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ABSTRACT This paper presents a method for wireless ECG compression and zero lossless decompression
using a combination of three different techniques in order to increase storage space while reducing transmis-
sion time. The first technique used in the proposed algorithm is an adaptive linear prediction; it achieves high
sensitivity and positive prediction. The second technique is content-adaptive Golomb–Rice coding, used with
a window size to encode the residual of prediction error. The third technique is the use of a suitable packing
format; this enables the real-time decoding process. The proposed algorithm is evaluated and verified using
over 48 recordings from the MIT-BIH arrhythmia database, and it shown to be able to achieve a lossless
bit compression rate of 2.83× in Lead V1 and 2.77× in Lead V2. The proposed algorithm shows better
performance results in comparison to previous lossless ECG compression studies in real time; it can be used
in data transmission methods for superior biomedical signals for bounded bandwidth across e-health devices.
The overall compression system is also built with an ARM M4 processor, which ensures high accuracy
performance and consistent results in the timing operation of the system.

INDEX TERMS Electro-cardiogram (ECG), Golomb-Rice coding, lossless data compression, wearable
devices, healthcare monitoring, telemedicine.

I. INTRODUCTION
Cardiovascular diseases (CD) have become the top cause of
death globally in recent years, responsible for over 31% of all
global deaths annually [1]. Reading electrocardiogram (ECG)
signal is the most commonly used method to monitor heart-
beat. This biomedical signal is widely used in medicine as
a screening tool for cardiac disease diagnosis. It has various
components such as waves, segments and intervals. A typical
ECG signal is shown in Fig. 1 [2].

The precautionary benefits of ECG data are limited due
to their low availability. Long-term ECG recording is often
carried out with patients admitted with cardiac problems.
ECG can also be recorded continuously for 24-48 hours using
monitors for mobile patients [3]. Thus, a large amount of data
is collected using continuous ECG monitoring systems over
such periods. In order to reduce the amount of data, a real-
time data compression algorithm which can save storage
space is needed.

Three types of compression techniques are used on
ECG data [4] (Fig. 2).

FIGURE 1. A period of typical ECG signal [2].

1) The direct data method uses the data in time domain
for compression. Several well-known direct data techniques
are used, including delta pulse code modulation (DPCM)
[5], [6], turning point (TP) [7], amplitude zone time epoch
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FIGURE 2. The overview of ECG compression technique.

coding (AZTEC) [8], [9], coordinate reduction time encod-
ing system (CORTES) [10], the delta algorithm and
Fan algorithm [11].

2) The transformed method converts the time domain
into a frequency domain; the key idea is based on energy
re-distribution. Traditionally, Fourier transform, Fourier
descriptor [12], Karhunen-Loeve transform (KLT) [13],
Discrete cosine transform (DCT) [14], [15] and Wavelet
transform [16], [17] have all been widely used. Some new
ideas, such as compressed sensing, are still based on this
method [18].

3) The parameter extraction method extracts the dominant
features from the raw signal; others developed include the
peak picking and prediction method [19], and the neural-
based or syntactic methods [20].

In general, the compression method applied in the
ECG signal includes lossless compression and lossy com-
pression. Although lossy compression techniques deliver
greater compression performance, they are not accepted by
medical regulatory bodies. In lossless systems, the original
ECG signal can be precisely decoded without any loss and
the accuracy for diagnosis of cardiac disease is improved; as
a result, these systems are more emphasized in biomedical
signal use.

Lossless compression techniques inherently have lower
compression ratios compared to lossy compression. A clas-
sical ECG lossless compression algorithm consists of a pre-
diction element and an entropy coding element, as shown
in Fig. 3. Linear or regular prediction is one of the
methods used for one dimensional ECG signal prediction
techniques [21].

FIGURE 3. Block diagram of basic lossless compression for ECG signal.

Chua et al. reported a discrete pulse code modula-
tion (PCM) for linear prediction [22], while Deepu and
Lian proposed a forward prediction-based approach for

linear prediction. These prediction techniques provide a sim-
ple way to reduce the prediction errors of a signal. Entropy
coding is an essential step in ECG compression, as in Huff-
man coding [23]–[25], Golomb-Rice coding [21], and Predic-
tion error coding [22], [25]. These entropy coding techniques
allow for an efficient and low-complexity lossless compres-
sion method.

This study proposes an efficient ECG compression algo-
rithm for telemedicine application. The primary technique of
the proposed algorithm consists of two elements. The adap-
tive prediction element based on forward samples, in order
to reduce the redundancy within the original data. It can
improve the predictive accuracy and thereby enhance the
compression rate. The entropy coding element consists of a
window size based on content-adaptive Golomb-Rice, and
used to compress ECG data.

