IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 11, 2018, accepted July 18, 2018, date of publication July 23, 2018, date of current version August 15, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2858773

Impact of Microarchitectural Differences of
RISC-V Processor Cores on Soft Error Effects

HYUNGMIN CHO

Department of Computer Engineering, Hongik University, Seoul 04066, South Korea
(e-mail: hcho@hongik.ac.kr)

This work was supported in part by the Hongik University New Faculty Research Support Fund and in part by the National Research
Foundation of Korea (NRF) Grant through the Korea Government [Ministry of Science, ICT & Future Planning (MSIP)] under

Grant 2017017414.

ABSTRACT In this paper, we compare how radiation-induced soft errors affect the execution results
of user-level applications on different processor cores that implement the same instruction set architec-
ture (ISA). We target two processor cores that support the same RISC-V ISA but have significant differences
in their microarchitectural implementations (in-order versus out-of-order). The observed results from fault
injection experiments show very strong correlations between the resulting effects from those two processor
cores. This strong correlation property is not observed between the processor cores that have different ISAs.
Based on this observation, we discuss how the resulting effects of soft errors on a target processor core can be
predicted using a reduced set of fault injection experiments with a small number of benchmark applications.
Using our heuristic method of selecting the applications to be used for the fault injection experiments on the
target processor core, we achieved a high prediction accuracy with prediction errors of less than 7%. Our
approach can be used for rapid error resilience evaluation of system designs that have the same ISA.

INDEX TERMS Error resilience, microarchitecture, processor core, soft error.

I. INTRODUCTION

Transient errors that cause bit-flips (soft errors) are one
of the major reliability threats in digital systems [1]-[3].
Bit-flips in on-chip memory or sequential elements (latches
and flip-flops) can result in fatal consequences such as unde-
tected data corruptions and expensive system downtimes.
Soft errors are usually caused by error sources that are dif-
ficult to predict or estimate the magnitude, such as cosmic
ray or alpha particle strikes. Therefore, it is challenging to
provide cost-effective soft error resilience.

Over the transistor technology generations, the device-
level soft error rate (i.e., the probability of having a bit-flip
per memory cell or flip-flop) has stayed at roughly the
same level or even decreased. However, as technology scales,
the system-level soft error rate increases because more com-
ponents are integrated into a chip [3]-[6]. Therefore, it is
important to study the impact of soft errors at the system-level
and provide appropriate error protection techniques to meet
the desired level of soft error resilience.

In this study, we focus on soft errors in flip-flops (flip-
flop soft errors) because providing adequate error protection
mechanisms for flip-flops generally involves a high overhead.
For on-chip memory arrays such as a data cache, coding

techniques for error detection or correction are commonly
used [7], [8]. Combinational logic circuits are significantly
less susceptible to soft errors [3].

Not every flip-flop soft error affects the execution results
of a user-level application. Furthermore, depending on the
application and the type of the resulting erroneous out-
come, the system may require different error protection
mechanisms. Therefore, accurately characterizing how soft
errors in hardware components affect the execution results
of user-level applications (soft error effects) is crucial in
order to provide cost-effective soft error resilience [9], [10].
Many researchers have characterized such soft error effects
on a wide range of designs, including processor cores,
memory subsystems, on-chip interconnects, and accelerator
components [11]-[16].

Studying the effects of soft errors on a given system can be
a demanding process even for a single target application. The
characterization of soft error effects is conducted by collect-
ing statistical observations on how frequently the low-level
soft errors result in erroneous execution results, such as unde-
tected data corruptions [17]. Radiation testing can be used
to characterize the effect of soft errors on physical silicon
chips [18], [19]. During the design phase, the effects of soft

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

41302

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 6, 2018

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8705-7066

H. Cho: Impact of Microarchitectural Differences of RISC-V Processor Cores on Soft Error Effects

IEEE Access

errors can be modeled on a simulation or emulation environ-
ment using fault injection experiments [2], [20]. Owing to the
fact that the possible flip-flop soft error space is extremely
large (i.e., number of processor clock cycles x number of
flip-flops), soft error characterization is performed using the
Monte Carlo method which randomly selects the fault injec-
tion target. Consequently, we must collect a large number
of fault injection samples to obtain statistically significant
results. Moreover, even on the same system, the resulting
effects can be drastically different for different applications
(application dependence). For example, the probability that
a soft error eventually results in undetected corruptions
in application output, also known as silent data corrup-
tion (SDC), ranges from 0.02% to 1.78% on the LEON3
processor core depending on the application [11].

Unfortunately, this soft error effect characterization may
not be a one-time process. When designing a system, mul-
tiple types of designs can be considered to meet vari-
ous design requirements, such as performance, area, and
power consumption. Traditionally, only a few system designs
were considered as candidates for a given environment and
application. For instance, many embedded systems adopt
simple in-order processor cores owing to area and power
limitations, whereas high-performance computing systems
use complex out-of-order processor cores to maximize single
thread performance. However, as the computing environment
and application diversifies, an application may run on multi-
ple different designs. If multiple processor cores support the
same instruction set architecture (ISA), the same application
binary can be executed on the processor cores that have dif-
ferent implementations (i.e., microarchitectural differences).
For example, the big. LITTLE architecture of ARM combines
energy-efficient in-order processor cores as “LITTLE” cores
and high-performance out-of-order processor cores as “‘big”
cores [21]. Depending on the operational mode, a single
instance of an application may migrate between the cores
to adapt to the execution performance and the overhead.
Therefore, to design and evaluate error resilient systems,
we must study the soft error characteristics on a wide variety
of environments.

In this study, we compare the resulting effects of soft
errors on two processor cores with different microarchitecture
implementations of the same ISA. Our fault injection results
show that even with the profound differences (in-order versus
out-of-order) of the two processor core designs, the applica-
tion dependence aspects of the soft error effects are strongly
preserved. In other words, given that we have characterized
the soft error effects on a processor core, we can predict the
soft error effects on another target processor core of the same
ISA without fully performing fault injection experiments on
the target system. This strong correlation is only observed
between the processor cores of the same ISA, not across
different ISAs. This observation helps to evaluate the error
resilience of new system designs by reducing the burden
of time and resources required to perform fault injection
experiments for characterizing the effects of soft errors.

VOLUME 6, 2018

Some soft error studies have assumed that the appli-
cation dependence can be separated from the soft error
characteristics of the underlying microarchitecture design
without a quantified comparison by using fault injection
experiments [22]. In this study, we report fault injection and
comparison results to substantiate how microarchitectural
differences affect the characteristics of soft error effects.

We also present a heuristic method to select a small set of
applications to be used for the soft error effects prediction on
a target system. Guided by this heuristic method, a reduced
set of fault injection experiments with only three applications
on a target processor core models the soft error effects of the
rest of the applications with less than 7% difference from the
actual fault injection results.

