
Received June 10, 2018, accepted July 19, 2018, date of publication July 24, 2018, date of current version September 5, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2859351

An Agreement Under Early Stopping and
Fault Diagnosis Protocol in a Cloud
Computing Environment
MAO-LUN CHIANG1, CHIN-LING CHEN 2,3, AND HUI-CHING HSIEH4
1Department of Information and Communication Engineering, Chaoyang University of Technology, Taichung 41349, Taiwan
2Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung 41349, Taiwan
3School of Information Engineering, Changchun Sci-Tech University, Changchun 130600, China
4Department of Information Communication, Hsing Wu University, New Taipei 24452, Taiwan

Corresponding author: Chin-Ling Chen (e-mail: clc@mail.cyut.edu.tw)

ABSTRACT With its explosive development, the Internet has come to offer an increasing multitude of
online service applications. In order to better facilitate such services, a cloud computing environment,
composed of a large number of processors and memories, high-speed networks, and various applications,
has been developed, and continues to grow, providing convenient and quick network services. In this cloud
computing environment, each server processor in the environment must cooperate with other processors to
satisfy various user demands. As a result, the issue of fault-tolerance needs to be revised in order to ensure
the reliability of cloud computing environments. One of the most important issue of fault-tolerance is the
Byzantine agreement (BA), which requires that, even if some components are damaged, a set of fault-free
service processors are able to agree on a common value. Furthermore, the faulty service processors must be
detected and eliminated. Therefore, a fault diagnosis agreement (FDA) issue for such environments must also
be revised simultaneously. The goal of FDA is to enable each fault-free service processor to detect/locate
a common set of faulty service processors. However, a lot of messages need to be collected to solve the
BA and FDA problem in the previous works. Thus, this paper also uses the concept of an early stopping
protocol (ESP) to allow its participants to obtain common values early, during different rounds. Furthermore,
the result of ESP can then be used to detect/locate the maximum number of faulty service processors with
dual failure modes efficiently, using the minimum number of rounds. As a result, the early diagnosis cloud
agreement protocol can be proposed to solve the BA, ESP, and FDA problems simultaneously to provide
greater computing abilities by enhancing the reliability of a cloud computing environment.

INDEX TERMS Diagnosis, early stopping, eventual byzantine agreement, fault tolerance.

I. INTRODUCTION
Cloud computing [5], [13], [15] evolved from grid com-
puting [28] and distributed systems [10], [11]. The goal of
cloud computing is to enhance the next generation of data
centers and to offer users leased services based on quality of
service (QoS) [24], [39]. Cloud services fall into three cate-
gories: Infrastructure as a Service (IaaS), Platform as a Ser-
vice (PaaS)[14], [26] and Software as a Service (SaaS) [27].

IaaS services include servers, storage spaces, virtual
devices and other core infrastructures, enabling users to store,
execute and compute on hardware resources provided by
the vender via virtual technologies. PaaS services include
databases, network servers and development tools, and allow
users to develop a number of services via this platform. SaaS
services involve software developed by the cloud provider

which allows users to utilize services without installing any
programs. However, if components of the cloud computing
environment fail, then cloud computing services will be ter-
minated. Cloud services thus need to ensure that correspond-
ing activities continue to function, and enhance the reliability
of the cloud computing environment, even if some component
breaks down. In addition, faulty service processors must be
identified and removed to enhance the overall performance of
the entire system. Therefore, the traditional Byzantine Agree-
ment (BA) [18], [21], [22], [31]–[38] and Fault Diagnosis
Agreement (FDA) [17], [30], [35] must be revised to ensure
the reliability of cloud computing environments.

The BA problem was presented by Lamport in 1982 [21],
and was solved to make n processors agree on a common
value, even if t faulty processors exist (t represents the

44868
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-4958-2043

M.-L. Chiang et al.: Agreement Under Early Stopping and Fault Diagnosis Protocol in a Cloud Computing Environment

number of faulty processors and t ≤ b(n−1)/3c) in a dis-
tributed system.

In addition, the goal of the FDA problem is to have each
fault-free processor detect/locate a faulty component by using
the minimal number of message exchanges. However, previ-
ous protocols require a large number of messages to achieve
an agreement and detect/locate faulty service components
in a cloud computing environment. Thus, this paper revises
the related Early Stopping Problem (ESP) [1], [9], [20] in
order to reduce the number of message exchanges. The result
is an efficient and suitable protocol, EDCA (Early Diag-
nosis Cloud Agreement) for improving the reliability of a
cloud computing environment by detecting/locating a max-
imal number of faulty components under a dual failure mode
using minimal message exchange rounds.

The remainder of this article is arranged as follows.
Section 2 describes previous work and underlying assump-
tions made in this study. Section 3 gives a detailed description
of the proposed protocol. Section 4 provides examples of the
proposed protocol. Section 5 demonstrates the correctness
and complexity of the proposed protocol, and conclusions are
offered in Section 6.

