
...

ym (f )

, z (f ) =


X
(
f +L0fp

)
X
(
f +(L0−1) fp

)
...

X
(
f −L0fp

)
 (11)

FIGURE 6. MMV signal model.

Since yi (f ), 1 ≤ i ≤ m and X
(
f − lfp

)
, −L0 ≤ l ≤ L0 are

not values but row vectors, rewrite Y (f ) and z (f ) as follow,

Y (f ) =


y1 (f )
y2 (f )
...

ym (f )

 =

y11 y12 · · · y1s
y21 y22 · · · y2s
...

...
. . .

...

ym1 ym2 · · · yms


=
[
ỹ1 ỹ2 · · · ỹs

]
(12)

and

z (f ) =


X
(
f + L0fp

)
X
(
f + (L0 − 1) fp

)
...

X
(
f − L0fp

)


=


X−L0,1 X−L0,2 · · · X−L0,s
X−L0+1,1 X−L0+1,2 · · · X−L0+1,s

...
...

. . .
...

XL0,1 XL0,2 · · · XL0,s


=
[
x̃1 x̃2 · · · x̃s

]
(13)

where ỹj =
[
y1j, y2j, · · · , ymj

]T , 1 ≤ j ≤ s is am×1 column
vector and x̃j =

[
X−L0,j, X−L0+1,j, · · · ,XL0,j

]T , 1 ≤ j ≤ s is
a L × 1 column vector, L = 2L0 + 1. s denotes the length of
multiple measurement vectors.

In order to solve the problem (10), we need to estimate z (f )
from Y (f ) by minimizing the objective function,

J (z) = ‖Y (f )− Az (f )‖22 =
s∑
j=1

∥∥ỹj − Ax̃j∥∥22 (14)

The function J (z) can be minimized by minimizing each
term

∥∥ỹj − Ax̃j∥∥22 individually to obtain x̃j, for 1 ≤ j ≤ s. And
we need only consider the scalar minimization of the function

R (x̃) = ‖ỹ− Ax̃‖22 (15)
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The majorization-minimization (MM) approach [38] can
be used to solve the problem for the minimization of (15),
because R (x̃) cannot be easily minimized, but a new function
is needed. According to [39], the new function form can be
chosen,

Gk (x̃)=‖ỹ−Ax̃‖
2
2+(x̃−x̃k)

T
(
αI−ATA

)
(x̃−x̃k) (16)

where the scalar parameter α must be equal to or greater than
the maximum eigenvalue of ATA.

Following the MM procedure, we need to minimizeGk (x̃)
to obtain x̃k . Expanding Gk (x̃) in (16) gives

Gk (x̃) = (ỹ− Ax̃)
T (ỹ− Ax̃)

+ (x̃ − x̃k)
T
(
αI − ATA

)
(x̃ − x̃k)

= ỹT ỹ+ x̃Tk
(
αI − ATA

)
x̃k

− 2
(
ỹTA+ x̃Tk

(
αI − ATA

))
x̃ + αx̃T x̃ (17)

Then, it is easily to minimize Gk (x̃),

∂

∂ x̃
Gk (x̃) = −2AT ỹ− 2

(
αI − ATA

)
x̃k + 2αx̃ (18)

Next, let ∂
∂ x̃Gk (x̃) = 0,

x̃ = x̃k +
1
α
AT (ỹ− Ax̃k) (19)

Finally, the iterative formula to solve the problem for the
minimization of (15) is obtained,

x̃k+1 = x̃k +
1
α
AT (ỹ− Ax̃k) (20)

In this approach, an iteration stop condition can be set by
using two numeric residuals. However, the results is just to
recover each x̃j, for 1 ≤ j ≤ s and x̃j is badly effected by noise.
We can analyze the all x̃j from the statistical point of view and
then, the frequency support can be finally obtained. In this
paper, the statistics MMV iterative algorithm is proposed
to exploit the MMV model and statistics analysis method
to achieve the reconstruction of the joint sparse vector for
adaptive sparsity.