The rest of this paper is organized as follows: Section II
introduces the RISC-V ISA, which is the common ISA of
the two processor cores that are compared in this study.
Section III explains the erroneous outcome types of user-level
applications affected by soft errors. Section IV presents our
setup for fault injection experiments. Section V compares
the resulting fault injection results from the processor cores.
In Section VI, we demonstrate our method for predicting soft
error effects on a target processor core. Finally, Section VII
introduces the related work, and Section VIII presents the
conclusion of the paper.

II. RICV-V ISA

To compare the soft error effects on different processor
cores of the same ISA, we select RISC-V as the target
ISA [23]. The RISC-V ISA is a royalty-free open ISA that
is adopted across academia and various industries. A vari-
ety of microprocessor designs are actively being developed
to support the RISC-V ISA for various environments [24].
For example, ORCA specifically targets Field-Programmable
Gate Array (FPGA) environments, and RV12 focuses on
highly-configurable embedded designs. Given that many of
the RISC-V processor cores are available as open source,
RISC-V is an ideal target for comparing different processor
core implementations of the same ISA.

Among the available RISC-V processor cores, we chose
Rocket [25] and the Berkeley Out-of-Order Machine
(BOOM) [26] for the main comparison in this study. We also
include the PULPino! RISC-V core, which is a 32-bit
RISC-V core developed at ETH Ziirich, for an extended com-
parison. The majority of the currently available RISC-V pro-
cessor cores implement a simple in-order processor pipeline
for low-cost energy-efficient designs. We use Rocket to
represent this class of in-order processor cores. Rocket is a
core component of the Rocket Chip Generator, which cre-
ates RISC-V-based system designs in various configurations.
BOOM represents the other extreme of the microarchitecture
design spectrum. BOOM is a superscalar out-of-order execu-
tion microprocessor that targets a high-performance proces-
sor design. It is one of the few open-source implementations

1 https://www.pulp-platform.org/

41303

IEEE Access

H. Cho: Impact of Microarchitectural Differences of RISC-V Processor Cores on Soft Error Effects

of a fully functional out-of-order microprocessor. BOOM
supports flexible configurations for diverse microarchitec-
tural design parameters, such as instruction issue width and
register file size. Depending on the configuration, the achiev-
able performance of BOOM is comparable to those of
industrial processor core implementations. Configuration
parameters for BOOM that are used in our fault injection
experiments are listed in Table 1. Tables 2 and 3 list the
number of flip-flops (i.e., targets of flip-flop fault injections)
in Rocket and BOOM, receptively.”

TABLE 1. BOOM processor core configuraion parameters.

| Configuration parameter | Value \

16 instructions
2 instructions per cycle
6 instructions

Reorder buffer entry
Issue width
Issue slot entries

Number of physical registers 56 registers
Speculated branch count 4 branches
Branch predictor gshare

Global branch history length 8 branches

TABLE 2. Number of flip-flops in submodules of Rocket.

Submodule | Number of flip-flops |
Register file 1,984
Control and status registers (CSR) 984
Instruction buffer 76
Integer pipeline 872
Multiplier/Divider 214
Total 4,130 |

TABLE 3. Number of flip-flops in submodules of BOOM.

Submodule Number of flip-flops |
Register file 3,964
CSR 1,238
Instruction fetch 854
Register rename 1,547
Instruction issue 650
Load/Store unit 1,941
Arithmetic/logic unit 1,119
Reorder buffer 1,707
Branch prediction 465

| Total 13485 |

Ill. SOFT ERROR EFFECTS

We distinguish the resulting effects of soft errors in the
following categories, similar to the existing fault injection
studies for soft errors [27], [28]:

2Owing to the FPGA capacity limitations, we did not enable the
floating-point unit for both processor cores.

41304

1) Silent Data Corruption (SDC): The application com-
pletes its execution normally without any indication
of errors. However, upon the completion of the appli-
cation, the results obtained from the execution dif-
fer from those of an error-free (golden) execution.
For our benchmark applications, we verify whether
the obtained output files and the standard output
(i.e., stdout console output) match the golden output.

2) Unexpected Termination (UT): The application ter-
minates abnormally with an error indication, such as a
memory access violation, kernel panic, and arithmetic
exception.

3) Hang: The application does not produce any
result or terminates within a specified timeout limit,
which is set to 2x the nominal execution time.

4) Vanished: The obtained program output matches that
of the error-free execution. The injected error may have
affected the architectural states such as registers or pro-
gram variables, but the error has been masked or over-
written during the execution.

Because these outcome types are mutually exclusive, the out-
come type of each application execution with a fault injection
(fault injection run) is classified into one of these outcome
types. We denote the observed rate of each outcome type
as p(outcome type, application, processor). For example,
p(SDC, crafty, Rocket) is the observed SDC rate from Rocket
when running the crafty application.

IV. EXPERIMENT SETUP

To accurately model the effects of flip-flop soft errors,
the fault injection experiment should use an injection tech-
nique that can correctly model how a soft error injected
into a flip-flop behaves in the system. Fault injection tech-
niques which model the soft errors by injecting bit-flips
into the high-level abstracted states such as architectural
registers or program variables do not accurately quantify
the effects of flip-flop soft errors [11]. Moreover, because
we compare the differences according to the microarchi-
tecture implementations in this study, we perform fault
injection experiments on a platform that can model the
low-level implementation details of given processor designs.
Fault injection techniques based on instruction-level simu-
lators (e.g., [10], [29], [30]) cannot be used for this study
because the differences in the microarchitecture-level imple-
mentations are not modeled in those platforms. RTL sim-
ulations are not suitable for collecting a large number
of fault injection samples owing to their slow simulation
throughput.

We use an FPGA emulation of the processor cores to per-
form fault injection experiments while executing user-level
applications. We use the Xilinx Zyng-7000 FPGA device
to emulate the processor cores along with a flip-flop-level
fault injector module. Studying the effects of soft errors
requires a large number of fault injection samples. We use
multiple FPGA boards to collect fault injection samples
from diverse benchmark applications. Each FPGA board

VOLUME 6, 2018

H. Cho: Impact of Microarchitectural Differences of RISC-V Processor Cores on Soft Error Effects

IEEE Access

FIGURE 1. Xilinx Zynq-7000 FPGA boards.

includes an instance of the target system, and we run multiple
fault injection instances simultaneously. Fig. 1 shows the
array of FPGA boards used for collecting fault injection
results.

A. SOFT ERROR MODEL

We characterize the effects of soft errors by observing
how frequently we obtain an erroneous outcome (i.e., SDC,
UT, or Hang) when we inject a single bit-flip in a ran-
domly selected flip-flop during the application execution.
The injected bit-flip represents a soft error in a flip-flop,
and it may eventually result in an application-level erroneous
outcome. Systems with a different number of flip-flops would
have a different number of bit-flips per period. Therefore,
to evaluate the error resilience level of a given system, the soft
error rate of the underlying device technology and the number
of flip-flops in the system have to be considered for the
quantification.