II. PREVIOUS WORK AND UNDERLYING ASSUMPTIONS
In general, cloud computing is a novel concept of a decentral-
ized system, and is an environment with large-scale comput-
ing and scalable IT-related capabilities. It can provide a large
number of applications to multiple users using network com-
munication. The cloud providers serve various applications
and general purpose computing infrastructures by using virtu-
alizations of those infrastructures for different customers. The
more popular examples are Google [14], IBM Blue Cloud
[19], and Amazon [3].

The Google application, offers free storage and powerful
computing capacity, as in Gmail and YouTube [2]. In addi-
tion, users can use SDKs and APIs to build web applications
using the Google App Engine in a developed platform.

In order to provide virtual servers, computing and stor-
age services, current cloud providers set up data centers in
different locations, as in the Cloud Exchange (CEx) shown
in Figure 1 [5]. In other words, the cloud service providers
integrate available resources to the cloud, the cloud coordina-
tors allocate the resources on the CEx through categories and
arrangements, and the user negotiates with cloud coordinators
to acquire various services on demand.

However, the cloud manager/coordinator dispatches user-
required resources to processor clusters, and each service
processor must be able to cooperate with others in its clus-
ter, even if some components are faulty. Therefore, relia-
bility [6], [23] is an important issue of cloud computing
environment.

This study focuses on the Byzantine Agreement (BA)
[21], [22], [29], which is the most important element of
reliability. It allows each fault-free processor to achieve an
agreement for reliable computing [10], [11], [21], [31], [32]
in an environment where some processors may be faulty.

FIGURE 1. Cloud service architecture.

Examples of applications that emphasize this fact include
commitment problems in distributed database systems [8],
[10]–[12], and clock synchronization problems [8], [12].
Therefore, the BA problem is most applicable for dis-
cussion and revision for application in cloud computing
environments to enhance system reliability. Various pro-
posed BA protocols toned to meet the following require-
ments [6], [10], [11], [18], [21], [31], [32], [37], [38]:
Agreement: All fault-free processors agree on a common

value v.
Validity: If the initial value of the source is vs and the source

is fault-free, then all fault-free processors shall agree on the
value vs; i.e., v = vs.

There are two types of processor fault symptom: dor-
mant faults, and arbitrary faults [12]. Dormant faults include
missed and broken messages, and are easily detected. Mali-
cious faults, however, are more difficult to address due
to their unpredictable and damaging behavior. Fischer and
Lynch [12] found that even if only one dormant faulty proces-
sor exists, agreement cannot be achieved in an asynchronous
network. Therefore, the Byzantine Agreement (BA) problem
must be considered under a synchronous network inwhich the
processing boundary and the communication delays of fault-
free components are finite [12].

In this study, once BA is achieved, the exchangedmessages
can be collected and used to detect/locate faulty components.
For this reason, the Fault Diagnosis Agreement (FDA) prob-
lem [7], [17], [35] must also be reviewed. The FDA issue is
closely related to BA problem. The main approach of FDA is
to collect messages that have accumulated in a round of mes-
sage exchange [22] as evidence for detecting/locating faulty
processors. This is because faulty processors may exhibit the
symptoms of a modified message, and those symptoms can
be used to detect/locate faulty processors. Once the FDA is
implemented, the performance and integrity of a distributed
network can be guaranteed. Besides, the proposed FDA pro-
tocol must meet the following conditions:
∗Agreement: All fault-free processors can identify the

common set of faulty processors.

VOLUME 6, 2018 44869

M.-L. Chiang et al.: Agreement Under Early Stopping and Fault Diagnosis Protocol in a Cloud Computing Environment

∗Fairness: No fault-free component is incorrectly detected
as faulty by any fault-free processor.

In previous FDA studies, Hsiao et al. [17] proposed an
evidence-based FDA protocol, FDAMIX, to solve the FDA
problem under dual failure mode (including arbitrary and
dormant faults). FDAMIX uses the messages received in the
BA protocol GPBA [31] designed for dual faults as evidence
for detecting/locating faulty components.

However, the FDAMIX protocol still requires fa + 2 (fa ≤
b(n−1)/3c, where fa is the number of processors with mali-
cious faults) rounds of message exchange, because the GPBA
requires fa + 1 rounds of message exchange to solve the
BA problem, even if the number of faulty processors is less
than fa. Since message passing is a time-consuming phase,
the number of messages increases the load of the protocol.
Therefore, it is unreasonable and inefficient in a distributed
system. Based the above, the previous EFDA [7], [9] is pro-
posed to detect/locate faulty components early in a distributed
network with dual failure of processors. However, EFDA still
requires a large number of messages in a cloud computing
environment. This paper therefore combines the concept of
early stopping and fault diagnosis to achieve the goal of
BA and FDA efficiently and quickly in a cloud computing
environment.

