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ABSTRACT Multiple-object tracking (MOT) has received an increasing attention due to the rapid develop-
ment of autonomous driving. However, the MOT problem is still challenging mainly due to the occlusion
and scale variation. Motivated by the fact that the discriminative correlation filters-based (DCFB) tracking
algorithms can tackle these problems and significantly improve the accuracy of single object tracking, how to
exploit the DCFB tracking algorithms forMOT is worthy studying.Moreover, the corrupted training samples
due to the occlusion make DCFB tracking methods to update the appearance model of target uncorrected
and result in tracking drift. In this paper, we exploit Markov decision process to integrate the DCFB tracking
method into ourMOT framework and address the update problem of the appearance model in DCFB tracking
method.Moreover, in order to overcome the challenges of occlusion and scale variation, to prevent target drift
during tracking, we use two DCFB trackers with different update frequencies and a novel update strategy
to predict the location of targets. The part-based method is used to extract robust features to tackling the
challenges of occlusion and scale change. In order to verify the efficiency of our algorithm, experiments are
performed based on KITTI tracking benchmark. The results demonstrate that our method achieves state-of-
the-art performance and outperforms the state-of-the-art algorithms in road scenarios.

INDEX TERMS Multiple object tracking, Markov decision process, discriminative correlation filters,
part-based method.

I. INTRODUCTION
Object tracking is an important subproblem of computer
vision due to its widespread applications, such as secu-
rity protections, visual analysis, human-computer interaction,
autonomous driving, etc. It encompasses subfields called
single object tracking (SOT) and multiple object tracking
(MOT). The first one is to track a single target while the latter
aims for tracking multiple targets. Specifically, for MOT,
the locations of the interesting objectives are estimated during
each frame of videos while the location of target is given in
the first frame of a video in SOT. MOT is increasingly attrac-
tive due to the emergence of automatic driving. However,
there are many challenges required to be tackle in order to
implementMOT in practice, such as frequent occlusion, scale
variation, and other disturbing factors [2], [3]. Thus, in this
paper, we focus on MOT.

In the last decade, a great progress has been made for
improving the tracking performance of SOT in terms of
robustness and accuracy, especially when the algorithm based
on discriminative correlation filters (DCF) and deep learning
was proposed. The tracking algorithm based on DCF learns a
discriminative appearance model in the first frame of a video,
and then locates the target in the next frame and updates the
appearance model according to the predicted location. Since
the pioneering study of Bolme et al. [4], DCF-based (DCFB)
tracking algorithm has drawn great attention due to its good
performance and impressive tracking speed. A large number
of investigations have been done to utilize the human extrac-
tion feature to learn and update the discriminative appearance
model for tracking objects [8]–[14]. Meanwhile, deep neural
networks have shown their strong representation learning
ability in many applications, such as image classification [5],
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recognition [6], semantic segmentation [7], etc. An intuitive
thought is to combine deep neural networks with the algo-
rithm based on DCF. In this case, deep neural networks can
be used to extract robust feature while the algorithm based on
DCF is exploited to predict the location of target [15]–[19].
It was shown that the performance and robustness can be sig-
nificantly improved by this combination compared with the
algorithm based on DCF with the human extraction feature.
The DCFB tracking method has greatly improved the state-
of-the-art accuracy of SOT.

Although the DCFB tracking method has made significant
progress in the area of SOT, few investigations have focused
MOT by using the DCFB tracking method. Motivated by
the progress made for SOT, it is interesting and valuable to
study MOT via combining DCFB tracking algorithm with
deep neural networks.

Unfortunately, The tracking algorithm based on DCF for
SOT cannot be directly applied for MOT due to the following
challenges.

1) The performance of the tracking algorithm based on
DCF for SOT depends on the effectiveness of the
appearance model of target. The efficiency of the
appearance model relies on the quality of training
samples. However, the training samples are collected
and labeled online which are decided by the pre-
dicted results of a single object tracker. In this case,
the corrupted training samples can be collected due
to the occlusion, scale variation and other distractions.
Then, the appearance model is updated with those
corrupted samples and results in gradually drifts to
the distracter. Considering more frequent occlusion
and scale variation in MOT scenarios especially in
autonomous driving scenarios, this situation is much
worse.