In this study, however, we focus on comparing the char-
acteristics related to the application dependence rather than
comparing the raw error rates of two different designs. There-
fore, we inject a single bit-flip for each fault injection run for
both processor cores even though Rocket and BOOM have
different numbers of flip-flops.

For each application, we collect more than 80,000 fault
injection samples from each processor core (for a total
1.6 million fault injection samples). If we assume a nor-
mal approximation of the binomial distribution, the resulting
accuracy is better than £0.1% with 95% confidence when the
observed rate is 1%.

VOLUME 6, 2018

B. SOFT ERROR FAULT INJECTION ON FPGA

We use the FPGA emulation setup of the Rocket Chip Gener-
ator’ as our base platform for fault injection, which achieves
a 5S0MHz clock speed for Rocket and BOOM. In this setup,
a host CPU (ARM Cortex-A9) on the processing system (PS)
side manages the RISC-V processor cores programmed on
the programmable logic (PL) side of the FPGA (Fig. 2).
The host CPU in PS can trigger the execution of a single
executable binary or the Linux operating system on the target
processor core in PL. In this work, we execute a single binary
executable without an operating system (i.e., bare-metal pro-
gram) on the target processor core for each fault injection
run. After the target processor core finishes the execution,
the host CPU collects the execution results and classifies the
outcome type.

Zynq FPGA (PS)

Host CPU
(ARM)

Randomly select
target flip-flop &
injection cycle

AXI
interface

Zynq FPGA (PL)

Fault injector

Target processor core
(Rocket, BOOM)

Flip-flops

Y
A\ 4
5]
o

Combinational
logic

> »D Q
A A A A T \ XOR)

) 4
A 4
o
o

Y
A4
o
o

FIGURE 2. Target processor core emulation on the Xilinx Zynq FPGA
platform with a flip-flop fault injector.

Rocket and BOOM are created using the Chisel hardware
construction language [31]. When creating the emulation
environment for the processor cores on FPGA, the Chisel
compiler produces a Verilog file that encodes the netlist infor-
mation of the design. We use this netlist Verilog file to insert
a flip-flop-level fault injector automatically. Fig. 3 describes
the flow of generating the flip-flop fault injector module on
FPGA. We synthesize the given netlist file using Synopsys
Design Compiler to obtain a list of flip-flops in the target
processor core design. For every flip-flop in the list, we add
an extra XOR gate in the D input to connect an fault injection
signal. The added fault injection signals and the XOR gates
are also depicted in Fig. 2. The fault injection signals are
controlled by the host CPU through an AXI interface that
connects the PS and the PL side. During each fault injection
run, the host CPU randomly selects a target flip-flop for fault

3 https://github.com/ucb-bar/fpga-zynq

41305

IEEE Access

H. Cho: Impact of Microarchitectural Differences of RISC-V Processor Cores on Soft Error Effects

Target processor Chisel Verilog

Target processor

core design in compiler netlist

Chisel language

Synopsys

Design Compiler

FIGURE 3. An automated flow to inject a flip-flop fault injector on FPGA.

injection and asserts the corresponding fault injection signal
as high at a randomly selected fault injection cycle. The value
of the flip-flop is inverted to model a bit-flip caused by a soft
error.

C. BENCHMARK APPLICATIONS

We use the SPECINT 2000 applications and the MinneSPEC
input datasets [32], which is a benchmark suite widely used
for fault injection studies [33]-[35]. perlbmk and eon are
excluded from the fault injection experiments because they
require floating-point instructions or extensive file system
support that is not modeled in our fault injection system.

V. FAULT INJECTION RESULTS

Fig. 4 presents the observed erroneous outcome rates from
Rocket and BOOM across the benchmark applications and
the arithmetic mean of the outcome rates. In general, the erro-
neous outcome rates of BOOM are lower than that of Rocket.
The average SDC rate of BOOM is 1.9%, whereas Rocket has
an average SDC rate of 3.5% (Fig. 4a). Although BOOM is
a more complex out-of-order execution microprocessor, not
every flip-flop in the processor core has the same impact on
the application execution. For example, faults occurring in the
branch prediction unit may alter the microarchitectural states
during the execution. However, mistakenly executed branches
will be resolved before the instructions retire from the proces-
sor core and alter the application results. In addition, BOOM
has more physical registers than Rocket, which does not have
a register renaming technique. This means that the chance of
having a bit-flip on a register that can affect the application
outcome is lower in BOOM as we inject only one bit-flip per
fault injection run.

As we discussed earlier in Section IV-A, however, having
lower erroneous outcome rates per injected fault does not
mean that BOOM has higher error resilience than Rocket.
Because BOOM has more flip-flops than Rocket, it has a
higher chance of having a flip-flop soft error during appli-
cation execution. Tables 4 and 5 show the breakdown of
error rates from each submodule in Rocket and BOOM. For
example, the register file modules in both processor cores
have similar contributions for three erroneous outcome types.
However, erroneous outcome rates resulting from the soft
errors in BOOM’s register file are lower as BOOM has a
larger number of physical registers. Also, some components
in BOOM (e.g., branch predictor) have very low contributions

41306

. - Xilinx FPGA
[N -
»| core Wlth.ﬂlp flop 9> Vivado " | bitstream
fault injector
Flip-flop Fault injector
list generator
6.0% I Rocket
]
e
2 4.0% A
O
[a)
N 2.0%
0.0% -
bzip2 crafty gap mcf parsertwolfvortex vpraverage
15.0% 1 I Rocket
£ 10.0%
©
-4
5
5.0% A
0.0% -
bzip2 crafty gap
(b)
5.0% A
o 40%
e
o]
o 3.0% -
2
T 2.0% -
T
1.0% A

0.0% -
mcf parsertwolfvortex vpraverage

bzip2 crafty gap

FIGURE 4. Observed erroneous outcome rates of Rocket and BOOM.
(a) SDC rates. (b) UT rates. (c) Hang rates.

TABLE 4. Observed erroneous outcome rates of each submodule in
Rocket.

Submodule SDC uT Hang
Register file 332% | 12.17% | 1.04%
CSR 5.88% | 4.30% | 8.17%
Instruction buffer | 0.50% 1.08% | 0.28%
Integer pipeline 240% | 4.93% | 4.36%
Multiplier/Divider | 0.17% | 0.39% | 0.05%

to erroneous outcomes. The focus of this study is to ana-
lyze whether the differences in the erroneous outcome rates
depending on the application are preserved across the two

VOLUME 6, 2018

H. Cho: Impact of Microarchitectural Differences of RISC-V Processor Cores on Soft Error Effects

IEEE Access

TABLE 5. Observed erroneous outcome rates of each submodule in
BOOM.

Submodule SDC uUT Hang
Register file 1.89% | 8.71% | 0.96%
CSR 391% | 5.43% | 7.68%
Instruction fetch 2.57% | 7.32% | 0.99%
Register rename 2.37% | 5.68% | 3.34%
Instruction issue 2.35% | 0.85% | 3.11%
Load/Store unit 1.45% | 3.67% | 2.40%
Arithmetic/logic unit | 1.16% | 0.68% | 0.17%
Reorder buffer 1.16% | 0.78% | 1.49%
Branch prediction 0.80% | 0.05% | 0.37%

processor cores rather than comparing the scale of the raw
error rates from two different implementations.

