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ABSTRACT Accurate prediction of remaining useful life (RUL) of lithium-ion battery plays an increasingly
crucial role in the intelligent battery health management systems. The advances in deep learning introduce
new data-driven approaches to this problem. This paper proposes an integrated deep learning approach for
RUL prediction of lithium-ion battery by integrating autoencoder with deep neural network (DNN). First,
we present a multi-dimensional feature extraction method with autoencoder model to represent battery health
degradation. Then, the RUL prediction model-based DNN is trained for multi-battery remaining cycle life
estimation. The proposed approach is applied to the real data set of lithium-ion battery cycle life from NASA,
and the experiment results show that the proposed approach can improve the accuracy of RUL prediction.

INDEX TERMS Lithium-ion battery, remaining useful life, RUL prediction model, deep learning, deep

neural network.

I. INTRODUCTION

In the context of modern industry booming, lithium-ion
battery technology has been widely used in the vehicle,
household equipment, communications, aerospace and other
fields. Compared with traditional batteries, lithium-ion bat-
tery has many advantages including high output voltage,
high energy density, low self-discharge, long cycle life, high
reliability, etc. [1]-[3]. And these advantages have con-
tributed to wider applications of lithium-ion battery in more
area. The new generation of TOYOTA Prius, Chevrolet Volt,
Nissan Leaf and BYD E6 all work with lithium-ion batteries.
Especially for space applications, the lithium-ion battery has
become the third generation of satellite energy storage battery
for nickel-metal hydride battery and nickel-cadmium battery.
Some of the projects have been taken into practical produc-
tion and application. Lithium-ion batteries are widely used as
energy such as NASA’s Spirit and Opportunity Mars probe,
Phoenix Mars Lander, ESA’s Mars Express, ROSETT’ A plat-
form and Japanese Falcon bird asteroids [4]. At the same
time, the safety and reliability of lithium-ion battery have

always been a very important issue in their applications [5].
Battery malfunction may lead to the performance degra-
dation or malfunction of powered equipment or systems,
which will increase the cost. Especially if lithium-ion bat-
teries for electric vehicles are mismanaged, it will cause
fire and explosion. In 1999, the US space test Air Force
Research Laboratory failed due to an abnormal battery inter-
nal impedance. In 2013, several Boeing 787 caught fire as a
result of a lithium-ion battery failure and caused all airliners
to be grounded indefinitely [6], [7]. As a key power source
for a variety of industrial systems, lithium-ion battery defects
often lead to fatal system failures [8]. And the National
Aeronautics and Space Administration (NASA) launched the
Mars probe, the battery was over-charge as NASA ignores
its status and rotated solar panels to the direction towards the
sun, which resulted in over temperature of the battery. Finally,
the lack of power supply led to the loss of the detector [9].
Therefore, accurate prediction of Remaining Useful
Life (RUL) of lithium-ion battery plays an increasingly
crucial role in lithium-ion battery state estimation and
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health management [10]. The typical method of lithium-ion
battery RUL prediction is usually divided into two categories:
model-based [11] and data driven approach [12]-[18]. The
comprehensive internal state data, however, is typically dif-
ficult to detect and collect for battery degradation model-
ing due to the highly complex chemical reactions inside
lithium-ion battery. The state of lithium-ion battery is highly
vulnerable in addition to working temperature, circuit, load
and other environmental factors, therefore it is difficult to
establish an accurate prediction model for lithium-ion bat-
tery degradation. The data-driven method has recently drawn
significant attention in lithium-ion battery RUL prediction
research area. Yet most data-driven methods are focused on
making short-time prediction for a same battery based on
the historical data of the battery, few existing methods can
realize multi-battery prediction by using data from multi-
battery. The advances in Artificial Intelligence (AI) and Deep
Learning introduce new data-driven approaches to this prob-
lem. Especially Deep Neural Network (DNN) is suitable for
high complex non-linear fitting by training multi-layer arti-
ficial neural networks, and can achieve better accuracy for
complex prediction problems such as multi-battery RUL
estimation.

