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ABSTRACT Due to the high precision and non-contact characteristics, infrared thermography has been
widely used in equipment inspection to ensure the safety of electric power systems. A fundamental step
toward automatic inspection and diagnosis is the detection of equipment in thermal images. Therefore, this
paper presents a deep learning approach to detect equipment parts in real-time. Specifically, we propose
a deep convolutional neural network that predicts the coordinates, orientation angle, and class type of each
equipment part. A prior concerning orientation consistency between parts is also incorporated into our model
to improve the prediction results. For evaluation, we construct a large image set containing various kinds of
scenarios. Experiments on the data set show that ourmethod is robust to noise, achieving 93.7%mean average
precision when the intersection over union threshold is 0.5, and running at 20 fps on GPU. We believe that
our high accurate detection results can benefit the subsequent diagnosis.

INDEX TERMS Electrical equipment detection, oriented object detection, automatic diagnosis.

I. INTRODUCTION
Equipment inspection plays an important role in ensuring
the safety of electric power systems. By monitoring elec-
trical devices, we can detect the degradation in time and
prevent from unplanned power outage, fire hazards and other
potential risks. For this purpose, thermal imaging cameras
are extensively used. They provide a non-contacting way to
sense the infrared energy emitted from equipment surface,
so that the inspection can be conductedwithout shutting down
any system. The collected thermal images reveal temperature
distributions, from which we are able to diagnose equipment
status. However, traditional diagnosis is mainly performed
by experienced electricians. With the dramatic increase of
sensing data, nowadays, it becomes more and more desirable
to make diagnosis automatic.

A fundamental step towards automatic diagnosis is the
detection of electrical equipment in thermal images, via either
segmenting equipment regions or localizing equipment with
bounding boxes [1]–[3]. Considering that different parts of
an electrical device may demonstrate different temperature
patterns, instead of detecting each equipment as a whole,
this work aims to detect equipment parts for better diagno-
sis. In contrast to general object detection in color images,
our task has the follows characteristics: 1) Due to back-
ground distraction or improper settings of cameras, thermal

images may present in over-centralized temperature distribu-
tion, resulting in low intensity contrast. 2) Most images are
captured by hand-held cameras, in which equipment is not
well aligned to be upright. Thus, equipment in images may
be tilted slightly or even severely. 3) Different equipment
may contain a various number of parts, but the parts of an
equipment should share the same orientation angle regarding
to the rigid-body property. These phenomena, together with
cluttered background and variations in appearance, shape and
scale, make our task highly challenging. Typical examples
that contain the above-mentioned phenomena are demon-
strated in Figure 1.

In this paper, we propose a deep convolutional neural
network (CNN) based on YOLO [4], [5] to predict the coor-
dinates, orientation angle, and class type of each equipment
part. More specifically, we state our contributions as follows:
• To the best of our knowledge, the proposed method is
the first one applying the deep learning technique for
oriented electrical equipment detection. Our approach
can provide location, orientation, and class type of each
equipment part, thus making it convenient for the subse-
quent status diagnosis.

• We propose a way to integrate the orientation consis-
tency prior into ourmodel, bywhich the detection results
are improved, especially for small-size equipment parts.
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FIGURE 1. Different scenarios of equipment in thermal images. The first
row shows images in low contrast; the second row presents tilted
equipment; and the third row includes examples of cluttered background.
Moreover, from the leftmost column to right, the electrical equipment
types are surge arresters, current transformers, breakers, and potential
transformers, respectively.

• We construct a large thermal image set containing four
major types of electrical equipment, which makes it pos-
sible to train a deep learning based model and perform a
thorough evaluation.

II. RELATED WORK
A. AUTOMATIC DIAGNOSE TECHNIQUES
Automatic diagnosis is a goal that we have been pursuing
for years. To this end, various techniques [6]–[12] have
been developed in the last decades. Most of them share
a common framework containing three stages: equipment
detection, feature extraction, and status classification. For
instance, Almeida et al. [9] applied the Watershed trans-
formation to segment out surge arresters and designed a
neuro-fuzzy network to classify conditions into faulty, nor-
mal, light, and suspicious categories. Zou and Huang [11]
used the K-means clustering algorithm to segment electri-
cal equipment, extracted statistical features, and used SVM
for classification. These works presented prototype systems
validated only in small data sets containing hundreds of
simple images or even less. There is still a large gap to fill
between them and real applications. Recently, deep learn-
ing approaches [13] are applied to fault diagnosis. These
techniques can detect fault in an end-to-end manner so that
they will gradually become the major research trend with the
increase of sensing data.