In general, BA protocols [1], [9] require each fault-
free processor to achieve agreement and stop the message
exchange in the same round when the number of tolerable
arbitrary processor faults is (fa) in a distributed system. This
kind of agreement is called Immediate Byzantine Agree-
ment (IBA) [9]. Dolev [4] stated that IBA protocols cannot
be achieved for nprocessors with at most fa faulty processors
within fa or fewer rounds. It is unreasonable to require fa + 1
rounds of message exchange to reach a common value when
no faulty processor exists in the system, or the number of
faulty processors is less than fa. Therefore, an improved
protocol, the Eventual Byzantine Agreement (EBA) pro-
tocol [9], [20] is invoked to solve this ESP (Early Stop-
ping Problem). This protocol allows each processor to stop
during rounds when a sufficient number of messages have
been collected, or fr < fm (fr : the real number of pro-
cessors with arbitrary faults) to achieve agreement early.
The EBA protocol is more efficient and reasonable than
the IBA protocol. Based on the EBA protocol, the pro-
posed lower bound of rounds is min{fr + 2, fa + 1} in this
paper.

Based on the above, this study proposes a novel proto-
col, Early Diagnosis Cloud Agreement (EDCA), to solve
the BA, ESP, and FDA problems simultaneously. In the
EDCA protocol, each fault-free service processor can reach
a common value using less message exchange rounds than
previous methods [4], [20]. In addition, the EDCA pro-
tocol can tolerate the maximum number of faulty pro-
cessors and detect/locate the maximum number of faulty
processors under dual failure modes using the minimum
number of message exchanges in a cloud computing
environment.

FIGURE 2. A cloud computing architecture with faulty service processors.

III. EARLY DIAGNOSIS CLOUD AGREEMENT (EDCA)
PROTOCOL
As demonstrated by the Cloud Service Architecture shown
in Figure 1, each service processor in a cloud computing envi-
ronment is allocated to different places, and must be able to
cooperate with other processors to provide greater computing
abilities, even if some components are faulty. As a result,
a corresponding cloud computing architecture is proposed
in Figure 2. Subsequently, some parameters are set as follows:

(1). n: The total number of service processors in the cloud
computing environment.

(2). v(s): The value of the initial service processor.
(3). Vk : The vector in service processor Pk .
(4). MAJvi: The majority value of service processor Pi.
(5). If a service processor does not receive any value,

the value ‘‘λ’’ will be stored.
(6). c: The connectivity of a synchronous network. Based

on the Menger theorem [3], there are at least c disjoint paths
between processor Pa and Pb when the connectivity of the
network is c.

(7). 8 : The default value, and 8 ∈{0, 1}.
(8). fa: The number of service processors with arbitrary

faults.
(9). fd : The number of service processors with dormant

faults.
(10). fr : The real number of service processors with arbi-

trary faults.
(11). Ti: An information collecting tree of service proces-

sor Pi.
(12). v(T kj): The value of Tj in level k .
(13). r : The required rounds of message exchange, r =

min{fr + 2, fa + 1}.
(14). rc: The current round of message exchange.
(15). Num_fk : Some service processors suspect that Pk is a

faulty processor and the Num_fk is used to accumulate it.
1vki : This value determines whether the number of

received messages is sufficient to reach a common value in
service processor i during round k .
This study proposes the Early Diagnosis Cloud Agreement

(EDCA) protocol to solve the BA, ESP and FDA problems to
provide greater computing abilities by enhancing the reliabil-
ity of a cloud computing environment. There are three parts

44870 VOLUME 6, 2018

M.-L. Chiang et al.: Agreement Under Early Stopping and Fault Diagnosis Protocol in a Cloud Computing Environment

of the EDCA: The message exchange phase, the decision-
making phase, and the fault diagnosis phase. Additionally,
the early stopping function is invoked during the message
exchange phase to determine whether the number of received
messages is sufficient to achieve agreement. The details of
EDCA are shown in Figure 3.

At the beginning of our protocol, the required rounds (r)
of message exchange are min{fr + 2, fa + 1} based on the
results of [9] and [20]. In general, the user first sends the
service requirements to the cloudmanagers/coordinators, and
then the managers/coordinators divide those service require-
ments and dispatch them to service processors using a control
message. The corresponding service processors must be able
to cooperate with each other to provide greater computing
abilities in the message exchange phase. As a result, each
service processor needs to broadcast its initial values to the
other processors until round r . During this phase, an ic-tree
(information collecting tree; Ti) [31], [34], [37] is constructed
to store the received messages. This structure allows conve-
nient collection of a majority value from the vertices for all
service processors. The vertices of the ic-tree are marked with
a list of service processor names. The list of service processor
names contains the name of the processors from which stored
messages are transmitted.

Furthermore, each service processor can execute the early
stopping function to determine whether the protocol can be
stopped when r > 2 during the message exchange phase to
reduce the number of messages exchanged. This is because
the number of messages in one round is insufficient to
detect/locate faulty service processors in the fault diagnosis
phase. Therefore, the early stopping function is only to be
invoked when r > 2 is satisfied.