The remainder of this paper is arranged as follows:
Section II provides an overview of the proposed ECG lossless
compression technique. Section III describes the wearable
ECGmonitoring system platform design. Section IV presents
the implementation results and shows verification with the
MIT-BIH database. Comparisons with other works are also
provided. Conclusions are discussed in Section V.

II. LOSSLESS ECG COMPRESSION
Fig. 3 shows a block diagram of the proposed lossless ECG
compression scheme. A prediction value, y ^(n), is used to
derive the present value from past samples. Thus the predic-
tion error value, e(n), is produced by the present value and
prediction value, defined as:

e (n) = y (n)− ŷ (n) (1)

where ŷ(n) is the prediction value, and y(n) is the present value
of the ECG input data.

To improve the compression performance for the
ECG signal, this study proposes an effective adaptive linear
predictor and a context-adaptive Golomb-Rice code with a
window size to increase the compression ratio. Prediction
error value is utilized in Golomb rice code and is used
to calculate k—parameter also. The proposed compression
encoding and decoding block diagram is shown in Fig. 4.

A. ADAPTIVE LINEAR PREDICTION
ECG signals have numerous states with steep amplitude vari-
ations, such as QRS waves, P waves and T waves. These
waves may result in a higher prediction error. In order to
reduce the complete error, the predictor with the best pre-
diction can minimize the prediction error and promote the
accuracy of the predictions. This study proposes an adaptive
linear predictor technique according to the fuzzy decision
theory [33] to reduce the prediction error as far as possible.
Commonly, the forward linear prediction is used to estimate
the current sample y(n) of the ECG signal in these approaches
from its past m samples:

ŷ(n) =
∑m

l=1
hky(n− l) (2)
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FIGURE 4. Lossless compression-decompression scheme.

where ŷ(n) is a prediction assessment of y(n), and hk is the
predictor coefficients.

The proposed method uses the forward four samples to
estimate the prediction value. There are five parameters:
D1_2, D1_3, D2_3, D3_4 and ‘dir’. The proposed method
determines the current prediction value according to the
past values. The ‘dir’ parameter determines whether the
slope direction of these forward samples is the same or not.
If samples, being used for parameter calculation, have same
slope direction, then it’s value is 1 else it is assigned 0.
If current sample value is greater than previous sample value,
then slope is same as values are rising and rising. But if
current sample value becomes smaller than previous one then
slope is different as earlier slope was rising due to rising
sample values but now slope will fall down suddenly as
previous sample value is greater than current sample value.
The relations of the four past samples are shown in Fig. 5.
D1_2(n) can be obtained by the previous value y(n−1) minus

FIGURE 5. The relation of the forward four samples.

the previous value y(n − 2), D1_3(n) can be obtained by the
previous value y(n − 1) minus the previous value y(n − 3),
D2_3(n) can be obtained by the previous value y(n-2) minus
the previous value y(n − 3), and D3_4(n) can be obtained
by the previous valuey(n-3)minus the previous value y(n−4).
The equations are given in (3) to (6):

D1_2 (n) = y (n− 1)− y (n− 2) (3)

D1_3 (n) = y (n− 1)− y (n− 3) (4)

D2_3 (n) = y (n− 2)− y (n− 3) (5)

D3_4 (n) = y (n− 3)− y (n− 4) (6)

Considering the characteristics of the ECG signal, this
study uses a modest coefficient with differential predictors,
which have low complexity computation and good perfor-
mance for evaluating prediction value. Three order differen-
tial predictors are proposed as (7) to (9):

Fun1 : ŷ (n) = y (n− 1) (7)

Fun2 : ŷ (n) = 2y (n− 1)− y (n− 2) (8)

Fun3 : ŷ (n) = 3y (n− 1)− 3y (n− 2)+ y (n− 3) (9)

Due to the time-based variation of the ECG signal, the pre-
dictor will be chosen from these three differential functions
for numerous sections of the ECG signal, and the proper
prediction will be adaptively chosen. Here, a threshold, THR,
is set to determine whether the variation of the wave is
high or low. For flat region, Fun1 will be selected as it is
first order function and first order function has better accuracy
for prediction value. For slope region, Fun2 will be selected
which is a 2nd order function. For peak region sample, third
order predictor will be selected which is Fun3. Third order
predictors are better for finding prediction value for peak
sample. The adaptive linear prediction with fuzzy decision
technique is shown in Fig. 6.