In this paper, we have consulted a large number of
literature [19]-[22]. And to address these issues, this paper
proposes an integrated deep learning approach, ADNN, for
RUL prediction of multiple lithium-ion battery by inte-
grating autoencoder with DNN. A 21-dimensional feature
extraction method with autoencoder model is proposed to
represent battery health degradation. And the DNN based
RUL prediction model is trained for multi-battery remain-
ing cycle life estimation. The proposed approach is applied
to the real dataset of lithium-ion battery cycle life from
NASA, and the experimental results show the effectiveness
and superiority of the proposed approach. The rest part of
the paper is organized as follows. Section 2 investigates
related work. Section 3 presents the integrated deep learn-
ing approach framework for lithium-ion battery RUL pre-
diction, including the process of feature extraction, feature
fusion, data normalization, model training and result evalu-
ation. The experimental implementation and results discus-
sion are described in Section 4. Section 5 concludes the
work.

Il. RELATED WORK

A. LITHIUM-ION BATTERY RUL PREDICTION METHODS

1) MODEL-DRIVEN METHOD

Xu and Chen [14] predicted the RUL of lithium-ion batteries
by establishing a state-space model. The updating of param-
eters and states in this model is achieved through the com-
bination of Expectation Maximization (EM) and Extended
Kalman Filter (EKF) algorithms. Hu ez al. [S] proposed a
moving horizon estimation (MHE) framework for condition
monitoring in advanced battery management systems using a
reduced-form electrochemical model.
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2) DATA-DRIVEN METHOD

Hu et al. [23] proposed a data-driven forecasting model for
by using a combination of sample entropy and sparse
Bayesian predictive modeling. Song et al. [12] provided a
hybrid method of IND-AR model and PF (Particle Filter)
algorithm to predict the remaining life of lithium-ion bat-
tery cycles and achieved good results. Liu ez al. [15] used an
Adaptive Recurrent Neural Network (ARNN) algorithm for
state prediction of dynamic system. The ARNN algorithm
took the Recurrent Levenberg-Marquardt (RLM) method to
make several rectifications in the weights of RNN archi-
tecture and gained satisfied results in the lithium-ion bat-
tery RUL estimation. Wu et al. [16] analyzed the battery
terminal voltage curves at different cycles during charging,
and proposed an online method using feed forward neural
network (FFNN) and importance sampling (IS) to estimate
lithium-ion battery RUL. Patil er al. [13] proposed a real-time
RUL estimation method for lithium-ion battery based on the
classification and regression properties of machine learn-
ing techniques based on Support Vector Machine (SVM).
By analyzing the different working conditions of lithium-
ion battery cycle data, and extracted the key features from
the voltage and temperature curve, and then used these fea-
tures to train the model, so as to achieve the purpose of
lithium-ion battery RUL forecast. Cheng et al. [17] proposed
a method based on functional principal component analy-
sis (FPCA) and Bayesian lithium battery RUL prediction.
FPCA was used to construct a lithium-ion battery degradation
model and the Bayesian model was used to update the model
parameters Realize the lithium-ion battery RUL forecast.
Hong ef al. [24] proposed a novel performance degradation
assessment method for bearing based on ensemble empir-
ical mode decomposition (EEMD), and Gaussian mixture
model (GMM). Saha et al. [25] and Zhou et al. [26] uses the
internal parameters of the battery to build a Relevance Vector
Machine (RVM) model and uses Particle filter (PF) particle
filter algorithm to determine the adaptive parameters of the
RVM model to predict the decline of the lithium battery. How-
ever, the long-term prediction ability of the RVM algorithm is
poor, so it is difficult to obtain a satisfactory RUL estimation
result by directly using the RVM model [26]. In the case of
different battery degradations, Lu et al. [27] compares the
trends of various detection parameters, and extracts 4 geomet-
ric features that are sensitive to lithium battery degradation
from these figures. They are used as detection parameters to
characterize the deterioration of lithium batteries and have
achieved good results. Hong ef al. [28] introduces a prepro-
cessing model of the bearing using wavelet packet-empirical
mode decomposition (WP-EMD) for feature extraction.