The observed outcome rates indicate very strong correla-
tions between the soft error effects of the two processor cores.
For example, among the evaluated benchmark applications,
mcf shows the highest SDC rate for Rocket and also for
BOOM. The SDC rate of twolf is the second highest on
both processor cores. Similar trends were observed across
other applications. The UT and Hang outcome rates also
suggest similarities in the results between the two processor
cores. That is, the “rank” of the applications according to the
outcome rates, i.e., the ordering of the soft error vulnerabil-
ities, does not have a noticeable difference between the two
processor cores. To predict the soft error effects of a processor
core using the fault injection results from another processor
core, we need a stronger correlation in the results than just
mere similarities in the soft error vulnerability ranking.

A. CORRELATION COMPARISON

To compare and visualize the correlation, Fig. 5 plots the
observed outcome rates from the two processor cores in a
two-dimensional space, where the X and Y axes represent the
outcome rates from Rocket and BOOM, respectively. Each
plot also shows a linear trend line (i.e., y = Ax + B) that
minimizes the following squared error:

> {p(T,ai BOOM) — A - p(T. a;, Rocker) + B}’
a;jeapplications

ey

where T is the evaluated erroneous outcome type, one of
SDC, UT, or Hang.

As the plots show, the observed erroneous outcome rates
fit the linear trends very well for all three types of outcomes.
This means that we can accurately predict the outcome rates
of a target processor core using the established soft error
effect characteristics of an existing processor core.

To quantify the level of correlations, we calculated the
Pearson correlation coefficients. Table 6 shows the correla-
tion coefficients between the observed outcome rates from
Rocket and BOOM. For all three outcome types, the Pearson

VOLUME 6, 2018

4.0%
3.5% 4
2 3.0% A mcf
2 [)
O 25% vpr twolf
a e _ crafty
N 2.0% 9ap g ee Y y=0.314x+0.8%
= ; P vortex
O 159, DlPZg e 97iP
2 parser
gcc
1.0% 4
0.5% -
2.0% 3.0% 4.0% 5.0% 6.0% 7.0%
Rocket SDC Rate
(a)
10.0%
9.0% 1 -
= 0
8.0% A vpr ”,,,,,,,fb2|p2
[0} e -
)
2 7.0% A ///'
[% —
5 6.0% .o
2 0% parser ~mcf~ 9P y=0.553x+0.5%
Q 4.0% vortex B &= crafty
3.0% 1 ;Wolf gcc
2.0% 4
4.0% 6.0% 8.0% 10.0% 12.0% 14.0% 16.0%
Rocket UT Rate
(b)
4.0%
mcf
L 3.0% 4) ¢
& bzip2 " tvortex
o . N\.cCra tL
c 9ZIp 979~ gap
% 2:0% 7 parser/. ’ twolf
s 9CC "'y=0.447x+0.6%
o
O 1.0% o’Pr
m
0.0% -

0.0% 1.0% 2.0% 3.0% 4.0% 5.0% 6.0%
Rocket Hang Rate

(c)

FIGURE 5. Observed erroneous outcome rates comparison between
Rocket and BOOM. (a) SDC rates. (b) UT rates. (c) Hang rates.

correlation coefficient is larger than 0.94, which is a very
strong positive correlation.

In contrast, such strong correlation is not observed between
the processor cores that have different ISAs. Table 6
also compares the correlations in erroneous outcome rates
between the RISC-V processor cores and other two processor
cores, namely, LEON3 and IVM, which use different [SAs.
LEON3 [36] is an in-order single-issue processor core that
is similar to Rocket, and IVM [27] is an out-of-order super-
scalar processor core that is similar to BOOM. LEON3 uses
the SPARC ISA, and IVM uses the ALPHA ISA. We cal-
culated the correlation coefficients using the published fault
injection results for LEON3 and IVM in our previous

41307

IEEE Access

H. Cho: Impact of Microarchitectural Differences of RISC-V Processor Cores on Soft Error Effects

TABLE 6. Pearson correlation coefficients between the observed outcome rates from the processor cores. Correlation coefficients between Rocket and

BOOM are highlighted in bold.

ISA RISC-V SPARC ALPHA
Processor BOOM LEON3 IVM
SDC: 0973 | SDC: 0.722 | SDC: 0.776
RISC-V Rocket UT: 0986 | UT: 0.814 UT: 0.670
Hang: 0.942 | Hang: 0.027 | Hang: 0.027
SDC: 0.754 | SDC: 0.714
BOOM - UT: 0.723 UT: 0.690
Hang: -0.043 | Hang: 0.112
SDC: 0477
SPARC | LEON3 - - UT: 0.558
Hang: -0.020

work [11], which uses the same SPECINT2000 benchmark
applications and input datasets as this work. Unlike the cor-
relations between the RISC-V processor cores, the corre-
lations across different ISAs are not apparent. Some cases
even show negative correlations (e.g., the Hang rates between
LEON3 and BOOM). The weak correlations mean that accu-
rately predicting erroneous outcome rates is difficult across
different ISAs without conducting thorough fault injection
experiments on the target processor core.

B. CORRELATION COMPARISON UNDER

MULTIPLE BIT-FLIPS

As technology scales, multiple bit-flips per single event
(single-event multiple upsets or SEMUs), are becoming
more critical. To verify if the correlation trends in the soft
error effects across different processor cores still exist under
SEMU cases, we extended our fault injection experiments to
inject multiple flip-flop bit-flips per fault injection run. Mod-
eling SEMUs is not straightforward compared to single-upset
cases because it may involve more variables such as the
number of flipped bits per event and the locations of the
upsets. In this work, we studied the following two versions
of SEMU cases to assess if the correlation can be expected
on other SEMU models.

1) Random pair: On each fault injection run, we inject
bit-flips in two flip-flops that are randomly selected
regardless of their location.

2) Nearest neighbor: On each fault injection run, we ran-
domly select a flip-flop and the selected flip-flop’s
nearest neighbor as the targets of bit-flip fault injec-
tions. The nearest neighbor is identified based on the
placement result of the target processor core using
Synopsys ICC.

As Table 7 shows, strong correlations are observed under
both SEMU models as well, meaning that our observations
are not limited to single event upsets only. Because the char-
acteristics of SEMUs are highly related to the technology
node of the target system, future work that studies on specific
technology nodes should address the correlations using the
corresponding SEMU models.

41308

TABLE 7. Pearson correlation coefficients between Rocket and BOOM
under SEMU error models.