FIGURE 6. Adaptive linear prediction with Fuzzy decision theory.
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The technique can be divided into four steps. First, the past
four values y(n−1), y(n−2), y(n−3) and y(n−4) are stored for
sample y(n). These four values represents the values of four
samples which are in the data before the current value y(n).
Second, the high or low state of the threshold value deter-
mines the absolute values of D1_2, D1_3, D2_3 and D3_4.
Third, the slope direction of D1_2, D1_3, D2_3 and D3_4
is classified as having either the same or different directions.
Finally, one of the three predictor functions is selected using
fuzzy decision theory based on the three functions: distance,
absolute value and slope direction.

FIGURE 7. The segment of ECG signal.

Each wave segment of the ECG signal has a suitable pre-
diction function, as shown in Fig. 7. For segments with large
amplitude variation, such as the QRS wave region, Fun3 can
provide better prediction performance than the others can.
On the other hand, for segments with small amplitude varia-
tion, such as flat regions, Fun1 can perform better. A detailed
flow chart of how to select the prediction value is shown
in Fig. 8.

The prediction performance of the combination of several
types of predictor is estimated for the prediction error as
illustrated in Fig. 9. For the signal with steep amplitude
variations such as QRS region, it will result in a higher
prediction error. Fig. 9(a) represents the original ECG data
in the MIT/BIH arrhythmia database #100. Fig. 9(b) shows
the redundancies between consecutive samples using delta
coding method [21]. Another method, short term linear pre-
diction coding, is also compared and illustrated in Fig. 9(c).
This figure is completely extracted from the result in [22].
Finally Fig. 9(d) shows the prediction error using the pro-
posed adaptively linear prediction technique, which can yield
the lower prediction error for all segments of the ECG signal.
Through this adaptive linear prediction technique, the pre-
diction accuracy can be verified, while the prediction error
of frequency distribution inclines to the center, and the peak
value is near zero.

B. LOSSLESS DATA COMPRESSION TECHNIQUE
Entropy coding is a vital coding technique used in data
compression, and represents binary bits, regularly appear-
ing patterns and infrequent binary bits. Huffman coding,

FIGURE 8. The selection of prediction value flow chart.

arithmetic coding, run length coding and Golomb coding
are famous lossless entropy coding techniques, although
Huffman and arithmetic codes strictly follow the input data
and need an adequate memory structure to perfect the data of
the input symbol probabilities. Based on [26] and [27], this
work discusses in detail the idea of encoding compressive
sensing measurements by means of a low-complexity entropy
encoder like Golomb–Rice code as the entropy coding for the
proposed method.

C. CONTENT-ADAPTIVE GOLOMB-RICE CODE
In 1960, W. Golomb developed a data compression scheme
called Golomb coding, which depends on entropy encoding
and geometric distribution. Geometric distribution is quite
suitable for modeling prediction error with higher probabil-
ity of smaller prediction error compared to other methods.
In particular, a Rice code corresponds to a Golomb code in
which the tunable parameter is a power of two. This makes
Golomb-Rice code convenient for use on a computer since
multiplication and division by 2 can be implemented using
a bit-shift operation; it can be performed extremely quickly.
Moreover, in ECG data occurrence of small values is pretty
high as compared to large values so Golomb code will be
quite useful as it has optimal prefix code. The Golomb-Rice
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FIGURE 9. Prediction error with MIT/BIH Lead II # 100. (a) Original ECG
signal, (b) prediction error with delta coding [21], (c) prediction error with
short term linear predictor [22], and (d) prediction error of proposed
method.

code consists of two parts: quotient and remainder. The func-
tion is as shown in (10):{
quotient :

⌊
M [n]
2k

⌋
; encoded with unary code

remainder : M [n]mod2k ; encoded with binary code
(10)

where k represents a positive integer as well as the number of
bits for the remainder, and M [n] is the non-negative integer.
A simple step generates Golomb-Rice codes as follows.

To encode a non-negative integerM [n], divideM [n] by 2k .
This division results in quotient q =

⌊
M [n]/2k

⌋
and remain-

der r = (M [n]mod2k ) such that M [n] = q ∗ 2k + r .
The unary and binary codes are encoded with the quotient
and the remainder to differentiate the unary code and binary
code in decoding; an isolation bit, 1 bit of ‘0’, is inserted
between both. However, since the prediction error may be a
negative value, it is necessary to translate the negative value
to positive; the function is shown in (11), where n is the
prediction error value. An alternative approach encodes the
magnitude of the input using a Golomb-Rice code and uses
an additional bit to encode the sign bit. Although simpler,
the sign-plus magnitude approach results in lower compres-
sion ratios. AGolomb-Rice encoding table with a k parameter

TABLE 1. Golomb-Rice encoding table with k=2.

equal to 2 is shown as an example in Table 1.