1Il. DEEP LEARNING FRAMEWORK FOR LITHIUM-ION
BATTERY RUL PREDICTION

Figure 1 shows Lithium-ion battery RUL prediction model
framework. Firstly, the characteristics are extracted from the
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FIGURE 1. Deep learning framework for lithium-ion battery RUL
prediction.

original data. Secondly, the feature fusion is performed by the
autoencoder model.

Thirdly, the fused features are input to the DNN model to
predict the RUL of the lithium-ion battery. Finally, the pre-
dicting results are output.

A. FEATURE EXTRACTION

1) ORIGINAL SIGNAL

Via the analysis of the battery charge and discharge pro-
cess data, it can be found that the charging experiment data
includes the battery terminal voltage, the battery output cur-
rent, the battery temperature, the charger measurement cur-
rent, the charger measurement voltage and the cycle time
vector. Figure 2 shows each charge and discharge cycle. And
multiple charging and discharging cycles is to repeat the
process of Figure 2.

(a) Charging process: First, a constant current (Constant
Current, CC) current lithium-ion battery charge, the voltage
was raised to a specific voltage value, and then keep the volt-
age across the battery is a constant voltage (Constant Voltage,
CV) at previous specific value until the charge current drops
to a certain value.

(b) Discharging process: Firstly, let the battery discharge at
a constant current of a specific current value until the voltage
of different lithium-ion batteries drops to a specific voltage
value respectively.
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FIGURE 4. Battery output current and time relationship.

Figure 3-7 shows the data of battery terminal voltage,
output current, temperature, measured voltage and current
over time during multiple charge cycles.

The discharge test data includes: battery terminal voltage,
battery output current, battery temperature, load measure-
ment current, voltage measured under load, cycle time vector,
battery capacity (Ahr)

During the multiple discharge process, the battery terminal
voltage, output current, temperature, voltage measurement,
the relationship between time and measuring current changes
in data as shown in Figure 8-12.
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FIGURE 7. Voltage measured and time relationship.

2) EXTRACT FEATURES

Due to the impact of battery life, the sample collected in a
battery charge and discharge process is not the same size, and
some only 800 sample points, while others have 5000 sample
points Therefore, we can not enter the charge and discharge
data directly into the feature fusion model. We need to pre-
process the original data, to extract the typical characteristics
of each cycle of the battery. There is a positive correla-
tion between informational representation and informational
dimension. In theory, the more features extracted from the
raw data, the better the prediction.
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In order to solve the problem of different sizes of data
samples, the intuitive idea is to take the same points at equal
intervals for each cycle dimension. And the effect achieved
in this way is not satisfying. At the same time of taking the
points, it is highly possible to discard the information of some
key points in each dimension. Therefore, reliable battery
parameters must be determined. These parameters charac-
terize the degradation and actual performance of lithium-ion
batteries well, and are still highly reliable and accurate under
different cell aging conditions. Meanwhile, the curves for
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each test parameter of Lithium-ion Battery have obvious
geometric characteristics that are very sensitive to the bat-
tery’s decay [27]. Thus, for each dimension in each charge
and discharge cycle, we can extract typical geometric feature
information from these dimensions and use these geometric
features to characterize the current state of the lithium-ion
battery.

In a charging process, the battery terminal voltage extrac-
tion features are as in (1).

(tmin{i}y Vi), st.vi=42V i=1,2,3...n @))

In the formula, tmin{i} represents the time when the bat-
tery terminal voltage reaches the maximum value first, and
vi represents the value of the output voltage of the battery
terminal first reaching the maximum. n is the sample size

Battery output current extraction features are as in (2):

(tmin{iy> Ai)s

In the formula, #,,;,(;y represents the time when the output
current of the battery is started to drop, and A; represents the
current value of the battery terminal current starting to drop.
n is the sample size.

Battery temperature extraction features are as in (3):

(tpers Toe) = {(ti, Ti)|max(T;)}

st A <15V i=1,23...n (2

i=1,2,3...n (3
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In the formula, 75,7 represents the time when the battery
temperature reaches the maximum value, T, represents the
highest temperature value. 7 is the sample size.