In addition, the concept of [18] and [23] is used to solve
dual failures with service processors in the early stopping
function under dual failure modes. However, in this paper,
rc is redefined as the current message exchange round. In the
beginning of this phase, the MAJ function is applied to the
ic-tree of each processorPi (1 ≤ i ≤ n) to obtain theMAJ(vi).
Subsequently, the 1vki are accumulated when the vertices
of the ic-tree of each processor are equal to the MAJ(vi).
Similarly, the range of 1vki differs from that in previous
works [6], [18], [23], and is revised to 1 ≤ k ≤ fa + 1 under
dual failure modes. The protocol can be allowed to stop early
if the following improvement constraint can be satisfied:

1vki > (fa − (rc − 1))+
(n− (rc − 1)− λ)

2

In the following phase, the decision-making phase, each
fault-free service processor can retrieve a common value by
applying the voting function VOTE, shown in Figure 3, to the
root of an ic-tree. Namely, the collected messages are enough
to make each fault-free service processor reach a common
value. Subsequently, the collected messages can be used to
the last phase, the fault diagnosis phase. This phase differs
from that in [7], and is invoked to detect/locate faulty com-
ponents. This is because rules fdr2 and fdr3 can reduce the

FIGURE 3. The proposed edca protocol.

VOLUME 6, 2018 44871

M.-L. Chiang et al.: Agreement Under Early Stopping and Fault Diagnosis Protocol in a Cloud Computing Environment

comparison times by comparing |Num_fk | > fa only to find
arbitrary faulty service processors. Rule fdr4 is also corrected
to efficiently distinguish an initial service processor from all
service processors. As a result, the dormant faulty compo-
nents can be detected/located by diagnosis rule fdr1 since the
transmitted message was encoded by the Non-Return-to-Zero
code or the Manchester code [10], [16]. Therefore, messages
sent from dormant faulty components can be replaced by λ
and can be detected in each message exchange round.

The diagnosis rules fdr2, fdr3 and fdr4 can be applied to
detect/locate arbitrary faulty service processors in the fault
diagnosis phase. In general, processor Pk can be identified
as an arbitrary faulty processor (Num_fk) when v(αk) 6=
MAJ(vi) and |Num_fk | > fa. Rule fdr4 is also used to identify
whether the initial service processor is fault-free by taking a
majority value on T ki . Based on the n > b(n−1)/3c+2fa+ fd
constraint, the initial service processor can be identified as
an arbitrary faulty initial service processor when |v(T k−1i) 6=
v(T k−1j)| > fa. Finally, only min{fr + 2, fa + 1} message
exchange rounds are necessary to ensure all fault-free service
processors achieve a common value. As a result, the proposed
protocol, EDCA, is more suitable and efficient than previous
methods like the FDAMIX protocol, which still requires
fa + 2 (fa ≤ b(n − 1)/3c) rounds to solve the BA problem.
An example and the proof of the EDCA protocol are shown
in Sections 4 and 5.

IV. EXAMPLE OF EXECUTING EDCA
This section gives an example in Figure 2 to illustrate how the
EDCA protocol is implemented. It is assumed that the service
processors Pt and Pc are arbitrary service processors, and
that processor Pt is also an arbitrary initial service processor
in a 12-processor cluster of a cloud computing environment.
Therefore, Pt is invoked to cooperate with other processors
to actively provide greater computing abilities. Furthermore,
service processor Pb is assumed to be a dormant faulty ser-
vice processor. However, the results of the fault-free service
processors are the focus of this protocol, so this example only
shows the results of fault-free service processors to meet the
requirements of BA and FDA.

The first round of the message exchange phase in the
protocol begins with the arbitrary initial service processor
Pt sending different values 0, 0, 0, 0, 0, 1, 1, 1, 1, 1 and
1 to service processors Pb, Pc, Pd , Pe, Pf , Pg, Ph, Pi, Pj,
Pk and Pl , respectively, as shown in Table 1. Next, each
service processor exchanges its received value with other
service processors in round 2. Unfortunately, the behaviors of
arbitrary faulty service processors are assumed to be smart,
thus the arbitrary service processor Pc may send differing
values to other service processors. The worst case here differs
from that in previous works [34], [36], [37], [39], as shown
in Table 2.

After the second round of the message exchange phase,
each processor can construct an ic-tree (Ti) level by level by
the received value from Pt and a column vector broadcasted
by other processors. As shown in Figure 4, Pd is used to

FIGURE 4. The received value of Pd in round 2.

TABLE 1. The transfer values of arbitrary source processor PT round 1.

TABLE 2. The transfer values of arbitrary processor Pc round 2.

explain the example, and records the received values from
Pt in round 1 and other service processors in round 2 into
Level 1 and Level 2 of ic-trees. In the third round of the
message exchange phase, each service processor exchanges
the received values of round 2 to the other processors, and
stores the value in Level 3 of their ic-trees. The results of Pd
in round 3 are shown in Figures 5(A)∼(K).

After round 2 of message exchange, the early stopping
function is used to determine whether a sufficient number of
messages has been collected. However, 1v2d is not greater
than the limited bound in Formula (1), thus the following
process message exchange must be executed. In Formula (2),
all service processors can stop the message exchange process
in round 3, rather than round 4 (σ = b(12− 1− 1)/3c+ 1 =
4 [9], [20]), because the early stopping condition in EDCA is
satisfied.