Random pair | Nearest neighbor
SDC: 0979 | SDC: 0.993

UT: 0.937 UT: 0.958
Hang: 0936 | Hang: 0.943

C. CORRELATION COMPARISON WITH THE

PULPINO RISC-V PROCESSOR CORE

We include another RISC-V processor core for comparison
to verify whether the observed correlation trends can be
extended to a broader range of RISC-V processor cores.
We extended our fault injection experiments to the PULPino
processor core. Unlike Rocket and BOOM, PULPino is cre-
ated using System Verilog HDL. We selected the following
five benchmark programs for comparison between Rocket
and PULPino: Convolution, FFT, Motion detection, Neural
network, and Sudoku solver. This is because the application
execution environment on FPGA for PULPino has limited
support for system calls, without file I/Os that are required
to run SPEC benchmark applications. Also, the comparison
is limited to SDC rate comparison because the exception
handlers are implemented differently and result in different
UT or Hang behaviors. Please note that this discrepancy is
not applied to the situation where someone compares differ-
ent processor candidates on the same software environment.
BOOM is not included in this comparison since BOOM
does not support RV32, the 32-bit version of RISC-V ISA
that PULPino implements. The observed SDC rates between
Rocket and PULPino (Fig. 6) also show a strong correlation
(correlation coefficients higher than 0.97), which means the
correlations in soft error effects on RISC-V processors exist
on a broad range of RISC-V processor core implementations.

VI. SOFT ERROR EFFECT PREDICTION

Given that the observed erroneous outcome rates generally
follow a linear relationship between the processor cores of the
same ISA, we need to collect the fault injection results using

VOLUME 6, 2018

H. Cho: Impact of Microarchitectural Differences of RISC-V Processor Cores on Soft Error Effects

IEEE Access

10.0% - Convolution °

[
T 8.0%
e« o
Q Neural_Network
2 6.0%
) o Motion_Detection
a % g
3 0% oFFT y=1.034x+0.5%
o

2.0% 4 . Sudoku_Solver

0.0% —— T T T T

0.0% 2.0% 4.0% 6.0% 8.0%

Rocket (RV32) SDC Rate

FIGURE 6. Observed SDC rates comparison between Rocket and PULPino.

only a few applications on the target processor core to predict
the outcome rates of the remaining applications. Using the
observed fault injection results from the profiling runs on the
target processor core, we can obtain a linear relationship with
the established fault injection results of an existing processor
core of the same ISA. Then, for the other applications that
have not been characterized on the target processor core,
we can predict the soft error effects using the obtained linear
relationship.

The trend lines in Fig. 5 have non-zero bias values (i.e., B is
not zero in (1)). For example, the trend line for the UT rates
in Fig. 5b has the B value of 0.5%. This represents the fact
that between the processor cores, there are certain levels of
inherent differences in erroneous outcome rates regardless
of the application. Consequently, we need to obtain fault
injection results using at least two applications on the target
processor core to project the linear relationship with the
existing soft error characterization. Beyond the two applica-
tions, increasing the number of benchmark applications for
profiling runs on the target processor core may increase the
accuracy of the projection, but at the same time, it increases
the time and resource required by the fault injection runs
since we have to collect a larger number of fault injection
samples.

A. MEASURING PREDICTION ACCURACY

We measure the required number of applications to perform
profiling runs on the target processor core to meet the desired
level of prediction accuracy. We divide the benchmark appli-
cations into the following two groups:

1) Training group: For each application in this group,
we use the observed outcome rates obtained from
the fault injection runs on the target processor core.
Therefore, it is desirable to obtain high accuracy in
the outcome rate prediction with a small number of
applications in the training group.

2) Test group: We evaluate the accuracy level of the soft
error effects prediction using the applications in this
group.

Using the observed erroneous outcome rates of the training

group applications, we derive the linear projection (y =

Ax + B) that minimizes the following squared error for each

VOLUME 6, 2018

outcome type 7.

n ~12
Z {P(T, ai, Ptarget) —A-p(T,a, Pexisting) + B}
a;j€Etraining group

@)

where Peyisring is the processor core for which we already
have established soft error characterizations, and Py, 1S the
target processor core on which we run profiling fault injection
runs using the training group applications. The outcome rate
prediction (p) on the target processor core for each test group
application (aes) is calculated using the following equation:

ﬁ(T’ Atest » Plargel) = A (T, eyt Pexixting) + E 3)

We evaluate the prediction error (E) for the outcome rates
using the relative difference between the prediction and the
actual observation on the target processor core.

|]3(T» Qtest » Ptarget) — p(T, aests Ptarget)|
P(T, agesr, Ptarget)

E(T, arest) = “

100.0%

—A— Minimum
—¥— Maximum
—8— Heuristic

80.0% A

60.0%

40.0%

Prediction error (E)

20.0% 1

0.0%
Number of applications in the training group (n)

FIGURE 7. Prediction error comparison for training group application
choices.

The accuracy of the outcome rate prediction is highly
dependent on the choice of the applications to be included
in the training group. The number of possible choices is (:[),
where 7 is the number of benchmark applications and #; is the
number of applications in the training group. Fig. 7 shows
the resulting accuracy range of all possible combinations
of the training group selections. For simplicity, we report
the average of E across the test group applications and all
three types of erroneous outcomes to represent the obtained
accuracy level in Fig. 7. It is evident that an arbitrary choice
of the applications for the training group may result in a
poor prediction accuracy. For example, when n, = 3, a bad
selection of the training group applications can result in a pre-
diction error higher than 80%. Determining the training group
that achieves the minimum prediction error (i.e., the highest
accuracy) is not possible before performing fault injection
experiments on the target processor core.

41309

IEEE Access

H. Cho: Impact of Microarchitectural Differences of RISC-V Processor Cores on Soft Error Effects

B. HEURISTIC APPROACH TO SELECT APPLICATIONS

FOR FAULT INJECTION

Instead, we propose a heuristic method to choose applications
for the training group. The main strategy is to select a group
of applications that have a wide spectrum of outcome rates
on Pyjgring- The heuristic method works in the following way
when n; > 2:

1) For a given outcome type 7', sort the applications in an
increasing order of the outcome rates on Pyjging-

2) Select the two applications that have the lowest and
the highest outcome rates and add those to the training
group.

3) We select the rest of the applications (i.e., n, — 2
applications) whose outcome rates are most ‘“‘evenly”
distributed between those of the previously selected
two applications. This is achieved when the following
quantity is minimized:

n—1

2
Z {p(T» al_T_‘H’ Pexisting) — p(T, al_T’ Pexisting)} Q)

i=1

where aiT is the application whose the outcome rate of

T on Pyisiing is the i’h-highest in the current training
group. (5) sums the square of the intervals between the
outcome rates of the applications in the group, which is
minimized when the outcome rates of the selected train-
ing group applications are evenly distributed between
the minimum and maximum outcome rates.

The goal of the heuristic approach is to select a minimal
number of applications to perform fault injection study on a
new platform. Although the soft error effects across different
processors show highly correlated results that are very close
to a linear relationship, the observed outcome rates may
have some deviations due to the sampling errors caused by
Monte Carlo method that selects a certain number of ran-
dom fault injection samples. The obtained linear projection
should capture the overall correlation trend despite such noisy
observations. The heuristic approach tries to achieve this by
selecting a group of applications that show a broad spectrum
of erroneous outcome rates. Because the selected applications
show diverse outcome rates including the maximum and
minimum observed outcome rates, small sampling errors do
not affect the derived linear projection (i.e., A and B in (3))
on a large scale.