Battery measured current extraction features are as in (4):

(minti). A, s4.A; <15V i=1,23...n (4

In the formula, #,;,; represents the time when the
extracted battery charging current starts to drop. A; represents
the current value when the measured current starts to drop.
n is the sample size.

Battery measured voltage extraction features are as in (5):

(tmev, voo) = {(ti, vi)lmax(vi)}  i=1,2,3...n (5)

In the formula, #,,., represents the time when the battery
measured voltage reaches the maximum value, v, represents
the highest measured voltage value. n is the sample size

In a discharging process, the battery terminal voltage fea-
tures are as in (6):

pav, voa) = {ti, vi)lmax(vp)} i=1,2,3...n  (6)

In the formula, f,4, represents the time when the battery
terminal voltage reaches the minimum value, vy, represents
the minimum voltage value. n is the sample size.

Battery output current extraction features are as in (7):

(bminiiy» AD), .0 A > =24 i=123...n ()

In the formula, f,,in(;y represents the time when the battery
output current starts to rise, and A; represents the current value
when the battery output current starts to rise. # is the sample
size.

Battery temperature extraction features are as in (8):

(tpers Tae) = {(ti, Ti)|max(T;)}

In the formula, 5.7 represents the time when the battery
temperature reaches the maximum value. Ty, represents the
highest temperature value. 7 is the sample size.

Load measurement current extraction features are as in (9):

i=1,2,3...n (8

(bmingiy» AD), LA > —2A i=123...n  (9)

In the formula, #,,(;) represents the time when the load
measurement current starts to rise, and A; represents the
current value when the load measurement current starts to
rise. n is the sample size.

The formula for extracting the load voltage is:

i=1,2,3...n
(10)

(et Voe) = {(ti, vi)lmin(v;) s.t. v; # 0}

Battery capacitor C directly extracted, when the unit is Ah.

B. FEATURE FUSION

In general, there is a positive correlation between the infor-
mation characterization and the information dimension. The
more information dimensions, the more information repre-
sentation capability. However, as the number of extracted
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features increases, the number of highly correlated fea-
tures also increases, which often leads to model information
redundancy and computational inefficiency. It is necessary
to reduce the feature dimension to improve the efficiency
of the model. Typical dimensionality reduction methods
include principal component analysis (PCA) [29], indepen-
dent component analysis (ICA) [29], and autoencoder [30].
PCA requires data to be subjected to the Gaussian distribu-
tion. Without prior knowledge of the case, it is not suitable for
ICA, we cannot determine the distribution of data. Therefore
autoencoder will be a good choice.

There are many time-domain features and the combina-
tion of different time-domain features is more complex. It is
difficult to choose the time-domain features that are suitable
for the battery’s remaining cycle life prediction. But depth
autoencoder network can achieve the fusion of time-domain
data. In the model training phase, the input of the network
is the time-domain feature vector of the training set, and
the output is also the training set of the time-domain feature
vector. After training the autoencoder network, we can carry
out the feature fusion.

The autoencoder neural network is an unsupervised
algorithm that has a completely symmetrical network
structure [30]-[32]. It attempts to learn a constant function
that the result outputted is close to the target given by input
data [33]. In this case, when the output is close to the input,
we can use the hidden neurons to express the input, which is
shown in Figure 13:

Laver I1

Laver I3

FIGURE 13. Autoencoder model.

Set {xl,xz,x3,x4,x5,x6} as input data of the neural
network, and the 3-dimensional data is operated in the
encoder as there are 3 units set in layer 12. In layer 13 the
data will be sent to the decoder. Finally, 6-dimensional
output {y',y%,y3,y* y°,y%} will be generated from units
in 13. We train the encoder and decoder so that y'
equals x!. In this way, we can use {ll, 2, l3} to represent
{xl,x2,x3,x4,x5,x6}.