C. STATISTICS MMV ITERATIVE ALGORITHM
The proposed statistics MMV iterative algorithm is first to
obtain the sparse vector x̃j from each measurement vector ỹj
exploiting the above iterative method. Then, the frequency
support information of each x̃j can be acquired to make a
statistical analysis. Finally, the frequency support set of the
multiband signal is got by combining the characteristic of
joint sparse. The implementation of statistics MMV iterative
algorithm is given in Fig.7.

In the iteration process, a non-linear operationHh is added.
The specific method is to retain the half elements with the
largest magnitude of x̃j and make the other remaining ele-
ments equal to zero. Since the noise exists, all the elements
in x̃j have the magnitude. After this operation, it can reduce
the amount of computation to speed up the iteration process.

FIGURE 7. Statistics MMV iterative algorithm.

Here, the iteration termination condition is no longer the
sparse condition, but the mean square error

R (x̃) = ‖ỹ− Ax̃‖2 < ε (21)

where ε denotes the threshold value.
In the statistical analysis phase, all sparse column vec-

tors x̃j are considered together to make up a matrix Z =[
x̃1, x̃2, · · · , x̃s

]
and we use this matrix to make a statistical

analysis. The first step is to compute the average of Z row by
row and make the elements of each row in Z compare to the
corresponding average. Next, if the element is larger than its
corresponding average value, it will be set to one. Otherwise,
it will be set to zero. We will get another L× smatrix D with
the element 1 or 0 and compute the sum of each row element
of matrix D to get a L × 1 judgment vector P.

Since the spectrum of the multiband signal is symmetric
in frequency domain, the frequency support is also symmet-
ric. In general, we consider the multiband signal within one
sub-band signal to simplify the analysis. Divide the inter-
ested spectrum into L intervals of length fp and use number
l,−L0 ≤ l ≤ L0 as labels for each interval. Supposed that the
two parts of sub-band signal locate in interval l and l ′, which
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are symmetric, the relationship between the labels l and l ′ is

l + l ′ = L + 1, L = 2L0 + 1 (22)

Then, we fold up the judgment vector P and calculate
the sum of the corresponding overlap elements. Specifically,
the elements with labels l and l ′ are added, where l and l ′

satisfy the relationship (22). The purpose is to enhance the
credibility of the results. According to the joint sparsity,
the large elements in P is likely to denote the support set
with great possibilities. Finally, if the value of element in P
is larger than that of the half length of multiple measurement
vectors, its corresponding position is determined as the sup-
port position.

As we can see, the proposed algorithm does not need to
construct the other data frame and the sparse prior knowledge
is also not required to run the CS reconstruction algorithm.

IV. SIMULATION RESULTS
In this section, we will verify the above algorithm and com-
pare the performance along with several CS reconstruction
algorithms based MMV. Here, we choose the QPSK signal as
the type of the sub-band signal,

x (t) =
N /2∑
i=1

√
2Esi
Tsi


∑
n
I [n] s (t − nTs) cos (2π fit)

+
∑
n
Q [n] s (t − nTs) sin (2π fit)


(23)

where N denotes the number of the sub-bands and one sub-
signal has two symmetrical sub-bands. The symbol duration
Tsi = 4 × 10−2µs and the symbol energy Esi is random
selection. There are n = 150 symbols generated uniformly
at random. The carriers fi are chosen uniformly at random
over a wideband range within [0, 2GHz], which means the
Nyquist rate fNyq is up to 4GHz.
In the sampling stage, the frequency of the mixing function

fp is set to 25.2 MHz, slightly larger than the bandwidth of
sub-band B = 1

/
Tsi. In order to minimize the sampling

rate, the sampling rate fs in each channel equals to fp. More-
over, the white Gaussian noise ω is added and define the
desired signal-to-noise ratio (SNR) 10 log

(
‖x‖2

/
‖ω‖2

)
to

scale. In Fig.8, the multiband signal composed of three QPSK
signals, N = 6 is shown and SNR = −5dB. The proposed
statistics MMV iterative algorithm is used to recover the
signal supports with m = 30 sampling channels. The signal
processing results shows that the proposed algorithm can
accurately locate the sub-band position.