2) The updating frequency of the appearance model for
the target is also a contradictory problem. Specifically,
the tracker obtained by using the algorithm based on
DCF cannot well fit the appearance change of the target
when the appearance model is conservatively updated,
and the tracking drift can be caused due to the corrupted
training samples if the appearance model is aggres-
sively updated.

3) The tracking algorithm based on DCF cannot effi-
ciently tackle occlusion and the scale variant. How-
ever, the occlusion and scale variant are frequent in
autonomous driving scenarios.

In this paper, we devote to tackling the above-mentioned
challenges. Firstly, we construct the lifetime of a target as a
MDP and integrate the DCFB SOT algorithm into our MOT
framework. The appearance and disappearance of target,
tracked and lost of the target, updating and non-updating of
the appearance model are considered as states in MDP. In this
way, the appearance model of target is not updated when the
training sample is corrupted. Secondly, two DCBF trackers
with different update frequencies of the appearance model
are exploited to solve the contradictory problem of update

frequency. One DCFB tracker updates the appearance model
conservatively to maintain the appearance model of the target
and to prevent drift to the corrupted training samples mainly
due to occlusion, and the other one updates aggressively to
well fit the appearance change of target. Finally, in order
to address occlusion and scale variant, we partition a object
into four sub-blocks, namely, the upper half, lower half, left
half and right half part. Then the normalized cross correla-
tion(NCC) values and correlation responses of these four sub-
blocks are calculated with the corresponding templates. They
are identified as features and can be used to learn the decision-
making policy. These features make our approach robust to
occlusion and scale variant.

The main contributions of our work are summarized as
follows:

1) MDP is exploited to integrate the DCFB tracking
method into our MOT framework. The appearance
and disappearance of target, tracked and lost of target,
updating and non-updating of the appearancemodel are
all considered as states in MDP. In this way, the life-
time of a target is modeled as a MDP. Thus, we can
use multiple MDPs to tackle the MOT problem well.
Moreover, a pipeline is designed to show how to use
the correlation response of the DCFB tracker for orga-
nizing multiple MDPs and addressing the conflict of
different MDPs.

2) A policy is learned to decide whether the appearance
model is updated or not in the tracking state. Two
DCFB trackers with different updating frequencies of
the appearance model are applied to overcome the con-
tradictory problem caused by the updating frequency.
The above two measures are simultaneously used and
make our MOT approach more robust to the corrupted
training samples mainly due to occlusion and improve
the performance of our method. Moreover, a novel
update strategy of the appearance model for the target
is proposed to make our MOT method more robust to
scale variant.

3) The part-based method is used to tackle the frequent
occlusion and scale variant in the autonomous driving
scenarios.

4) Experiments on KITTI tracking benchmark demon-
strate that our method can significantly improve the
performances compared with some state-of-the-art
MOT algorithms. Ablation study shows the efficiency
of our setting.

The rest of this paper is organized as follows. Section II
presents the related work for the DCFB SOT algorithms
and MOT algorithms. The most common means to handle
occlusion and scale variant are also discussed in this section.
The idea of our work is presented in Section III. Section IV
introduces the famous tracking benchmark in autonomous
driving: KITTI tracking benchmark, and presents experiment
results in this benchmark. Finally, this paper is concluded in
Section V.
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II. RELATED WORK
A. SOT BASED ON DISCRIMINATIVE
CORRELATION FILTERS
Due to the pioneering study of Bolme et al. [4], the tracking
algorithm based on DCF has received great attention in the
object tracking domain. It was shown that this algorithm
can achieve great performance in terms of both the track-
ing accuracy and the tracking speed. These two metrics are
important for trackers in the practical applications. Based
on the work [4], a large number of investigations have been
done to improve the accuracy and robustness of the tracking
algorithm based on DCF. For example, Danelljan et al. [10]–
[13] have done many works to improve the performance of
the DCFB tracking method. In [10], a scale correlation filter
was proposed to hold the scale change of targets in video.
A novel color feature was extracted for robust tracking in
[11]. They also proposed a spatial regularization to alleviate
the unwanted boundary effects in [12]. A novel method was
proposed to alleviate the negative effect of corrupted train-
ing samples in [14]. Circular structure and kernelized trick
were exploited for the DCFB SOT in [8] and [9]. Multiple
channel features were also utilized in these work. Since deep
convolutional neural networks (CNNs) are promising inmany
computer vision applications [5]–[7], many works have been
explored to combine deep CNNs with the DCFB method for
online tracking. Ma et al. [16] exploited the low-level and
high-level feature maps of deep CNNs to construct multiple
DCFB trackers for SOT. Feature maps with different resolu-
tions of deep CNNs were map into the continuous space so
that the tracking algorithm based onDCF canwell tacklemul-
tiple channel features with different resolutions and perform
more accurate tracking [21], [22]. The works about the DCFB
method with deep CNNs refer to these works in [17]–[19].
In our work, the tracking algorithm based on DCF proposed
in [16] is adopted for SOT. Two base DCFB trackers with
different update frequencies are used to address occlusions
and other disturbance term.