The original feature set encoding process in this article

from the input layer to the hidden layer is as in (11):
hi=gb(x)) =owi+x;+b1) i=12...m (11)
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h; is a 15-dimensional fusion feature set, x!is a

21-dimensional original feature set, w; is a weight set, and
b1 is a fixed parameter. m is the number of samples.

From the hidden layer to the output layer decoding process
is as in (12):

Xl =gb(x) =o(whi+by) i=1,23... (12

xlf is a decoded 21-dimensional feature set, wy is a set of
weights, and b, is a fixed parameter.

The reconstruction error loss function for dataset x is as
in (13):

Je(W . b) = 3 It —xill® (13)
E s - m i—1 D) i

m is the number of samples, and the sample set minimizes

the reconstruction error loss function.

After the training, x” can be treated as another expression
of x.

C. DATA CONVERT
After the previous step, i-th charge and discharge data is
compressed into a 15-dimensional feature x; that are input
into the RUL prediction model. However, to train the pre-
diction model, it is also necessary to get y; corresponding
to x;, that is, unsupervised data trained by autoencoder need
to be converted to supervised data. The specific process is as
follows:
Firstly, we calculate the total number of battery charge and
discharge cycles as the total Lithium-ion Battery cycle life n.
Secondly, the ith charge and discharge cycle (0 < i < n)
RULyj; is calculated by (14):

yvi=n+1-—1i (14)

Finally, x; and y; are combined to get the supervised data
(xi yi)-

D. DATA NORMALIZED
In order to eliminate the negative effects caused by different
ranges of values, the range of all extracted eigenvalues is
transformed to [0, /] by the minimum-maximum normaliza-
tion method [34]. In addition, the feature is transformed into
the same interval, which facilitates the overall training of the
depth model.

The minimum and maximum normalization method con-
version formula is as in (15):

X — Xpi
x*r=_-"""_ (15)
Xmax — Xmin

Xmax 18 the maximum value of the sample data and x;,;,, is the

minimum value of the sample data.

E. TRAIN THE DNN MODEL

The model used for lithium-ion RUL prediction is deep neural
networks, which are supervised learning models. In the model
training step, the training set needs input and corresponding
output. Deep neural network can improve the computation
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ability of the training model. As each hidden layer can be
a layer of the output of non-linear transformation, the deep
neural network has more expressive capability than a shallow
one. In the deep neural network model, each hidden layer as
well as output layer should use non-linear activation func-
tion. The deep neural networks need to randomly initial-
ize the weight of the depth network before using gradient
descent method. Vanishing gradient problem often occurs in
deep neural networks model training, because inappropriate
excessive number of layers could lead to rapid residual fall,
resulting in slow updating especially at the earliest layers.
Therefore, the configuration of the number of hidden layers
is among the most important elements that influence the
efficiency of the training model.

The deep neural networks model consists of four fully
connected layers, the number of neurons in each layer is:
10, 7, 4, 1. The ReLu function is the activation function of
the intermediate hidden layer and the sigmoid function is the
activation function of the output layer.

Each round of loss function changes throughout the train-
ing process are shown below:

F. RUL PREDICTION AND EVALUATION

By using a trained DNN model, lithium-ion battery RUL
can be predicted. In order to evaluate the performance of
deep neural network models, the prediction results need to
be compared with Bayesian regression [35], support vector
machine (SVM) [36] and linear regression [37]. Root Mean
Square Error (RMSE) is used to assess prediction accu-
racy and to compare the performance of different prediction
models.

RMSE formula is as in (16):

Z?:l (xpredict.i — X mod el.i)2
XRMSE = . (16)

n is the size of the test set, Xpredicr.i 18 the predicted value of
the sample i, and x mod ¢.; 1S the true value of the sample i.
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IV. EXPERIMENTS

A. DATA DESCRIPTION

we adopt the lithium-ion battery batteries data set from NASA
AMES Center [38], [39]. The battery data set is from the
NASA PCoE.