The resulting accuracy level when we select the training
group application using the heuristic method is also plotted
in Fig. 7. The training group decided by this heuristic method
results in prediction errors that are very close to the best
(i.e., the minimum prediction error) case. From n; > 3,
the average of the prediction errors is better than 7%.

As a detailed example of the outcome rate prediction,
Figs. 8 and 9 compare the predicted outcome rates and
observation results from fault injection runs on Rocket and
BOOM, respectively. Fig. 8 shows predictions for Rocket
using the fault injection results of BOOM, and the predictions
in Fig. 9 use the fault injection results of Rocket to predict

41310

8.0% A
Emm Prediction

Bmm Observation
6.0% A

1.4%

4.0% A

SDC Rate

2.0% A

0.0% -
bzip2 crafty gap gzip parser twolf vortex average

20.0% Emm Prediction
Bmm Observation

15.0% 1 14.4%

10.0%

UT Rate

5.0% A

0.0% -
crafty gap gcc mcf parser vortex

(b)

vpr average

B Prediction
6.0% - s Observation

11.0%

40%] 2L.0% . s
E:

Hang Rate

2.0% A

0.0% -
bzip2 crafty gap gcc gzip parser vortex average

FIGURE 8. Accuracy comparison of the estimated outcome rate prediction
and observed results from fault injection experiments for Rocket. (a) SDC
rates. (b) UT rates. (c) Hang rates.

the outcome rates of BOOM. The numbers on the top of
the bars in Figs. 8 and 9 indicate the prediction error (E)
values.* For this example, n; is set to 3, meaning that we
assume the profiling on the target processor core is performed
using three applications in the training group. For instance,
to estimate the SDC rates for BOOM in Fig. 9a, the training
group consists of bzip2, mcf, and twolf. The graph shows the
prediction accuracy levels for the rest of the applications in
the test group. On average, the resulting prediction error is
only 4.8%.

The prediction accuracy for Hang rates in Figs. 8 and 9
is a little worse than other outcome types. The prediction
accuracy may degrade if there are no pronounced differences
between the applications. Because the primary strategy cri-
teria of the heuristic method for selecting applications for
fault injection is selecting applications that can address a
wide range of outcome rates, the approach works better if
the applications have higher diversity in the outcome rates.
In contrast, the heuristic method may have difficulties for
accurately predicting individual outcome rates if there are
small differences among the applications because the derived

4The values on top of the average bars are the arithmetic means of the
prediction errors across the test group applications.

VOLUME 6, 2018

H. Cho: Impact of Microarchitectural Differences of RISC-V Processor Cores on Soft Error Effects

IEEE Access

B Prediction
3.0% A s Observation

2.0% A

SDC Rate

1.0%

0.0% -
crafty gap gcc gzip parser vortex

(a)

vpr average

12.5% —
EEm Prediction

10.0% A s Observation

9
7.5% 1%

UT Rate

5.0%

2.5% A

0.0% -
crafty gap gcc mcf parser vortex

(b)

vpr average

4.0% B Prediction
B Observation
3.0% A

2.0%

Hang Rate

1.0% A

0.0% -
bzip2 crafty gap gcc parser twolf vortex average

(c)

FIGURE 9. Accuracy comparison of the estimated outcome rate
predictions and observed results from fault injection experiments for
BOOM. (a) SDC rates. (b) UT rates. (c) Hang rates.

linear projection could be biased by the minimum and the
maximum outcome rates. In Figures 8 and 9, the standard
deviation of the observed outcome rates is much lower for
the Hang rates compared to other outcome types. For exam-
ple, in the observed outcome rates of Rocket, the standard
deviation of the UT rates is 1.80%, whereas the standard
deviation is 0.36% for the Hang rates. Although the heuristic
method may work less effectively on outcome types with
smaller diversity in the outcome rates, a lower difference in
the erroneous outcome rates means there is a smaller need
for accurately predicting the individual application’s outcome
rates to assess the soft error resilience of the target system.

VII. RELATED WORK

Many researchers have proposed various ways of reducing
the overhead of studying the effects of soft errors on a given
system.

A. REDUCING THE NUMBER OF APPLICATIONS

TO PERFORM FAULT INJECTION

Lu et al. [28] proposed models to predict the SDC rates of
target applications without performing fault injection exper-
iments on every benchmark application. These models are

VOLUME 6, 2018

based on instruction-level fault injection profiling of train-
ing applications, which do not capture the microarchitec-
tural implementation details. In addition, they focus on the
SDC-type outcomes only, unlike our method which covers
all types of erroneous outcomes. Bronovetsky et al. [37]
uses a machine-learning approach to model the soft error
effects, but the target applications are limited to linear algebra
applications.

B. ANALYTICAL METHOD

A large body of literature exists that evaluates the Archi-
tectural Vulnerability Factor (AVF), which quantifies the
soft error masking rate of a system, and estimates the error
resilience of the system using the AVF value [22], [38]-[40].
These AVF-based approaches generally provide loose bounds
compared to the predictions based on fault injection results.

C. HYBRID APPROACH

Mirkhani et al. [41] created a method for modeling soft error
effects of complex designs using fast local simulations. The
actual outcome rates of the target system are calculated from
the collected local simulation results. Hari et al. [42], [43]
proposed a method to predict the soft error effects using fault
injections on selected program sites only.

These existing approaches are primarily focused on pre-
dicting the erroneous outcome rates of the target applications
on the same system. Therefore, these approaches are orthogo-
nal to our method which correlates the soft error effects across
different target systems.

D. FAULT INJECTION TECHNIQUES

Software-level and architecture-level fault injection tech-
niques model soft errors using bit-flips in abstracted states,
such as program variables or software-visible architectural
registers [29], [30], [44], [45]. These mechanisms provide
fast fault injection runs, but the obtained injection results
may contain inaccuracies [11]. Co-simulation approaches
that combine two or more levels of abstraction can accelerate
the performance of fault injection runs [27], [46]. Flip-flop
soft errors are injected on low-level simulation or emulation
environments, while the long-term effects of the errors that
affect the execution of the application are modeled using fast
high-level simulators, such as instruction-level simulators.
These approaches provide accurate error modeling and accel-
erate the overall simulation runs. However, some flip-flop
soft errors may not be abstracted into the high-level simu-
lators, and those errors can be a source of inaccuracies in the
results or require extended RTL simulation time. Flip-flop-
level fault injections, which model flip-flop soft errors using
RTL simulations, can model accurate soft error behaviors [2].
In our work, we overcome the slow execution speed of RTL
simulations using FPGA platforms. When such FPGA-based
fault injection platforms are not available, our mechanism for
predicting soft error behaviors in the new target platform can
reduce the fault injection efforts.