B. MOT IN TRACKING-BY-DETECTION PARADIGM
In the past decade, since a great progress has been made in
object detection [24]–[26], researches in MOT were mainly
focused on tracking-by-detection paradigm. MOT algorithms
in tracking-by-detection fashion detect objects in each frame
of videos, and then use a data association algorithm to coop-
eratively detect the same target in different frames. Note that
data association is the main challenge in MOT. The MOT
algorithms in tracking-by-detection paradigm can be classi-
fied into two categories: the batch/ global method and the
online method. Comparing with the online method, the batch
method has a better performance since the history informa-
tion and future information of target are utilized. A common
approach for data association in the batch method is to find
a network flow or graph matching [27]–[29] for minimiz-
ing the sum of pairwise association costs. Other than the
pairwise association costs for data association which were

learned as linear functions, pairwise association cost was
learned in the end-to-end fashion via backpropagation in [31].
A novel hand-crafted feature named Aggregated Local Flow
Descriptor (ALFD) has been introduced in [30]. Combining
this hand-crafted feature with motion/appearance models,
this batch MOT algorithm can obtain the state-of-the-art per-
formance. Although the batch method has been well studied
in many works, it is inappropriate for online MOT tasks. The
reason is that it needs the future information of the target.

For the onlinemethod, intersection-over-union (IOU) over-
lap of detections in the previous and the subsequent frame
have been used for MOT, and achieved 100K fps runing
speed with the advanced performance in [32]. Pairwise asso-
ciation costs were constructed with different manners in
[33] and [34]. The highly relative works to our work are
[20] and [35]. Xiang et al. [35] have utilized MDP for
MOT. We combine MDP with DCF for MOT. Whether the
appearance mode is updated or not is integrated into the
MDP. Different from the work in [20] that the CNN-based
single object tracker was applied, the DCFB single object
tracker is exploited for MOT in our work. Moreover, the data
association algorithm, the treatment of occlusion and scale
variant are different.

C. OCCLUSION AND SCALE VARIATION HANDLING
IN OBJECT TRACKING
Occlusion and scale variation are the common problems in
MOT especially in autonomous driving scenarios. The part-
based idea is the most common approach for addressing
occlusion in the object tracking [36]–[38]. The part-based
method has been introduced into the DCFB method for SOT
and well addressed the partial occlusion issue in [39]. For
the scale variation, a scale correlation filter was proposed to
choose the best scale of target in [11]. Moreover, the appear-
ance model of the target was used to calculate the response of
multiple scale region, and the scale which has the maximum
response was chose as the best scale in [23]. In our work,
the famous part-basedmethod is used to handle occlusion and
scale variation. Although the DCFB-based SOT tracker of our
MOT algorithm [16] does not use anymethod to overcome the
scale variation and occlusion, using the part-based method,
two DCFB trackers with different update frequencies and a
novel update strategy, our method outperforms all the existing
methods under the road scenarios where scale change and
occlusion are frequently happened.

D. DECISION MAKING IN OBJECT TRACKING
Since the attractive performance of reinforcement learning in
Go and atari games [40]–[42], decision making has drawn
an increasing attention. Object tracking has been extensively
studied in the decision making fashion. The MDP-based
method was proposed for SOT and MOT in [35] and [43].
The prioritized Q-learning algorithm was utilized to optimize
the control parameters of SOT tracker in [43]. With the rise
of deep reinforcement learning, Yun et al. [44] have studied
SOT by using the deep reinforcement learning algorithm.
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FIGURE 1. The horizontal view of target MDP in our MOT framework.