R2 : 1v2d = {(fa − (r − 1))+
(n− (r − 1)− λ)

2

= (3−(2−1))+
(12− (2− 1)− 1)

2
= 7} (1)

R3 : 1v3d∼f > {(fa − (r − 1))+
(n− (r − 1)− λ)

2

= (3− (3− 1))+
(12− (3− 1)− 1)

2
= 5.5}

1v3g∼l > {(fa − (r − 1))+
(n− (r − 1)− λ)

2

= (3−(3−1))+
(12−(3−1)−1)

2
= 5.5} (2)

For example:
1v2d of val(tc)’s sub-tree in level 2 = 6 < 7 (The EAFD

protocol cannot stop in R2).
1v3d of val(tc)’s sub-tree in level 3 = 6 > 5.5 (The EAFD

protocol can be stopped in R3).

44872 VOLUME 6, 2018

M.-L. Chiang et al.: Agreement Under Early Stopping and Fault Diagnosis Protocol in a Cloud Computing Environment

FIGURE 5. The received value of Pd in round 3. (A) The received values of
vertex B and vertex C in Pd. (B) The received values of vertex D and vertex
E in Pd. (C) The received values of vertex F and vertex G in Pd. (D) The
received values of vertex H and vertex I in Pd. (E) The received values of
vertexs J ∼L in Pd.

Based on the early stopping function, the collected mes-
sages of each service processor in R3 are sufficient to com-
plete this round and enter the next phase, the decision-making
phase. Subsequently, the VOTE function is applied to this
phase, and the common value (‘‘1’’) of fault-free service
processors can be obtained if n > b(n − 1)/3c + 2fa + fd
and c > 2 fa + fd . Next, the fault diagnosis phase is
invoked to detect/locate faulty service processors. Following
the example above, rule fdr1 can be used by Pd to detect Pb
as a dormant faulty processor. However, the faulty messages
are not sufficient to find arbitrary faulty processors by fdr2,
and thus some service processors may be marked as fault-
like processors (∗fk) when v(αk) 6=MAJ(vi), as with Pc, Pd ,
Pe and Pf . In rule fdr3, the precursor service processors k
are marked and Num_fk = Num_fk + 1 when |Num_fk | <
b(n − 1 − fd)/3c, as with the precursor service processors
of fd , fe and ff . However, Pc can be detected as an arbitrary
service processor by accumulating the number of |Num_fc|
by fdr2 and fdr3. Furthermore, the initial service processor
Pt can be detected as an arbitrary faulty service processor by
rule fdr4. Finally, the diagnosis result of service processor
Pd is shown in Table 3, and is achieved using 3 rounds
of message exchange in a cloud computing environment.
In contrast to EDCA, the FDAMIX requires 5 rounds of
message exchange to detect/locate the faulty service proces-
sors in the same example. Therefore, the proposed EDCA
can detect/locate the maximum number of faulty service
processors using the minimum number of rounds and mes-
sages under dual failure mode. The next section presents
a proof that EDCA can obtain better results than previous
methods [17], [25], [30], [31], [36].

V. CORRECTNESS AND COMPLEXITY OF EDCA
This section proves the correctness and complexity of EDCA
by lemmas and theorems. The correctness of EDCA can
ensure that the requirements of BA, ESP and FDA problems
can be achieved simultaneously under n > (b(n − 1)/3c) +
2fa + fd and c > 2fa + fd . In addition, only min{fr + 2,
fa+ 1} rounds of message exchange are necessary to achieve
agreement for all fault-free service processors.
Lemma 1: The fault-free service processor can detect the

messages sent from dormant faulty processors.
Proof: Due to the feature of coding, transmitted

messages encoded using either the Non-Return-to-Zero
code or the Manchester code [16] can be detected by fault-
free service processors.
Lemma 2: Each fault-free service processor can communi-

cate with other processors, if c > 2fa + fd .
Proof: In general, a fault-free service processor can

receive at least c − fd messages sent in each round of the
message exchange. This is because the maximum number
of dormant faulty service processors is (fd). If c − fd >

2fa, a fault-free service processor can determine the correct
messages by majority function.

VOLUME 6, 2018 44873

M.-L. Chiang et al.: Agreement Under Early Stopping and Fault Diagnosis Protocol in a Cloud Computing Environment

TABLE 3. Diagnosis results of processors Pd.

Lemma 3: A dormant faulty service processor can be
detected by a fault-free service processor by the forwarding
technique.

Proof: If the number of received λ values is greater
than or equal to c − b(n − 1)/3c, then the transmitting
processor has a dormant fault. This is because there are at
most b(n − 1)/3c arbitrarily faulty service processors in the
system; thus, there are at most b(n − 1)/3c non-λ values in
the vector Vi.
Theorem 1: A fault-free service processor can remove and

detect the faulty influences from dormant faulty processors,
if c > 2fa + fd .