In this paper, we use the three lithium-ion battery data of
BS5, B6 and B7 in this data set to accelerate in three different
operation modes of charging, discharging and electrochemi-
cal impedance measurement under 25 degrees Celsius Degra-
dation of the experiment, and record the observed data. The
specific steps are as follows:

(1) Charging process: First, a constant current (Constant
Current, CC) 1.5A current lithium-ion battery charge,
the voltage was raised to 4.2V, and then keep the voltage
across the battery is a constant voltage (Constant Voltage,
CV) at 4.2V until the charge current drops to 20mA.

(2) Discharge process: Firstly, let the battery discharge at
a constant current of 2A until the voltage of three lithium-ion
batteries BS, B6 and B7 drops to 2.7V, 2.5V and 2.2V
respectively.

Experiments need to constantly repeat the battery above
three operations to speed up the battery recession process.
Impedance measurements provide us with insight into how
the battery’s internal parameters change as the battery decays.
When battery capacity decays to 70%, battery life ends and
the experiment ends. It should be noted that the impedance
measurement needs to be carried out between the recharging
and discharging process so as to collect the battery parameter
data better.

B. FEATURE EXTRACTION

The battery characteristics of # 5, # 6, and # 7 were extracted
as described in Section 3.1, and the data of # 5 and # 6 bat-
teries were used as the training set and the data of # 7 battery
as the test set.

C. FEATURE FUSION BY AUTOENCODER

The features extracted from # 5 and # 6 were input into the
autoencoder model, and the features were compressed into
15 dimensions by training the model. The autoencoder model
consisted of three layers, the ReLu function was the activation
function of the hidden layer, and the sigmoid function was the
activation function of the output layer.

D. DATA CONVERT AND NORMALIZED
Because there are 168 charge and discharge cycles on the
#5 battery, the RUL value corresponding to the ith charge
and discharge cycle is 169-i, so that the supervised data of
the #5 battery can be obtained. In the same way, there is
supervised data for #6 Battery

Different features have different values ranges, which will
have a negative impact on the training of the model. In order
to eliminate this effect, we transformed the range of the
compressed features to [0, 1] using the minimum-maximum
normalization method.
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E. TRAIN THE DNN MODEL

DNN’s parameters were trained using normalized training
data. The input of the DNN model was a set of features, with
a total of 15 features and output is the RUL of lithium-ion
battery. The loss function was mean squared error, and the
optimization algorithm adopts stochastic gradient descent
algorithm. After trained, the DNN model could be used to
predict the RUL of lithium-ion battery. Input the feature set,
atotal of 15 features, to the DNN model, and the model output
was the RUL of lithium-ion battery.

F. RUL PREDICTION AND EVALUATION

The data of the # 7 battery were used to test the model
performance, and the predicted results were compared with
the Bayesian regression model, the SVM model and the linear
regression model. RMSE was used to evaluate the predictive
effects of different models.

G. RESULTS AND DISCUSSION

The experiments were repeated many times and initially
got special good results in some cases. Now that more
supplementary experiments have been done, the exper-
imental results have stabilized. Figure 15 shows the
results of a # 7 battery prediction with Autoencoder and
DNN models (ADNN). The horizontal axis represents the
21-dimensional feature set extracted from each charge and
discharge cycle, and the vertical axis represents the normal-
ized values of remaining cycle times for lithium-ion battery
corresponding to the secondary charge and discharge process.
The red line shows the true values (normalized remaining
cycle times) and the black dotted line shows the predicted
values. The RUL prediction curve is in good agreement with
the observed data. RMSE is 11.80%, and the accuracy rate
is 88.20%.
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FIGURE 15. The prediction results of ADNN.

Figure 16 shows the results of a Bayesian regression model
for predicting a # 7 cell. The red line shows the true value
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FIGURE 16. The prediction results of Bayesian Regression.

and the black dotted line shows the predicted value. RMSE is
24.72%, the accuracy rate is 75,28%.
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FIGURE 17. The prediction results of Linear Regression.

Figure 17 shows the results of a # 7 battery prediction using
a linear regression model. The red line shows the true value
and the black dotted line shows the predicted value. RMSE is
24.99% with an accuracy of 75.01%.