Deep convolution neural network and the policy gradient
based optimization method were used to obtain the optimal
policy. Long short term memory (LSTM) [47] was integrated
into deep reinforcement learning algorithm to hold temporal
information in [45]. Our work is related to [35] and [46]. But
Supancic and Ramanan’s work [46] was focused on the SOT
problem and Xiang et al.’s work [35] did not use the DCFB
SOT tracker to doMOT.Moreover, nomechanisms have been
applied to simultaneously handle occlusion and scale variant
in [35] and [46].

III. ONLINE MOT ALGORITHM
As shown in Fig. 1, The overview of our MOT algorithm is
presented. The lifetime of each target is modeled as a MDP,
and multiple MDPs are exploited to perform MOT.

A. DECISION MAKING
Decision making has drawn great attention due to the devel-
opment of reinforcement learning. In this section, the combi-
nation of DCF and decision making is used for online MOT
and the Markov decision process is exploited to model the
lifetime of target.

1) MARKOV DECISION PROCESS
In the decision making process, a Markov decision process
(MDP) is defined by the tuple (S,A,Pr (·),R (·)), where

• s ∈ S represents the current state. S is the current state
space.

• The action a ∈ A can be taken in the current state s ∈ S.
A is the current action space.

• The state transition probability Pr (·) indicates the proba-
bility of taking the action a ∈ A to achieve the next state
in the current state s ∈ S.

• The reward r can be achieved when the action a is taken
in the state s, namely, r = R (s, a).

a: STATES
In reinforcement learning, states represent all informations
which are useful for decision making. In our work, the life-
time of a target is regarded as a MDP. Due to the combination
of DCF and decision making for online MOT, the appearance
model of target and other state informations, such as the loca-
tion of target, the similarity of target and predicted target, etc,
together construct states of MDP. The state space is divided
into six subspaces, i.e., S = Sactive∪Stracked∪Slost∪Supdated∪
Snon−updated ∪ Sreleased . Fig. 1 shows the horizontal view of
the state transition for those six state subspaces. For every
new target, we learn the appearance model of the new target,
and then in the next frame, the appearance model is actived.
In the active state, the target can transfer to the tracked or lost
state. It indicates that the target is tracked or lost. For the lost
state, we adjust detections within the region of interest as the
same size of the target and then associate the target with these
detections, decide which state should be transferred. For the
tracked state, it can transfer to the updated or non-updated
state that determines whether the appearance model of target
is updated or not. Then, it continues to the next frame of video
and circulates these state transitions as described above.

b: ACTION, TRANSITION FUNCTION AND
REWARD FUNCTION
The action space is showed in Fig. 1. In our work, the policy
is a deterministic. It means that in a certain state, the action
being took and the next state being transferred are deter-
ministic. For the reward function, the inverse reinforcement
learning [48] is exploited to learn it from the ground truth
trajectories of targets.
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2) POLICY
In reinforcement learning, the policy is a mapping from the
state space to the optimal action space. In our work, the policy
aims for choosing the optimal actions in those six states.
A binary support vector machines (SVM) [49] is trained to
learn the reward function, given as

R(s, a) = y (a)
(
wTφ (s)+ b

)
(1)

where φ (s) is the feature vector for decision making that the
detail is described in section feature representation; (w, b) are
the parameters of our reward function, and y (a) is determined
by the action a. In the active, tracked and lost state, they have
their own reward function which determines the action a ∈ A
is taken and what the immediate reward is. The details are
stated as follows.

a: POLICY IN THE ACTIVE STATE
As shown in Fig. 1, when the appearance model of target is
learned and continue to track, the target chooses an action to
play and then transfers to the tracked or lost state. Based on
eq. (1), we define that if the action a = a1, y (a) = 1, and if
the action a = a2, y (a) = −1. In this case, we can learn
the reward function in the active state through the ground
truth trajectories of targets. That is a form of the inverse
reinforcement learning [48]. φ (s) is the extracting feature to
train the reward function. The feature vector contains five cor-
relation responses, five normalized cross correlation(NCC)
values. The overlap among the detection bounding boxes
with tracking results in the bounding box. The details for the
feature representation can be seen in the subsection 3.

b: POLICY IN THE TRACKED STATE
The DCFB tracking method has to collect and label training
samples by itself. It often collects corrupted training samples,
which result in target drift to these corrupted samples. Thus,
in the tracked state, the target needs to decide whether the
appearance model is updated or not. Intuitively, if the training
sample is not corrupted, we should update the appearance
model of the target; otherwise, the appearance model does
not need to be updated. Similar to the policy in the active
state, we also learn the reward function shown in eq. (1).
We define that if the action a = a3, y (a) = 1, and if the
action a = a4, y (a) = −1. φ (s) in the tracked state aims for
judging whether the predicted target is reliable or not. Thus,
we collect a 10 dimensions feature vector that contains five
correlation responses and five NCC values. The details for
those features are discussed in the subsection 3.