Proof: By Lemmas 1, 2 and 3, the theorem is proved.
Theorem 2: The BA problem can be solved by EDCA.
Proof: Due to previous results in [31], [32], [33], [34],

and [36], the VOTE(s) of each correct vertex in the ic-tree
are common and equal to v. Therefore, the constraints of
BA [21], [34], [36], [37] can be satisfied.
Theorem 3: The EDCA protocol can achieve agreement in

min{fr + 2, fa + 1} rounds.
Proof: Based on Theorem 2, the constraints of BA can

be met in the EDCA protocol when fr = fa. However, the
values of a descendant path are fixed and common in round
min{fr + 2, fa + 1} when the message exchange process
is stopped early. Therefore, the constraints of BA are also
satisfied in round min{fr + 2, fa + 1}.
Lemma 4: The arbitrary faulty service processor can be

detected/located if n > b(n− 1)/3c + 2f a + fd , c> 2fa + fd ,
and r> fa+1.

Proof: Due to the constraint n > b(n−1)/3c + 2fa + fd
and c-1> 2fa+fd , there are at most fd dormant faulty service
processor. By Lemma 3, all the dormant faulty service pro-
cessor can be detected by each fault-free service processor,
so fd = | number of Pk | in rule fdr1. By the same constraint,
there are at most fa arbitrary faulty service processor, so there

are at most fa values (except λ) at the same labeled vertex
in the ic-tree different from the most common value, that is
n − b(n−1)/3c-number of Pk > 2fa, fa < b(2n + 1)/6c − |
number of Pk |. So, if the most common value does not appear
at the same labeled vertex in the ic-treemore than c-(|number
of Pk | + b(2n+ 1)/6c)− 1(n− (fa + fd)− 1) times, then the
component is in arbitrary fault.
Theorem 4: Protocol EDCA satisfies the fairness require-

ment of FDA.
Proof: By Lemma 3 and Lemma 4, no fault-free service

processor is falsely detected as faulty by any fault-free service
processor if n > b(n−1)/3c + 2fa + fd and c− 1 > 2fa + fd .
Theorem 5: The FDA problem can be solved by EDCA if

n > b(n− 1)/3c + 2f a + fd , c> 2fa + fd , and r> fa+1.
Proof: By theorems 1, 2 and 4, the theorem is proved.

Theorem 6: The EAFD protocol requires min{fr+2, fa+1}
rounds to solve the FDA and ESP problems in dual failure
mode in a cloud computing environment if n> b(n− 1)/3c +
2fa+ fd and c > 2fa+ fd . Furthermore, the min{fr+2, fa+1}
rounds are the minimum number of rounds.

Proof: Based on the work of Fischer and Lynch [12],
the fa + 1 rounds are the lower boundary for message
exchanges when the transmission medium is fault-free. As a
result, at least fa+ 1 number of rounds are necessary to solve
the BA problem. Based on the above, the real number of
message exchange rounds in EBA ismin{fr+2, fa+1}, which
are proved in Krings and Fisher [20], are also provedwhen the
fallible components are the only processors in the system.

VI. CONCLUSION
Due to the size, range and variety of cloud computing envi-
ronments available today, cloud service processors need to
provide users with a large number of services through the
Internet. The reliability issue is thus of particular importance
in such environments. However, in traditional BA and FDA
protocols, large numbers of messages must be exchanged
between processors, resulting in high protocol overhead. This
study therefore combines the concepts of early stopping and
fault diagnosis to achieve the goal of BA and FDA effi-
ciently and quickly in a cloud computing environment. First,
the EDCA protocol can stop the message exchange pro-
cess earlier when a sufficient number of messages has been
received. Then, the diagnosis rule of EDCA can be used to
detect/locate the maximum number of faulty service proces-
sors using the minimum number of rounds. Onlymin{fr + 2,
fa+1} rounds ofmessage exchange are necessary for all fault-
free service processors to achieve agreement. As a result, the
proposed EDCA protocol is more suitable and efficient than
previous works [9], [11], [31], [32], [34], [36], especially for
cloud computing environments with a large number of service
processors.

In the future, the consensus between cloud cluster needs
to be considered. This is because that each service proces-
sor can be located in different clusters in cloud computing
environment and needs to cooperate with others among all
of clusters. As a result, our future work will discuss the

44874 VOLUME 6, 2018

M.-L. Chiang et al.: Agreement Under Early Stopping and Fault Diagnosis Protocol in a Cloud Computing Environment

consensus between different clusters under the dual failure
mode, the link fault especially.

REFERENCES
[1] I. Abraham and D. Dolev, ‘‘Byzantine agreement with optimal early stop-

ping, optimal resilience and polynomial complexity,’’ in Proc. 47th Annu.
ACM Symp. Theory Comput., New York, NY, USA, 2015, pp. 605–614.

[2] S. Alcock and R. Nelson, ‘‘Application flow control in YouTube video
streams,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 41, no. 2,
pp. 25–30, Apr. 2011.

[3] Amazon Web Services. Explore the AWS Platform, Cloud Prod-
ucts, and Capabilities. Accessed: Jul. 26, 2009. [Online]. Available:
http://aws.amazon.com/

[4] R. Baldoni, J.-M. Hélary, M. Raynal, and L. Tangui, ‘‘Consensus in
Byzantine asynchronous systems,’’ J. Discrete Algorithms, vol. 1, no. 2,
pp. 185–210, 2003.