M [n] =

{
2n, n ≥ 0
2 |n| − 1, n < 0

(11)

In Golomb-Rice code, the coding efficiency is quite sen-
sitive to the k parameter. This study further establishes the
content-adaptive Golomb-Rice code to adaptively select the
k parameter. A window is used to calculate the distribution of
prediction errors. Basically, for each window, its distribution
of prediction error is applied to determine the k parameter.
The size of the window is determined by the QRS segment
of the ECG signal. The pseudo-code flow of the k parameter
estimation is shown in Table 2.

TABLE 2. Seudo- code of adaptive k-parameter estimation algorithm.

First, the proper window size is selected according to the
QRS segment of the ECG signal, and the sum of the absolute
value is then calculated for the prediction error within the
window. By the prediction error complexity, the k parameter
can be identified in each window, as shown in Fig 10. This
method is able not only to optimize the k parameter to the
proper value in each window, but it can also reduce the
storage of the k value for each sample. With the k param-
eter, the unary and binary code are set with the prediction
error.
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FIGURE 10. k-parameter estimation with window size.

D. DATA PACKING FORMAT
In order to compress an ECG signal in real-time, the raw sig-
nal is first separated into several segments, the size of which
are determined by the window size. Second, each segment
runs the proposed lossless algorithms in order. Each segment
must comprise all the basic information for the decoder to
reform the original signal. The bitstream of the first window
must contain the first sample of ECG data with 11 bits and the
k parameter with 3 bits, along with the prediction error which
will be encoded by Golomb-Rice code. Since the bitstream
of the first window contains the first sample, the bitstream
of other windows only needs to record the k parameter and
the prediction error with several bits. The output bitstream is
illustrated in Fig. 11, with an example window size of 40.

FIGURE 11. Encode bit stream format with WS=40.

III. OVERALL SYSTEM IMPLEMENTATION
The system is also developed on the ARM Cortex
M4-based 32-bit MCU, which is accountable for performing
ECG compression schemes and supervising various subsys-
tems. The ECG signal is collected by three electrodes; the

analog front-end amplifies the signals and converts them to
digital signals so that they can undergo compression process-
ing by theARMM4. The pre-processed signals are then trans-
mitted by Bluetooth. A laptop can decode the compression
bitstream and immediately record the signal.

FIGURE 12. Wearable ECG monitoring system.

A. EMBEDDED SYSTEM PLATFORM
The whole wearable monitoring system constructed for the
experiment in this study is illustrated in Fig. 12. The embed-
ded platform core is STM32f429I with an ARM M4-based
32-bit MCU from ST Microelectronics, which is responsible
for performing ECG compression schemes and monitoring
other subsystems. The platform consists of two main subsys-
tems: the ECG signal is obtained from the measuring device,
and the Bluetooth module is used for wireless data commu-
nication. All subsystems interconnect with the MCU through
separable UART peripherals, as shown in Fig. 13. The MCU
is connected to a battery power supply, and dual buttons
are also close to the MCU to activate/deactivate the ECG
measuring device. Information related to the compressed data
will also be displayed on an LCD panel, such as the amount
of data processed, compression rate etc.

FIGURE 13. ECG platform system design.

B. ECG MEASURING DEVICE
The measuring device performed capture at a rate of 600 Hz
on all twelve leads, and used a bandwidth of 0.4Hz to 160 Hz.
With the RS232 protocol communication, the device provides
a digital ECG signal to the development board, and the partic-
ipants can observe the entire recordings in a seated position.

C. BLUETOOTH MODULE
A Bluetooth wireless module is used in the proposed sys-
tem. The UART block packs the compression bitstream into
the UART format. Therefore, a Bluetooth antenna can be
used to transmit data to the PC wirelessly for recording and
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displaying the ECG signals on the screen. The Bluetooth
UART module called HL-MD08R-C2A is utilized. It sup-
ports Bluetooth Serial Port Profile (SPP), baud rate 1.2k
to 921.6k bps, and UART interface. This study uses these
features of Bluetooth to implement the connection of the
ARM M4-based embedded platform and the PC. Here,
the baud rate of the UART interface between MCU and
Bluetooth is set to 230400.

D. MONITOR DISPLAY MODULE
With the Bluetooth module, a PC can be used with related
self-developed software to decode the compression bitstream
and display the ECG signal in real time. It is also possible to
set the leads of the ECG signal to display on the PC. This is
very convenient for user analysis of the data.

FIGURE 14. The whole demonstration system.