Figure 18 shows the results of a # 7 battery prediction using
the SVM model. The red line shows the true value and the
black dotted line shows the predicted value. RMSE is 18.23%),
the accuracy rate is 81.77%.

As shown in Table 1, the comparison results show that
ADNN can achieve better accuracy for lithium-ion battery
RUL prediction.

Figure 19 shows the predicted results from the 20 charge
and discharge cycles of #7 battery when using the ADNN
model. The red line shows the true value and the black
dotted line shows the predicted value. RMSE is 12.41%, and
accuracy is 87.59%.
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FIGURE 18. The prediction results of SVM.

TABLE 1. Comparison of experimental results.

method RMSE Accuracy
ADNN 6.66% 93.34%
Bayesian regression 11.92% 89.08%
Linear regression 12% 88%
SVM 10.66% 89.34%
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FIGURE 19. The prediction results of ADNN after 20 cycles.

Figure 20 shows the predicted results from the 20 charge
and discharge cycles of #7 battery when using the BVAR
model. The red line shows the true value and the black
dotted line shows the predicted value. RMSE is 26.09%, and
accuracy is 73.91%.

Figure 21 shows the predicted results from the 20 charge
and discharge cycles of #7 battery when using the linear
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FIGURE 20. The prediction results of Bayesian Regression after 20 cycles.
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FIGURE 21. The prediction results of Linear Regresion after 20 cycles.

regression model. The red line shows the true value and the
black dotted line shows the predicted value. RMSE is 26.38%),
and accuracy is 73.64%.
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FIGURE 22. The prediction results of SVM after 20 cycles.

Figure 22 shows the predicted results from the 20 charge
and discharge cycles of #7 battery when using the
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FIGURE 24. The prediction results of Bayesian Regression after 20 cycles.

SVM model. The red line shows the true value and the black
dotted line shows the predicted value. RMSE is 19.31%, and
accuracy is 80.69%.

Figure 23 shows the predicted results from the 40 charge
and discharge cycles of #7 battery when using the ADNN
model. The red line shows the true value and the black
dotted line shows the predicted value. RMSE is 13.20%, and
accuracy is 86.80%.

Figure 24 shows the predicted results from the 40 charge
and discharge cycles of #7 battery when using the BVAR
model. The red line shows the true value and the black
dotted line shows the predicted value. RMSE is 27.65%, and
accuracy is 72.35%.

Figure 25 shows the predicted results from the 40 charge
and discharge cycles of #7 battery when using the linear
regression model. The red line shows the true value and the
black dotted line shows the predicted value. RMSE is 27.94%,
and accuracy is 72.06%.

Figure 26 shows the predicted results from the 40 charge
and discharge cycles of #7 battery when using the SVM
model. The red line shows the true value and the black
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FIGURE 25. The prediction results of Linear Regression after 20 cycles.
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FIGURE 26. The prediction results of SVM after 40 cycles.

dotted line shows the predicted value. RMSE is 20.66%, and
accuracy is 79.34% SVM RMSE 20.66%.

From the above experiments, it can be seen that the
ADNN algorithm can track the early and mid-term decline
of lithium batteries well, but the prediction of the late decline
of lithium batteries is poor, which is because that the extracted
21-dimensional features cannot reflect the late changes of
lithium batteries.

V. CONCLUSION

RUL prediction is of great importance to the state esti-
mation and health management of lithium-ion battery. The
developments of Al and deep learning areas provide a new
promising methods for lithium-ion battery RUL prediction.
The main contributions can be summarized as follows:
(1) A new 21-dimensional feature extraction method using
autoencoder is proposed to characterize battery health degra-
dation; and (2) an autoencoder-DNN integrated deep learning
approach, ADNN, is proposed for multiple lithium-ion bat-
tery RUL prediction. We applied the proposed approach to
the real dataset of lithium-ion battery cycle life from NASA.
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The experimental results show the effectiveness and bet-
ter accuracy of the proposed approach by comparison with
the linear regression, Bayesian regression, support vector
machines and other shallow models.

In future work we plan to improve the proposed approach
for lithium-ion battery RUL prediction in the context of dif-
ferent working conditions.
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