FIGURE 8. Spectrum comparison diagram of signal reconstruction.

FIGURE 9. Percentage of correct support reconstruction, when SNR = 5dB.

The most important step to reconstruct the multiband sig-
nal is to recover the frequency support. Generally speaking,
correct support reconstruction is considered when the esti-
mated support set contains all true supports, represented by
empirical reconstruction rate. To evaluate the performance
of the proposed statistics MMV iterative reconstruction
algorithm, we compare it with several reconstruction algo-
rithms based on MMV, such as MMV-OMP, MMV-ROMP,
MMV-StOMP, MMV-SP, MMV-CoSaMP. Fig.9 reports the
percentage of correct support recoveries for various numbers
of sampling channels and Fig.10 shows the reconstruction
performance for several SNRs.

FIGURE 10. Percentage of correct support reconstruction, when sampling
channels m = 40.

An obvious trend which appears in all results is that the
reconstruction rate is proportional to the number of channels
used for reconstruction and inversely proportional to the SNR
level. Overall, the proposed algorithm has the good behavior
in the condition of less sampling channels and there is no
obvious advantage for SNR level. But it is worth noting that
the other MMV-based algorithms must undergo the separa-
tion process between signal and noise, which needs the sparse
prior knowledge. The proposed algorithm skips the space
separation process and such prior information is no longer
needed.

Fig.11 shows the performance of all above algorithms
for different numbers of sub-bands, in other words, for dif-
ferent sparsity. Since the number of sub-bands grows, all
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FIGURE 11. Percentage of correct support reconstruction, when
SNR = 0dB and m = 50.

correct support reconstruction rates decrease and the pro-
posed algorithm, by contrast, has better performance.

For multiband signal processing, the mentioned empirical
reconstruction rate reflects the probability of accurate posi-
tioning for the locations of sub-bands and a few additional
entries caused by noise are not considered, which uses the
probability of false targets to measure. In this paper, the prob-
ability of accurate positioning Pap and the probability of false
targets Pft are defined as follows,

Pap =

L∑
l=1

[(dl = 1) ∩ (d̂l = 1)]

L∑
l=1

(dl = 1)

(24)

Pft =

L∑
l=1

[(dl = 0) ∩ (d̂l = 1)]

L∑
l=1

(dl = 0)

(25)

where dl and d̂l denote the spectrum state and detection result
of the lth spectrum interval respectively,

dl =

{
0, Status : idle
1, Status : occupied

(26)

d̂l =

{
0, Result : idle
1, Result : occupied

(27)

The proposed algorithm performs statistical analysis on
several iterative results from multiple measurements, which
is thought to greatly prolong the processing time. But we

FIGURE 12. Probability of accurate positioning, when SNR = 0dB and
m = 50.

FIGURE 13. Probability of false targets, when SNR = 0dB and m = 50.

can use partial measurements for reconstruction, not all of
them. Fig.12 and Fig.13 report the probability of accurate
positioning and the probability of false targets versus the
percentage of all the measurements. The number of measure-
ments used in the proposed algorithm can be appropriately
reduced according to practical application requirements.

V. CONCLUSION
In this paper, a blind multiband signal reconstruction method,
referred to as the statistics MMV iterative algorithm, is pro-
posed to achieve sub-Nyquist spectrum sensing in CRSN. The
statistics MMV iterative algorithm is an MWC-based sub-
Nyquist scheme for support reconstruction. By exploiting the
properties of multiple measurement vectors from MWC and
statistical analysis, the frequency support set of the multi-
band signal can be obtained. Simulations results show that,
even with no prior knowledge, the statistics MMV iterative
algorithm can achieve high empirical reconstruction rate for
a wide range of SNR in additive white noise channel and
various numbers of sampling channels, as well as robust
recovery performance with different numbers of occupied
bands.
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