[5] R. Buyya, R. Ranjan, and R. N. Calheiros, ‘‘Modeling and simulation
of scalable cloud computing environments and the CloudSim toolkit:
Challenges and opportunities,’’ in Proc. Int. Conf. High Perform. Comput.
Simulation, Jun. 2009, pp. 1–11.

[6] C. Cachin, S. Schubert, and M. Vukolić. (2016). ‘‘Non-determinism in
Byzantine fault-tolerant Replication.’’ [Online]. Available: http://arxiv.
org/abs/1603.07351

[7] M.-L. Chiang, S.-C. Wang, and L.-Y. Tseng, ‘‘An early fault diagnosis
agreement under hybrid fault model,’’ Expert Syst. Appl., vol. 36, no. 3,
pp. 5039–5050, 2009.

[8] N. Deo, Graph Theory With Applications to Engineering and Computer
Science. Englewood Cliffs, NJ, USA: Prentice-Hall, 1974.

[9] D. Dolev, R. Reischuk, and H. R. Strong, ‘‘Early stopping in Byzantine
agreement,’’ J. ACM, vol. 37, no. 4, pp. 720–741, 1990.

[10] D. Dolev and R. Reischuk, ‘‘Bounds on information exchange for Byzan-
tine agreement,’’ J. ACM, vol. 32, no. 1, pp. 191–204, 1985.

[11] D. Dolev and H. R. Strong, ‘‘Requirements for agreement in a distributed
system,’’ in Proc. 2nd Int. Symp. Distrib. Data Bases, Berlin, Germany,
1982, pp. 115–129.

[12] M. J. Fisher and N. A. Lynch, ‘‘A lower bound for the time to assure inter-
active consistency,’’ Inf. Process. Lett., vol. 14, pp. 183–186, Jun. 1982.

[13] Gartner Says Cloud Computing Will be as Influential as E-Business.
Accessed: Jul. 26, 2009. [Online]. Available: http://www.gartner.com/it/
page.jsp?id=707508

[14] Google Cloud. Accessed: Jun. 9, 2018. [Online]. Available: https://en.
wikipedia.org/wiki/Google_Cloud_Platform

[15] T. L. Gunarathne, T.-L. Wu, J. Qiu, and G. Fox, ‘‘MapReduce in the
clouds for science,’’ in Proc. IEEE 2nd Int. Conf. Cloud Comput. Technol.
Sci. (CloudCom), Indianapolis, IN, USA, Nov./Dec. 2010, pp. 565–572.

[16] F. Halsall, Data Communications, Computer Networks and Open Systems,
4th ed. Reading, MA, USA: Addison-Wesley, 1995, pp. 112–125.

[17] H.-S. Hsiao, Y.-H. Chin, and W. P. Yang, ‘‘Reaching fault diagnosis agree-
ment under a hybrid fault model,’’ IEEE Trans. Comput., vol. 49, no. 9,
pp. 980–986, Sep. 2000.

[18] H.-C. Hsieh andM.-L. Chiang, ‘‘New approach to improve the generalized
Byzantine agreement problem,’’ Int. J. Comput. Theory Eng., vol. 7, no. 2,
pp. 120–125, 2015.

[19] IBM’s Blue Cloud Project. Accessed Oct. 20, 2009. [Online]. Available:
http://www03.ibm.com/press/us/en/pressrelease/22613.wss/

[20] A. W. Krings and T. Fisher, ‘‘The Byzantine agreement problem: Optimal
early stopping,’’ in Proc. 32nd Hawaii Int. Conf. Syst. Sci., 1999, pp. 1–12.

[21] L. Lamport, R. Shostak, andM. Pease, ‘‘The Byzantine generals problem,’’
ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401, Jul. 1982.

[22] L. Lamport, ‘‘Lower bounds for asynchronous consensus,’’ in Proc. Int.
Workshop Future Directions Distrib. Comput., Jun. 2002, pp. 22–23.

[23] W. H. Li, Y. Yang, and D. Yuan, ‘‘A novel cost-effective dynamic data
replication strategy for reliability in cloud data centres,’’ in Proc. IEEE
9th Int. Conf. Dependable, Auton. Secure Comput. (DASC), Sydney, NSW,
Australia, Dec. 2011, pp. 496–502.

[24] Y. Mansouri and R. Monsefi, ‘‘Optimal number of replicas with QoS
assurance in data grid environment,’’ in Proc. 2nd Asia Int. Conf. Modeling
Simulation (AICMS), Kuala Lumpur, Malaysia, May 2008, pp. 168–173.

[25] J. P. Martin and L. Alvisi, ‘‘Fast Byzantine consensus,’’ IEEE Trans.
Dependable Secure Comput., vol. 3, no. 3, pp. 202–215, Jul. 2006.