c: POLICY IN THE LOST STATE
In the active state, occlusion makes target transfer to the lost
state. Moreover, in the road scenarios, scale variant and other
distractions also make tracking algorithm lose the target and
then transfers to the lost state. In order to alleviate these prob-
lems, in the lost state, we resize the detection bounding box
within the region of interest as the same size as the target and

then compute correlation responses and NCC values between
them. The reward function is the same as that in the active and
tracked state, except for the feature vector and y (a). In the lost
state, y (a) = 1 if the action a = a5, and y (a) = −1 if the
action a = a7. Furthermore, the target is decided to transfer
to the released state through a certain threshold evaluation.

3) FEATURE REPRESENTATION
As above-mentioned, we try to learn the reward functions
in the active, tracked and lost state. In order to well learn
these reward function, some effective features are required
to extract for training our reward function shown in eq. (1).
In the active state, the target decides to choose action a1 or a2
and then transfers to the tracked or lost state. A DCFB single
object tracker is used to track targets since its correlation
response is naturally utilized for MOT.

The correlation responses of DCFB SOT tracker are natu-
rally utilized as a part of features. We also calculate NCC to
achieve the similarly of the target with the predicted target.
In order to tackle occlusion and scale variant, the correlation
responses and NCC values among the upper half, lower half,
left half and right half part of the target with the corresponding
part of the predicted target are collected. Moreover, the over-
lap of the detection bounding box and the predicted target
bounding box is useful for decision making in the active state.
φ1 ∼ φ11 in Table 1 are features to be extracted for training

TABLE 1. Feature representation for policy learning.
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the reward function in the active state. We also need to decide
whether to use the predicted target to update the appearance
model of target or not. In the ideal situation, if the target
is not occluded, we should update the appearance model
of target. In order to judge whether the target is occluded,
φ1 ∼ φ10 in Table 1 are collected. In order to address scale
variant and occlusion, in the lose state, it is necessary to
adjust the detection bounding box as the same size as the
target and then calculate the correlation responses and NCC
values of the target and detections. The aspect ratio provides
shape information between the target and the predicted target
which is useful in lost state. Moreover, Euclidean distance
between the center of the predicted target with the center of
the bounding box that is predicted by a linear velocity motion
model is also useful for providing the temporal information
about the target. It is robust to the appearance change of the
target. So in lost state, φ1 ∼ φ15 except φ11 in Table 1 are
collected.

B. DCFB TRACKING ALGORITHM
One of our novelties is that the DCFB trackingmethod is inte-
grated into MOT. In order to realize this integration, A DCFB
SOT tracker is used for MOT. Moreover, two DCFB trackers
with different update frequencies are used to make DCFB
tracker more robust to occlusion. The part-based method and
a novel update strategy of the appearance model are proposed
to improve the robustness of the algorithm to scale variant.

1) DCFB SOT
The DCFB single object tracker learns the appearance model
of the target by using the ridge regression method [9]. Specif-
ically, the appearance model w is learned to minimize the
square error over the response map of the correlation filter
with samples x and the expected regression response map y
is given as

min
w

∑
i

(
wT xi − yi

)2
+ λ‖w‖2 (2)

where λ is the regularization parameter for avoiding over-
fitting and T denotes transpose operator. The problem given
by eq. (2) has a simple closed-form solution

w =
(
XHX+ λI

)−1
XHy (3)

where H denotes Hermitian transpose operator and XH is the
Hermitian transpose of X.
Combiningwith the cyclic shifts, we can simplify the linear

regression given by eq. (3), given as

ŵ =
x̂∗ � ŷ

x̂∗ � x̂+ λ
(4)

where ∧ denotes discrete fourier transform (DFT) and sym-
bol ∗ denotes complex-conjugate operator. The operation �
denotes the Hadamard product.