B. ELECTRICAL EQUIPMENT DETECTION
As pointed out in [9]–[11], the success of diagnosis highly
depends on the correct detection or segmentation of equip-
ment. Therefore, a variety of research [1]–[3], [14]–[16]
have been conducted to solve the detection problem. For
instance, Jadin et al. [1] detected region of interests via
extracting, matching, and clustering sparse feature points.
Chen et al. [14] designed a local definition cluster com-
plexity measurement to extract regions. Albalooshi et al. [2]
employed the active contour model for segmentation.
Zhao et al. [3], [16] used binary shape prior and feature
pooling to detect insulators. Jadin and Taib [15] applied the

Otsu method to threshold equipment regions. Most of these
methods use hand-crafted features which are sensitive to
variance and noise. Moreover, they detect the equipment as
a whole and are validated only on a couple of simple images.
In contrast, we detect each part of equipment. Our approach
is validated in a large number of images and demonstrated a
high robustness.

C. ORIENTED OBJECT DETECTION
Object detection is a key problem in computer vision. With
the overwhelming success of deep learning, state-of-the-art
detection methods such as R-CNN [17] and its variants [18],
YOLO [4], [5], and SSD [19] are all based on deep neural
networks. These methods have achieved high performance
on detecting upright objects. However, as pointed out in [20],
orientation changes may result in large variation in appear-
ances and suffer from severe background distraction, leading
to the failure of detection for oriented objects. Moreover,
using upright bounding box to localize equipments may result
in redundant background noise and unnecessary overlap,
as shown in Figure 2 (a).

FIGURE 2. (a) is an example using a traditional object detection method
that predicts upright bounding boxes (marked in green). (b) demonstrates
our part detection method predicting oriented bounding boxes. Boxes in
different colors indicate different groups they are in.

Nowadays, more and more images are collected by
hand-held cameras. Objects in these images are often not
well aligned. Therefore, oriented object detection began to
attract some research interest in recent years. For instances,
He et al. [21] and Shi et al. [22] proposed different methods
in detecting oriented text. In contrast to detect tilted text in
color images, our equipment part detection is conducted in
infrared thermal images which have lower contrast in inten-
sity, thus making the predication more difficult. Moreover,
almost all the methods in detecting oriented text treat a text
line as a whole, while a piece of electrical equipment can be
semantically divided into several parts. How to exploit the
structural information between parts plays an essential role in
our problem, which is not discussed in oriented text detection.

III. THE PROPOSED METHOD
When an image is given, we detect equipment parts via
predicting a set of oriented bounding boxes, each of which
is parameterized by its center coordinates, width, height, and
orientation angle. To this end, we design a regression-based
detection framework, which is built upon the powerful
deep convolutional neural network similar to YOLO [4],
YOLO9000 [5], and SSD [19]. In contrast to these existing
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FIGURE 3. The overview of our framework. A deep convolutional neural network takes an iron-colored thermal image as input and
outputs both oriented bounding boxes and associated class probabilities, followed by a non-maximum suppression (NMS) step to
obtain final detection results. In the figure, Conv. layer refers to convolutional layer, Pool. layer denotes max-pooling layer, and
Reorg. Layer is reorganization layer. Each layer stack contains one or multiple connected convolutional layers, followed with a
pooling layer.

methods that predict upright bounding boxes, our approach
additionally predicts the orientation angle and takes into
account an orientation constraint between parts.

Figure 3 depicts the entire framework. A thermal image
colored in the iron palette, which is the format collected
during routine inspection, is first fed into a stack of convo-
lutional layers and max-pooling layers for feature extraction.
Then, the features obtained on different layers are concate-
nated through a reorganization layer and fed forward into two
more convolutional layers. The output of the last layer pro-
duces both the oriented bounding boxes and associated class
probabilities. Finally, a Non-Maximum Suppression (NMS)
process is adopted to localize the parts of the highest proba-
bilities. More details are introduced below.