[26] Platform as a Service. Accessed: Jun. 9, 2018. [Online]. Available:
https://en.wikipedia.org/wiki/Platform as a service

[27] E. J. Qaisar, ‘‘Introduction to cloud computing for developers: Key
concepts, the players and their offerings,’’ in Proc. Inf. Technol. Prof.
Conf. (TCF Pro IT), Ewing, NJ, USA, Mar. 2012, pp. 1–6.

[28] K. Ranganathan and I. Foster, ‘‘Identifying dynamic replication strate-
gies for a high-performance data grid,’’ in Proc. 2nd Int. Workshop Grid
Comput., 2002, pp. 75–86.

[29] P. K. Sangdeh, M.Mirmohseni, and F. Poursabzi, ‘‘Applying the Byzantine
agreement in wireless sensor networks based on clustering,’’ in Proc. IEEE
23rd Iranian Conf. Elect. Eng., May 2015, pp. 619–624.

[30] K. Shin and P. Ramanathan, ‘‘Diagnosis of processors with Byzantine
faults in a distributed computing system,’’ in Proc. Symp. Fault-Tolerant
Comput., 1987, pp. 55–60.

[31] H.-S. Siu, Y.-H. Chin, and W.-P. Yang, ‘‘Byzantine agreement in the
presence of mixed faults on processors and links,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 9, no. 4, pp. 335–345, Apr. 1998.

[32] S.-S. Wang, S.-C. Wang, and K.-Q. Yan, ‘‘An optimal solution for Byzan-
tine agreement under a hierarchical cluster-oriented mobile ad hoc net-
work,’’ Comput. Elect. Eng., vol. 36, no. 1, pp. 100–113, 2010.

[33] S.-C. Wang, K.-Q. Yan, S.-S. Wang, and G.-Y. Zheng, ‘‘Reaching agree-
ment among virtual subnets in hybrid failure mode,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 19, no. 9, pp. 1252–1262, Sep. 2008.

[34] K.-Q. Yan and S.-C. Wang, ‘‘Grouping Byzantine agreement,’’ Comput.
Standard Interfaces, vol. 25, no. 1, pp. 75–92, 2005.

[35] K.-Q. Yan and S.-C. Wang, ‘‘Reaching fault diagnosis agreement on an
unreliable general network,’’ Inf. Sci., vol. 170, pp. 397–407, Feb. 2005.

[36] K.-Q. Yan, S.-C.Wang, and S.-S.Wang, ‘‘An optimal solution of Byzantine
agreement in a scale free network,’’ in Proc. IEEE 22nd Int. Conf. Adv. Inf.
Netw. Appl. (AINA), Okinawa, Japan, Mar. 2008, pp. 270–275.

[37] K.-Q. Yan, S.-S. Wang, and S.-C. Wang, ‘‘Reaching an agreement under
wormhole networks within dual failure component,’’ Int. J. Innov. Comput.
Inf. Control, vol. 6, no. 3, pp. 1151–1164, 2010.

[38] H. Yoshino, N. Hayashibara, T. Enokido, and M. Takizawa, ‘‘Byzantine
agreement protocol using hierarchical groups,’’ in Proc. 11th Int. Conf.
Parallel Distrib. Syst., Jul. 2005, pp. 40–64.

[39] Y. Zhang and M. R. Lyu, ‘‘QoS-aware Byzantine fault tolerance,’’ in QoS
Prediction in Cloud and Service Computing (Springer Briefs in Computer
Science). Singapore: Springer, 2017.

MAO-LUN CHIANG received the Ph.D. degree
in computer science from National Chung Hsing
University, Taiwan. He is currently an Associate
Professor with the Department of Information and
Communication Engineering, Chaoyang Univer-
sity of Technology, Taiwan. His current research
interests include mobile computing, parallel com-
puting, fault tolerance, and cloud computing.

CHIN-LING CHEN received the Ph.D. degree
from National Chung Hsing University, Taiwan,
in 2005. From 1979 to 2005, he was a Senior Engi-
neer with Chunghwa Telecom Company Ltd. He is
currently a Distinguished Professor. He has pub-
lished over 80 articles in SCI/SSCI international
journals. His research interests include cryptogra-
phy, network security, and electronic commerce.

HUI-CHING HSIEH received the B.S. and M.S.
degrees in information management from the
Chaoyang University of Technology, Taiwan,
in 2002 and 2004, respectively, and the Ph.D.
degree in computer science from National Tsing
Hua University, Taiwan, in 2010. She is currently
an Assistant Professor with the Department of
Information Communication, Hsing Wu Univer-
sity, Taiwan. Her research interests include dis-
tributed data processing, fault tolerant computing,
and P2P network computing.

VOLUME 6, 2018 44875

	INTRODUCTION
	PREVIOUS WORK AND UNDERLYING ASSUMPTIONS
	EARLY DIAGNOSIS CLOUD AGREEMENT (EDCA) PROTOCOL
	EXAMPLE OF EXECUTING EDCA
	CORRECTNESS AND COMPLEXITY OF EDCA
	CONCLUSION
	REFERENCES
	Biographies
	MAO-LUN CHIANG
	CHIN-LING CHEN
	HUI-CHING HSIEH