The mode is need to update for continuing tracking the
target. The appearance model is updated as

At = (1− µ)At−1 + µx̂∗ � ŷ (5)

Bt = (1− µ)Bt−1 + µx̂∗ � x̂ (6)

ŵ =
At

Bt + λ
(7)

where µ is the learning rate and t is the frame index. Collect-
ing an image patch z from the next frame, we can calculate
the correlation response map by

r = F−1
(
ŵ� ẑ∗

)
(8)

where F−1 denotes the inverse fast fourier transform (IDFT)
transform.

In the DCFB SOT algorithm, the location of the predicted
target is determined by eq. (8). Specially, it takes the location
of the maximum value in correlation response map as the
center of the predicted target. The width and height of the
predicted target are the same as the target template. In order
to address the conflict problem of update frequency, we use
two DCFB trackers with different update frequencies for
the tracking. Specifically, one DCFB tracker updates the
appearance model conservatively and the other updates the
model aggressively. More specifically, in the tracked state,
if the target decides to take the action a3 and then transfers
to the updated state, the appearance model of the aggressive
DCFB tracker is immediately updated. For the conservative
DCFB tracker, the appearance model of it is updated only
when the model of the aggressive DCFB tracker are updated
more than K times. The aggressive DCFB tracker is sensi-
tive to the dramatic appearance change of the target while
the conservative DCFB tracker is robust to the appearance
change of target. However, due to the aggressive update of
the correlation filter of the aggressive DCFB tracker, themax-
imum response in correlation response map of the aggressive
DCFB tracker is always larger than the maximum response
in the correlation response map of the conservative DCFB
tracker. Thus, we combine the correlation response map with
the overlap value between the tracking result bounding box
and detections shown in eq. (9) for determining the final
tracking result. Eq. (9) is motivated by the fact that when the
aggressive DCFB tracker gradually drifts to the false alarm,
although the maximum response of correlation response map
is large, but the IOU overlap of the tracking result bounding
box and the detection bounding box is small or none. How-
ever, for the conservative DCFB tracker, the IOU overlap of
the tracking result bounding box and the detection bounding
box is large. In this case, if we choose appropriate weight
parameters for eq. (9), we can make our tracking result more
robust to drifting caused by occlusion. Moreover, if the IOU
overlap of the predicted tracking result bounding box and
the detection bounding box is larger than a certain threshold,
we adapt the detection bounding box as the final predicted
location of the target. And we use the final predicted target
to update the appearance model of the target. It makes our
method more robust to the scale variant.

f = γ max(r)+ ηmax(o(t, d)) (9)

where γ and η are the weight parameters. r is the correlation
response map; t is the tracking result bounding box of the
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DCFB tracker; d is the detection bounding box and o denotes
the IOU overlap of two bounding boxes.

Due to the frequent scale variant in autonomous driving
scenarios, the update strategy for the appearance model of
target is also different from the common way as shown in
eq. (5)-(7). We follow eq. (4) to re-init the appearance model
of the target when the target decides to update the appearance
model. In this case, it can well fit the scale change of the
target.

All above-mentioned measures make our DCFB tracking
algorithm more robust to occlusion and scale variant.

2) PART-BASED METHOD
Some features are extracted by using the part-based method
for decision making. As shown in Fig. 2, we partition a target
into four sub-block, namely, the upper half, lower half, left
half and the right half part.

FIGURE 2. (a) Partitioning a target into the left half and right half part.
The black horizontal line is the separator line.

(
b
)

Partitioning a target
into the upper half and lower half part. The black vertical line is the
separator line.

In order to tackle occlusion and interaction among targets,
we learn the appearance models of the upper half, lower half,
left half and the right half part of targets by using eq. (4),
and then collect the maximum responses of the correlation
response maps. Thus, we can obtain the corresponding four
correlation responses and use them as a part of features to
do decision making. Considering the frequent scale change in
MOT scenarios especially in the road scenarios, we resize the
upper half, lower half, left half, right half and entire part of the
target to the fixed width and height [w, h]. Then, we compute
NCC values between the corresponding part of the target
with the predicted target. Resizing and NCC values make our
algorithm more robust to scale variant in the road scenarios.

C. ONLINE MOT
In this section, the learning of the reward function in the
inverse reinforcement learning fashion and the pipeline about
how to organize multiple MDPs to do MOT are summarized.