41311

IEEE Access

H. Cho: Impact of Microarchitectural Differences of RISC-V Processor Cores on Soft Error Effects

VIil. CONCLUSION

Characterizing the effects of soft errors on a system can
be a major obstacle for the rapid development of error
resilient systems. Studying soft error effects often involves
time-consuming simulation or emulation runs to collect a
large number of fault injection samples for a wide variety of
target applications. In this study, we quantitatively compared
the soft error effects on two processor cores that have dif-
ferent microarchitectural implementations of the same ISA.
Although the raw values of the erroneous outcome rates
from the two processor cores are different, the outcome rates
depending on the applications have very strong correlations.
Between the processor cores of the same ISA, the erroneous
outcome rates of the applications can be approximated by a
simple linear relationship.

Utilizing the correlation, we demonstrated that the erro-
neous outcome rates of a target processor core can be pre-
dicted using an existing soft error effect characterization
established on a processor core of the same ISA. To min-
imize the profiling efforts required on the target processor
core, we also created a heuristic method to determine the
group of applications to collect fault injection samples on
the target processor core. With only three applications in the
training group, the erroneous outcome rates on the target
processor core can be predicted with only 7% prediction
error. This approach can greatly reduce the amount of time
required for evaluating the error resilience of a given system
and potentially assist in developing new soft error protection
techniques.

REFERENCES

[1] S. Borkar, “Designing reliable systems from unreliable components:
The challenges of transistor variability and degradation,” IEEE Micro,
vol. 25, no. 6, pp. 10-16, Nov. 2005.

[2] P.N. Sanda et al., “Soft-error resilience of the IBM POWERG6 processor,”
IBM J. Res. Develop., vol. 52, no. 3, pp. 275-284, May 2008.

[3] N. Seifert et al, “Soft error susceptibilitiecs of 22 nm tri-gate
devices,” IEEE Trans. Nucl. Sci., vol. 59, no. 6, pp. 2666-2673,
Dec. 2012.

[4] N. Seifert, “Radiation-induced soft errors: A chip-level modeling perspec-
tive,” Found. Trends Electron. Des. Autom., vol. 4, nos. 2-3, pp. 99-221,
Feb. 2010.

[S] N. Seifert et al., “Soft error rate improvements in 14-nm technology
featuring second-generation 3D tri-gate transistors,” IEEE Trans. Nucl.
Sci., vol. 62, no. 6, pp. 2570-2577, Dec. 2015.

[6] P. Nsengiyumva et al., “A comparison of the SEU response of planar and
FinFET D flip-flops at advanced technology nodes,” IEEE Trans. Nucl.
Sci., vol. 63, no. 1, pp. 266-272, Feb. 2016.

[7] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. Hoe, ‘“Multi-bit error
tolerant caches using two-dimensional error coding,” in Proc. MICRO,
Chicago, IL, USA, Dec. 2007, pp. 197-209.

[8] J. M. Hart et al., “A 3.6 GHz 16-core SPARC SoC processor in 28 nm,”
IEEE J. Solid-State Circuits, vol. 49, no. 1, pp. 19-31, Jan. 2014.

[9]1 E. Cheng et al., “CLEAR: Cross-layer exploration for architecting
resilience: Combining hardware and software techniques to tolerate soft
errors in processor cores,” in Proc. DAC, Austin, TX, USA, Jun. 2016,
pp. 1-6.

[10] M. Shafique, S. Rehman, P. V. Aceituno, and J. Henkel, “Exploiting
program-level masking and error propagation for constrained reliability
optimization,” in Proc. DAC, Austin, TX, USA, May 2013, p. 17.

[11] H. Cho, S. Mirkhani, C.-Y. Cher, J. A. Abraham, and S. Mitra, “Quantita-
tive evaluation of soft error injection techniques for robust system design,”
in Proc. DAC, Austin, TX, USA, May/Jun. 2013, pp. 1-10.

41312

[12]

(13]

[14]

[15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

(25]

[26]

(32]

(33]

(34]

(35]

H. Cho, E. Cheng, T. Shepherd, C.-Y. Cher, and S. Mitra, *“‘System-level
effects of soft errors in uncore components,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 36, no. 9, pp. 1497-1510, Sep. 2017.

G. P. Saggese, N. J. Wang, Z. T. Kalbarczyk, S. J. Patel, and R. K. Iyer,
“An experimental study of soft errors in microprocessors,” IEEE Micro,
vol. 25, no. 6, pp. 30-39, Nov. 2005.

M. Maniatakos, N. Karimi, C. Tirumurti, A. Jas, and Y. Makris,
“Instruction-level impact analysis of low-level faults in a modern
microprocessor controller,” [EEE Trans. Comput., vol. 60, no. 9,
pp. 1260-1273, Sep. 2011.

G. Li, K. Pattabiraman, C.-Y. Cher, and P. Bose, “Understanding error
propagation in GPGPU applications,” in Proc. SC, Salt Lake City, UT,
USA, Nov. 2016, pp. 240-251.

S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer,
“SASSIFI: An architecture-level fault injection tool for GPU application
resilience evaluation,” in Proc. ISPASS, Santa Rosa, CA, USA, Apr. 2017,
pp. 249-258.

P. Ramachandran, P. Kudva, J. Kellington, J. Schumann, and P. Sanda,
“Statistical fault injection,” in Proc. DSN, Anchorage, AK, USA,
Jun. 2008, pp. 122-127.

S. E. Michalak et al., “Assessment of the impact of cosmic-ray-induced
neutrons on hardware in the roadrunner supercomputer,” [EEE Trans.
Device Mater. Rel., vol. 12, no. 2, pp. 445-454, Jun. 2012.

C.-Y. Cher, M. S. Gupta, P. Bose, and K. P. Muller, ““Understanding soft
error resiliency of blue gene/Q compute chip through hardware proton
irradiation and software fault injection,” in Proc. SC, New Orleans, LA,
USA, Nov. 2014, pp. 587-596.

C. Bottoni et al., ““Heavy ions test result on a 65nm SPARC-VS8 radiation-
hard microprocessor,” in Proc. IEEE IRPS, Waikoloa, HI, USA, Jun. 2014,
pp. SE5.1-5E5.6.

P. Greenhalgh, “Big.LITTLE processing with ARM cortex-A15 & cortex-
A7, ARM, White Paper, 2011.

V. Sridharan and D. R. Kaeli, “Eliminating microarchitectural dependency
from architectural vulnerability,” in Proc. HPCA, Raleigh, NC, USA,
Feb. 2009, pp. 117-128.

A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovié¢, “The RISC-V
instruction set manual: User-level ISA, version 2.1,” Dept. Elect. Eng.
Comput. Sci., Univ. California, Berkeley, Berkeley, CA, USA, Tech. Rep.
UCB/EECS-2016-118, 2016, vol. 1.