A. THE NETWORK ARCHITECTURE
Our network architecture consists of six layer stacks for
feature extraction. As listed in Figure 3, each of the first
two stacks contains a convolutional layer and a max-pooling
layer; the third or the fourth stack contains three convolu-
tional layers followed by one max-pooling layer; the fifth
is of five convolutional layers followed by one max-pooling
layer; and the sixth is of seven convolutional layers. Each
convolutional layer with a k × k kernel size and c channels is
represented by k × k × c in Figure 3; analogously, a pooling
layer of k×k− s−n refers to the layer using the k×k kernel
size and a n stride. The features extracted by the fourth and the
sixth layer stacks are concatenated through a reorganization
layer and fed forward into two more convolutional layers
for parameter prediction. The size of each layer is described
in Figure 3. The network takes a fixed-size 416 × 416 × 3
thermal image as the input. The image is divided into S × S
grids and each grid cell predicts B bounding boxes. A box has

five parameters delineating the coordinates, one confidence
score reflecting how confident the box predictor is, together
with K class probability values. Therefore, the output is a
S × S × (B · (5+ 1+ K ))-dimensional tensor.
When predicting B bounding boxes in each cell, an anchor

box scheme is adopted as in [18], [5], and [19]. That is,
instead of predicting the coordinates directly, we predict five
parameters (tx , ty, tw, th, tθ ) that are related to an anchor box,
as shown in Figure 4. Let us assume that a cell is offset
from the top left corner of the image by (cx , cy) and the
anchor box is of width wa and height ha. Then, the predicted
bounding box (x, y,w, h, θ) in this cell can be calculated from
the predicted parameters by

x = σ (tx)+ cx
y = σ (ty)+ cy
w = wa exp(tw)

h = ha exp(th)

θ = tθ , (1)

FIGURE 4. A bounding box (marked in red) that is delineated related to
an anchor box (marked in dash line).
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in which σ () is a logistic function scaling tx or ty into [0, 1].
We use the K-means algorithm to cluster B anchor boxes,
that is obtaining B different box sizes, from training samples.
By this means, we are able to incorporate the size prior of
equipment parts into our model, making the network stable
for training and achieving better localization results.

B. LOSS FUNCTION
When training our network, a set of thermal images are given
as training samples. Each equipment part in the images is
annotated with an oriented bounding box and a class label
as ground truth. The network is trained to predict both local-
ization and classification results, and thus it is a multi-task
learning problem. Therefore, we design a multi-task loss
function L that includes a localization loss Lloc, a classifi-
cation loss Lcls, together with a loss Lort constraining the
orientation angle between parts to be consistent. That is,

L = Lloc + Lcls + Lort . (2)

1) LOCALIZATION LOSS
Let’s denote the location of a predicted bounding box by
t = (tx , ty, tw, th, tθ ). Although multiple bounding boxes are
predicted, we expect only one that has the highest Intersection
over Union (IOU)with the ground truth to be ’responsible’ for
predicting an equipment part. Thus, we use an indicator 1objij
to denote if the j-th predicted bounding box in the i-th cell is
responsible for a part and 1noobjij to denote if not. Only those
responsible boxesmatter in localization learning.Meanwhile,
a confidence score sij is also provided to measure how confi-
dent this box predictor is. The score is expected to be high if
the box is responsible, otherwise it is of a low confidence.

To this end, the localization loss is designed as follows:

Lloc =
S2∑
i=1

B∑
j=1

1objij (sij − ŝij)2

+ λnoobj

S2∑
i=1

B∑
j=1

1noobjij (sij − ŝij)2

+

S2∑
i=1

B∑
j=1

1objij ||tij − t̂ij||22, (3)

where the values with ‘ ˆ ’ denote the ground truth. The
ground-truth confidence score ŝij is set to be 1 if 1objij = 1,
otherwise it is 0. Moreover, S2 is the total number of grid
cells, B is the number of boxes predicted in each cell, and
|| · ||

2
2 is a L2 norm. λnoobj is a parameter used to decrease the

confidence loss from those ‘irresponsible’ boxes.

2) CLASSIFICATION LOSS
In our task, we have K types of electrical equipment parts.
The constructed network predicts a K -dimensional vector
p for each bounding box. Each entry of p represents the
probability for a predicted bounding box belonging to a

certain class. The classification loss takes into account only
those ‘responsible’ bounding boxes as well. Therefore, it is
defined as follows:

Lcls =
S2∑
i=1

B∑
j=1

1objij ||pij − p̂ij||22, (4)

where p̂ is a K -dimensional binary vector denoting the clas-
sification ground truth. It is of all 0 entries except the one
corresponding to the labeled class, which is set to be 1.

3) ORIENTATION CONSISTENCY LOSS
When detecting different parts of one equipment such as cur-
rent transformer or potential transformer, these parts should
share the same orientation angle because they belong to a
rigid body. This prior can be adopted to improve the predic-
tion of bounding boxes. Thus, we propose a consistency loss
to constrain the orientation angle between parts.