1) INVERSE REINFORCEMENT LEARNING
In this paper, we train a binary SVM in the inverse reinforce-
ment learning to learn the reward function. We hypothesize
that there are V = {vn}Nn=1 video sequences and there are
Tm = {tm′n}

M ′n
m′=1 ground truth targets in video vn. As shown

in Fig. 1, we aim to learn reward functions in active, tracked
and lost state and then accurately track all targets and sea-
sonably update the appearance model. At the first, we init the
reward functions in the active, tracked and lost state with the
weights (w0, b0). For the active state, we have the initial train-

ing set Sactive = ∅. For the tracked state and lost state, we have
the initial training set Stracked = ∅ and Slost = ∅ respectively.
As described above, we init policies in the active, tracked and
lost state with the weights (w0, b0). Thus, we can make a
decision with the corresponding policy in the active, tracked
and lost state. If we make an appropriate decision which is
the same as the ground truth targets, there is nothing to be
done. Otherwise, we collect features into the corresponding
training set and then update the corresponding policy. For
example, in the active state, there are two situations that make
us update the corresponding policy, e.g., (1) for the target
tm′n, if the policy decides to take the action a1 but the target
tm′n is covered; (2) if the policy decides to take action a2 but
the target tm′n is visible. The above two situations make an
inappropriate decision so that we should add features φ1−φ11
and the corresponding label y (a1) = 1 or y (a2) = −1 to the
training set. There exist similar operations in the tracked and
lost state. The details can be seen in Algorithm 1 given in the
Appendix A.

2) MOT WITH MDPs
As shown in Algorithm 1, we learn the policies or the reward
functions of MDPs. Thus, in this section, we focus to how
to apply MDPs and DCFB method for the MOT problems.
When a new target appears, wemodel the lifetime of the target
as a MDP. Then, the target is in the active state and transfers
to the tracked or lost state. If the target transfers to the tracked
state, the target decides to transfer to the updated or non-
updated state. For the lost state, detections within the region
of interest should be resized as the same size of the target and
then features are extracted to feed into the reward function for
deciding whether the target transfers to the tracked state or the
lost state. When the target loses for certain times, the MDP of
the target is released.Moreover, a number of targets appear on
the same frame of a video, we should take actions to organize
them and address the conflict problem that different targets
are predicted to be in the same positions. We compare the
maximum correlation responses of correlation response maps
of the different targets, and the tracking priorities of different
targets are determined by the magnitude of the maximum cor-
relation responses. Specially, the target with a largemaximum
correlation response have a higher priority. The target in the
tracked state has a higher priority than the target in lost state.
Moreover, if the tracking result bounding boxes of different
targets have a large IOU overlap which is larger than a certain
threshold, we perform the non-maximum suppression (NMS)
according to the maximum correlation responses of the tar-
gets. The nature property of the DCFB tracker, correlation
response, can be used in MOT naturally. The details of our
MOT algorithm is described in Algorithm 2 given in the
Appendix B.

IV. EXPERIMENTS
A. DATASETS
We evaluate our MOT framework based on the famous
KITTI [1] tracking benchmark for autonomous
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TABLE 2. Tracking results on the test dataset from the KITTI tracking benchmark.

TABLE 3. Tracking results on the KITTI tracking test dataset using RRC detection results.

TABLE 4. Ablation study on features for policy learning.

TABLE 5. Tracking results on the KITTI tracking dataset with different update frequency of the appearance model.

TABLE 6. Tracking results on the KITTI tracking dataset with different weight parameters in equation 9.

driving scenarios. The KITTI tracking dataset contains
21 training and 29 testing video sequences of road scenarios.
The training sequences are annotated and the ground truth
is released, Thus, we use the ground truth trajectories of
targets to learn the reward function in inverse reinforcement
learning fashion. Since our MOT algorithm is in the tracking-
by-detection fashion, we need to use a detection algorithm
for detecting objects in each frame of video sequences.
In this case, in order to compare with other state-of-the-
art MOT algorithms, we use the recurrent rolling convo-
lution (RRC) [51] algorithm to detect objects in KITTI
tracking dataset and we report our tracking results on the car
class.

B. EVALUATION METRICS
In order to evaluate the performance of our MOT algo-
rithm, we exploit the popular CLEAR MOT metrics [50].

It contains multiple object tracking precision (MOTP), mul-
tiple object tracking accuracy (MOTA), the number of false
negatives(FN), the number of false positives (FP), the per-
centage of the mostly track targets (MT, percentage of the
overlap of ground truth objects and tracking result bounding
box larger than 80% ), the percentage of themostly lost targets
(ML, percentage of the overlap of ground truth objects and
tracking result bounding box less than 20%), the number of
id switches(IDS) and the number of times that a trajectory is
fragmented(Frag).