The whole demonstration system is constructed and shown
in Fig. 14. Power is provided through USB cable to the
system, so the supplied voltage is 5V, the current consumption
is 25mA and power consumption is 244uA/MHz. We can
extract the ECG signal on user, and then encode it in real-
time manner. Several uses are tested and evaluated. The com-
putation cycle is 2,811,351 for 30 minutes data re cording,
the operation frequency is 180 MHz. The code size of ARM
processor is very compact. Only about 20K Byte is used.

IV. PERFORMANCE EVALUATION AND COMPRESSION
The fraction of the compressed signal size of the original sig-
nal size is called the compression ratio (CR). It delivers all the
information and ignores the unnecessary data. By reducing
the CR ratio, the data bits required for storing or transmitting
are obviously reduced:

CR =
So
Sc

(12)

Where So denotes the bits used in the original data, and Sc
denotes the number of bits after compression.

First we evaluate the result and CR for the proposed design
in embedded system. As shown in Table 3, five uses are real-
tested data with 10 minutes recording. The average CR for
the embedded system design is 3.349.

TABLE 3. Performance of the proposed algorithm using Real-tested data.

TABLE 4. (Lead V1) Performance of the proposed algorithm using
MIT-BIH database.

To evaluate and compare with other reference works,
we need to simulate the result with benchmark. All simula-
tions were developed inMatlab 9.2.0, and theMIT/BIH (MB)
arrhythmia database was used to analyze the processing per-
formance of the compression algorithm. With two ambula-
tory channels, the MB database was used as a benchmark
for 48 half-hour ECG recordings. In the 10 mV range the
sampling frequency of data is in 11-bit resolution at 360 Hz.
In this work, the algorithm performances were evaluated by
lead V1 and lead V2 ECG data. Tables 4 and 5 show the
compression quality of the reported method using the MB
arrhythmia database, shown below. In the Lead V1 database,
the proposed method achieved an average CR of 2.835, and a
maximum CR of 3.261. In the Lead V2 database, the pro-
posed approach achieved an average CR of 2.772, and a
maximum CR of 3.218. Fig. 15 shows ECG data after com-
pression and decompression. It can be seen that both waves
are identical and there is no recovery error.

Table 6 compares the performance of the proposed com-
pression method with those of other reported techniques, and
the ECG data are all taken from the MB Lead V1 database.
In [19], a basic DPCM predictor and a Golomb-Rice code
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TABLE 5. (Lead V2) Performance of the proposed algorithm using
MIT-BIH database.

FIGURE 15. Reconstruct ECG data with MIT-BIH Record 100.

achieved a CR of 2.38; however, the DPCM predictor cannot
reduce the prediction error effectively. In [22], a short term
linear predictor and a fixed length packing scheme achieved
a CR of 2.38. In [25], an adaptive LMS predictor and fixed
length packing scheme resulted in a 2.28 CR. Although [22]
and [25] provided a fixed length packing scheme with lower
complexity, it is necessary to memorize the header type of the
data packing to recover the original signal. In [28], a simple
predictor and Huffman coding were used to obtain a CR
value of 1.92. In [29], an adaptive region prediction and
Modified variable length coding were applied to achieve a

TABLE 6. Compression performance comparison with other algorithms.

CR of 2.67. In [23], the adaptive linear prediction with a dual
slope technique and two-stage Huffman coding produced a
CR of 2.53. Although [23], [30] can offer great compression
performance, Huffman code requires sufficient memory to
save the code book. There are also some techniques that
can offer good lossless compression performance [31], [32],
but these approaches are too complex, and are thus not suit-
able for wearable applications. The proposed algorithm can
greatly improve the average CR by about 16% over [21], [22],
about 25% over [25], about 9% over [23], about 4% over [29],
about 24% over [30] and about 44% over [28].

V. CONCLUSION
This paper proposes a reduced complexity lossless ECG
compression algorithm using an adaptive linear predictor
and context-adaptive Golomb-Rice code. An adaptive lin-
ear predictor was designed to select better values and then
decrease the prediction error. An improved context-adaptive
Golomb-Rice code with a window size was used to optimize
and reduce the storage of the k value. The proposed com-
pression algorithm can achieve a mean compression ratio of
2.84x on the MIT/BIH arrhythmia Lead V1 database and
2.77x on the MIT/BIH arrhythmia Lead V2 database. The
proposed compression method exhibits reduced complexity
with high compression performance as compared to other
reported methods. These results make it applicable for wear-
able ambulatory ECG monitoring devices. Furthermore, an
ARM M4-based MCU was used to build a programmable
embedded platform for signal processing, and it was applied
to a wearable ECG monitoring system.
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