Before placing this constraint, we first need to determine
which parts are on the same equipment. Thus, we first
divide the annotated bounding boxes into different groups and
each group indicates a single equipment instance, as shown
in Figure 2(b). This can be done by checking the orientation
angles of parts according to the following condition. When
given two annotated bounding boxes a and b, they belong to
the same group if

|tθa − tθb | < δ1 and |tθ̄ − tθ̌ | < δ2, (5)

where δ1 and δ2 are thresholds manually set. tθa and tθb denote
the angle of a and b, respectively. tθ̄ denotes the average
orientation angle of a and b, and t

θ̌
denotes the orientation

of the line concatenating the center of part a and part b.
Now, we have all parts divided into different groups.

Assuming that an image contains G groups of equipment
parts, and each group may contain a various number of parts.
We denote the g-th group as�g. Then, the orientation consis-
tency loss is formulated in the following:

Lort =
G∑
g=1

S2∑
i=1

B∑
j=1

1objij 1
�g
ij (tθij − tθ̄�g )

2. (6)

Here, 1
�g
ij indicates if the j-th predicted bounding box in cell

i is responsible for a part in �g, and tθ̄�g denotes the average
orientation angle of all parts in the group.

C. TRAINING AND TESTING
1) TRAINING
We use aforementioned loss function to train our network in
an end-to-end manner. Training images and their annotations
are fed into the network. The loss is optimized by Stochastic
Gradient Descent (SGD) with a batch size of 16, momentum
of 0.9, and weight decay of 0.0005. We adopt the multi-step
strategy in Caffe [23] to adjust our learning rate. For the
first 35000 iterations, the learning rate is fixed to 0.01; it is
reduced to 0.001 afterwards. Since there is no existing model
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TABLE 1. The number of different parts, equipments, and images in the dataset.

pre-trained on electrical device dataset, we randomly initial-
ize our model and train it from scratch.

2) TESTING
In testing, an image alone is fed into the trained network.
The output produced in the last layer predicts the location,
the confidence, and the class probabilities. We multiply the
class probabilities with the confidence to indicate the box
confidence prediction. The boxes with the highest confidence
prediction are selected by NMS as the final results.

IV. EXPERIMENTS
In this section, we first introduce a thermal image dataset that
we have constructed. Then a series of experiments are con-
ducted to validate the performance of the proposed approach.

A. DATASET
As far as we know, there is no thermal image dataset publicly
available for electrical equipment detection and diagnosis.
In order to evaluate the proposed method, we construct a
dataset by ourselves. Images are captured by hand-held ther-
mal cameras such as FLIR T640, FLIR T660, and FLIR
P660 [24] when electricians perform routine inspection in
a number of transformer substations in Shandong province,
China. This dataset focuses on four major types of trans-
formation equipments, including Current Transformer (CT),
Potential Transformer (PT), Surge Arrester (SA), and Circuit
Breaker (CB). Typical examples are illustrated in Figure 1,
from which we can observe that each type presents large
variations in appearance, viewpoint, and background.

In order to train our network and evaluate testing results,
we manually annotate 7955 images. Each equipment part
in the images is annotated with an oriented bounding box
and a class label. According to the composition of these
equipments, we categorize all parts into six classes: bush-
ing, bellows, grading ring, bushing coupler, flange, and
arc-extinguishing chamber. For instance, a current trans-
former is composed of a bellows and a bushing, but a potential
transformer may consist of various number of bushing cou-
pler, flange, grading ring and bushings. Table 1 lists the num-
ber of parts and equipments existing in all images. The distri-
bution of the orientation angle for all parts is also illustrated
in Figure 5. Since we take the positive x-axis as the reference
0◦ angle, the orientation distributes from 65◦ to 115◦ and the
majority is upright.

FIGURE 5. The orientation distribution of all equipment parts in our
dataset.

B. EXPERIMENTAL SETUP
In the dataset, we randomly select 60% images for training
and the rest for testing. The original resolution of an image
is 480 × 640 or 640 × 480. Both are scaled into 480 × 480
to fit the input size. Meanwhile, we augment training data
by the following means: each training image is randomly
cropped into a 416× 416 patch and horizontally flipped with
probability of 0.5, in addition to applying some shift in hue,
saturation and exposure.

Throughout all experiments, we adopt the default param-
eter settings in [5], i.e. S = 13, λnoobj = 0.2, and we set
K = 6 to represent the six equipment part classes. K-means
algorithm is employed to cluster B = 5 anchor boxes, which
are obtained in size of 42×195, 92×66, 81×120, 38×299,
and 38× 36.