RISC V cores and SoCs. Accessed: Jul. 22, 2018. [Online]. Available:
https://riscv.org/risc-v-cores/

Y. Lee et al., “An agile approach to building RISC-V microprocessors,”
1IEEE Micro, vol. 36, no. 2, pp. 8-20, Mar. 2016.

C. Celio, D. A. Patterson, and K. Asanovi¢, “The Berkeley out-of-order
machine (BOOM): An industrycompetitive, synthesizable, parameterized
RISC-V processor,” Univ. California, Berkeley, Berkeley, CA, USA,
Tech. Rep. UCB/EECS-2015-167, 2015.

N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel, “Characterizing the
effects of transient faults on a high-performance processor pipeline,” in
Proc. DSN, Florence, Italy, Jun./Jul. 2004, pp. 61-70.

Q.Lu, G.Li, K. Pattabiraman, M. S. Gupta, and J. A. Rivers, “Configurable
detection of SDC-causing errors in programs,” ACM Trans. Embed. Com-
put. Syst., vol. 16, no. 3, pp. 88:1-88:25, Mar. 2017, doi: 10.1145/3014586.
Y. Zhang, J. W. Lee, N. P. Johnson, and D. I. August, “DAFT: Decoupled
acyclic fault tolerance,” in Proc. PACT, Vienna, Austria, 2010, pp. 87-98.
K. Pattabiraman, G. P. Saggese, D. Chen, Z. Kalbarczyk, and
R. K. Iyer, “Automated derivation of application-specific error detectors
using dynamic analysis,” IEEE Trans. Depend. Sec. Comput., vol. 8,
no. 5, pp. 640-655, Sep./Oct. 2011.

J. Bachrach et al., “Chisel: Constructing hardware in a Scala embed-
ded language,” in Proc. DAC, San Francisco, CA, USA, Jun. 2012,
pp. 1212-1221.

A. KleinOsowski and D. J. Lilja, “MinneSPEC: A new SPEC benchmark
workload for simulation-based computer architecture research,” IEEE
Comput. Archit. Lett., vol. 1, no. 1, p. 7, Jan./Dec. 2002.

C. Wang, H.-S. Kim, Y. Wu, and V. Ying, “Compiler-managed software-
based redundant multi-threading for transient fault detection,” in Proc.
CGO, San Jose, CA, USA, Mar. 2007, pp. 244-258.

J. Suh, M. Annavaram, and M. Dubois, “PHYS: Profiled-hybrid sampling
for soft error reliability benchmarking,” in Proc. DSN, Budapest, Hungary,
Jun. 2013, pp. 1-12.

X. Fu, J. Poe, T. Li, and J. A. B. Fortes, ““Characterizing microarchitecture
soft error vulnerability phase behavior,” in Proc. MASCOTS, Monterey,
CA, USA, Sep. 2006, pp. 147-155.

VOLUME 6, 2018

http://doi.acm.org/10.1145/3014586

H. Cho: Impact of Microarchitectural Differences of RISC-V Processor Cores on Soft Error Effects

IEEE Access

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Cobham Gaisler Leon3 Processor. Accessed: Jul. 22, 2018. [Online].
Available: http://gaisler.com/leon3

G. Bronevetsky, B. de Supinski, and M. Schulz, ““A foundation for the accu-
rate prediction of the soft error vulnerability of scientific applications,”
Lawrence Livermore Nat. Lab., Livermore, CA, USA, Tech. Rep. LLNL-
CONF-410635, 2011.

S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor,” in Proc. IEEE/ACM Int.
Symp. Microarchitecture, Sep. 2003, pp. 29—40.

N.J. Wang, A. Mahesri, and S. J. Patel, “Examining ACE analysis reliabil-
ity estimates using fault-injection,” in Proc. ISCA, San Diego, CA, USA,
2007, pp. 460-469.

B. Wibowo, A. Agrawal, and J. Tuck, “Characterizing the impact of soft
errors across microarchitectural structures and implications for predictabil-
ity,” in Proc. [ISWC, Seattle, WA, USA, Oct. 2017, pp. 250-260.

S. Mirkhani, B. Samynathan, and J. A. Abraham, “In-depth soft error
vulnerability analysis using synthetic benchmarks,” in Proc. VTS, Napa,
CA, USA, Apr. 2015, pp. 1-6.

S. K. Sastry Hari, S. V. Adve, H. Naeimi, and P. Ramachandran, “‘Relyzer:
Application resiliency analyzer for transient faults,” IEEE Micro, vol. 33,
no. 3, pp. 58-66, May 2013.

S. K. S. Hari, R. Venkatagiri, S. V. Adve, and H. Naeimi, “GangES:
Gang error simulation for hardware resiliency evaluation,” in Proc. ISCA,
Minneapolis, MN, USA, Jun. 2014, pp. 61-72.

S. Feng, S. Gupta, A. Ansari, and S. Mahlke, “Shoestring: Probabilistic
soft error reliability on the cheap,” in Proc. Int. Conf. Archit. Support
Program. Lang. Oper. Syst., Pittsburgh, PA, USA, Mar. 2010, pp. 385-396.

VOLUME 6, 2018

[45] J. Wei, A. Thomas, G. Li, and K. Pattabiraman, ““Quantifying the accuracy
of high-level fault injection techniques for hardware faults,” in Proc. DSN,
Jun. 2014, pp. 375-382.

[46] H. Cho, C.-Y. Cher, T. Shepherd, and S. Mitra, “Understanding soft errors
in uncore components,” in Proc. DAC, San Francisco, CA, USA, 2015,
Art. no. 89.

HYUNGMIN CHO received the B.S. degree in
computer science engineering from Seoul National
University, South Korea, in 2005, and the M.S.
and Ph.D. degrees in electrical engineering from
Stanford University, in 2010 and 2015, respec-
tively. He was a Research Scientist with Intel Labs,
Santa Clara, CA, USA. He is currently an Assis-
tant Professor with the Department of Computer
Engineering, Hongik University, South Korea.
His research interests include reliable computer

systems and computing model for robust systems.

41313

	INTRODUCTION
	RICV-V ISA
	SOFT ERROR EFFECTS
	EXPERIMENT SETUP
	SOFT ERROR MODEL
	SOFT ERROR FAULT INJECTION ON FPGA
	BENCHMARK APPLICATIONS

	FAULT INJECTION RESULTS
	CORRELATION COMPARISON
	CORRELATION COMPARISON UNDER MULTIPLE BIT-FLIPS
	CORRELATION COMPARISON WITH THE PULPINO RISC-V PROCESSOR CORE

	SOFT ERROR EFFECT PREDICTION
	MEASURING PREDICTION ACCURACY
	HEURISTIC APPROACH TO SELECT APPLICATIONS FOR FAULT INJECTION

	RELATED WORK
	REDUCING THE NUMBER OF APPLICATIONS TO PERFORM FAULT INJECTION
	ANALYTICAL METHOD
	HYBRID APPROACH
	FAULT INJECTION TECHNIQUES

	CONCLUSION
	REFERENCES
	Biographies
	HYUNGMIN CHO