The experiments are conducted on a desktop running with
Ubuntu 14.04.3 with one Nvidia GeForce GTX 1080 GPU.
It takes 10 hours or so to train themodel. For testing, it reaches
20 frames per second.

C. EXPERIMENTAL RESULTS
1) COMPARISON TO OTHER METHODS
We first carry out an experiment using the proposed full
model and compare it with the state-of-the-art methods that
were developed for upright object detection, which include
YOLO9000 [5], SSD [19], and Faster R-CNN [18]. The
results are evaluated with respect to Average Precision (AP)
as defined in [25], which is a criterion measuring the area
under the precision-recall curve for a class. When computing
the precision and recall, we judge a predicted bounding box
to be true positive if the Intersection over Union (IoU) with
ground truth is greater than a threshold. The threshold is
commonly set to be 0.5 as in most object detection work.
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TABLE 2. Experimental results compared with other methods regarding to AP(%) and mAP(%).

TABLE 3. Ablation experimental results compared regarding to mAP(%).

TABLE 4. Ablation experimental results compared regarding to AP(%) and mAP(%).

FIGURE 6. The testing results obtained by our proposed full model. From top to bottom, the equipment is SA, CT, PT, and breaker, respectively.

Table 2 presents the AP for each class, together with the
mean Average Precision (mAP) for all classes. The results
show that our proposed method achieves the highest mAP,
outperforming all other upright object detection methods.
This improvement is mainly benefited from the consideration
of rotation in our model, by which our model is more robust
to the appearance variance caused by rotation and suffered
less from background noise.

Table 2 also lists the time comparison in terms of
frames per second (FPS). Since non-maximum suppression
of oriented bounding-boxes is a little different from that
of upright ones when computing IoU, we also take the
time of non-maximum suppression into consideration when
estimating FPS for fair comparison. Our full model can
reach 20 FPS which is faster than Faster R-CNN. Due to
the complexity in non-maximum suppression of oriented
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bounding-boxes, our full model is slower than YOLO9000
and SSD.

2) ABLATION EXPERIMENTS
We further conduct an experiment to investigate the effective-
ness of the proposed orientation consistency loss. To this end,
the proposed model without the orientation loss is trained and
tested as well (this model is denoted as ‘‘Proposed w/o’’).
The results are also evaluated with respect to mAP. In order
to evaluate the localization performance better, we report the
results with an IoU threshold varied from 0.5 to 0.8. Table 3
list the mAP under different thresholds for the full model
and the one without the orientation constraint. Table 4 also
presents the AP for each class with an IoU of 0.5 and 0.7,
respectively. From these results we can make the following
observations:
• The mean average precision gradually drops when the
IoU threshold is raised from 0.5 to 0.8 because higher
IoU requires more precise localization results. When
comparing the proposed full model to the one with-
out orientation loss, we observe that the full model
consistently outperforms the other model. The mAP is
increased by 0.5% when IoU is 0.5 and increased to
3.1% along with the increase of IoU. It implies that
the orientation constraint between parts offers better
localization performance.

• By comparing APs for each part class, we observe that
AP is improved more for those equipment parts such as
bellows, bushing coupler, and grading ring that have a
small ratio of height to width. The reason is that the pre-
diction of orientation for these parts is more sensitive to
noise than other types. With our orientation consistency
loss, we achieve more robust prediction results.

Figure 6 presents the typical results detected on the test
set using our proposed full model. It demonstrates that
our approach can detect parts precisely, robust to varia-
tions in size, temperature, and orientation angles. Promising
detection results are achieved even when the background is
cluttered.

FIGURE 7. Failed cases. The top row presents the detection results and
the bottom shows the ground truth.

However, there are still a small amount of failed cases.
Typical failures are presented in Figure 7. (a) and (b) are the

incorrect or missing detection caused by background noise,
and (c) is the missing detection due to sever orientation and
the lack of similar training data. The first two cases can be
improved by considering the co-occurrence between parts
and the latter might be improved by increasing the similar
training samples.

V. CONCLUSION
Equipment detection is a fundamental step towards automatic
inspection and diagnosis. Inspired by the recent success of
deep learning techniques, we have proposed an approach
to detect fine-grained equipments in thermal images. Our
approach is able to detect equipment parts no matter they are
upright or tilted, by predicting boxes tightly bounded. The
approach has been validated in a large dataset that we con-
structed. The experiments show that our approach is promis-
ing. We believe that our work can benefit the subsequent
diagnosis, which is also the task we will carry out in the
future.
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