C. IMPLEMENTATION DETAILS
We present the main steps for the learning of reward func-
tions in Algorithm 1 and the main steps for online MOT
in Algorithm 2. We use the HCF algorithm [16] as the
base DCFB tracker. The update frequency K of the appear-
ance model in the conservative DCFB tracker is chose as
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FIGURE 3. Qualitative results of some typical challenging scenarios.

FIGURE 4. Qualitative results of some typical challenging scenarios.

10 and we show the effectiveness of it in Table 5. The result
in Table 6 shows that the weight parameters γ and η in eq. (9)
are set to be 0.5 and 1 are the optimal selection. We employ
the setting in [35] and set [w, h] = [24, 12]. In order to
compare with other state-of-the-art MOT algorithms fairly,
we use RRC [51] algorithm to detect objects, and then use

these detections to do MOT and evaluate our algorithm on
KITTI tracking benchmark.

D. PERFORMANCE EVALUATION
As shown in Table 2, we compare our approach with
other state-of-the-art MOT approaches on the KITTI
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Algorithm 1 Learning Policy via Inverse Reinforcement Learning
1) Input settings:

video sequences V = {vn}Nn=1 (N videos totally);

object detections Dm = {dmn}
Mn
m=1 (Mn detections in the nth video);

ground truth targets Tm =
{
tm′n

}M ′n
m′=1

(
M ′n targets in the nth video

)
;

2) Initialization:
policy in active state wactive ← w0, bactive ← b0;
policy in tracked wtracked ← w0, btracked ← b0;
policy in lost wlost ← w0, blost ← b0;
update frequency K = 0;

3) Optimization:
DDD repeat

DDD for n=1:N
DDD foreach traget tm′n in video vn
f ← the first index of the frame that target tm′n is detected;
learn the appearance model of the upper half, lower half, left half, right half and entire part of the detected object;
initialize MDP to the active state;
DDD while f ≤ the last index of the frame the target appeared

following the current policy in the active state and taking an action aactive in the active state;
achieve the ground truth action aactive_gt from the true trajectory;
if aactive_gt = aactive then:
transfer to the current state s by taken the action aactive;
f = f + 1;
if current state s is lost state:
resize detection di to the same size as tracking template, and then compute features φ1 ∼ φ15 except overlap;
following the current policy in the lost state and take a action alost ;
achieve the ground truth action alost_gt from the true trajectory;
if alost_gt = alost then:

transfer to the current state s by takeing the action alost ;
else:

compute label y (alost ) and collect features φ1 ∼ φ15 except φ11 as shown in table 1;
Slost ← Slost ∪ {(φ1 ∼ φ15)− φ11, y (alost )};
update policy according to eq. (1);

end if
end if
if current state s is tracked state:

following the current policy in the tracked state and take a action atracked in the tracked state;
achieve the ground truth action atracked_gt from the true trajectory;

if atracked_gt = atracked then:
transfer to the current state s by takeing the action atracked ;
if current state s is updated state:

update the appearance model of the aggressive DCFB tracker;
K = K + 1;
if K >= 10 then:
update the appearance model of the conservative DCFB tracker;
K = 0;

end if
else:

the current state s is non-updated state;
end if

else:
compute label y (atracked ) and collect features φ1 ∼ φ10 as shown in table 1;
Stracked ← Stracked ∪ {(φ1 ∼ φ10) , y (atracked )};;
update policy according to eq. (1);

end if
else:

compute label y (aactive) and collect features φ1 ∼ φ11 as shown in Table 1;
Stracked ← Stracked ∪ {(φ1 ∼ φ11) , y (atracked )};
update policy according to eq. (1);
if current state s is tracked state:
break;

end if
end if
if f > the last index of the frame the target appeared

mark target tm′n is tracked successfully;
end if

DDD end while
DDD end for

DDD end for
DDD until all targets are tracked successfully or over given iterations
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Algorithm 2 Online MOT With MDPs
1) Input:

video sequences V = {vn}Nn=1 (N videos totally);

object detections Dm = {dmn}
Mn
m=1 (Mn detections in the nth video);

policy in the active, tracked and lost state;
2) output:

Trajectories of targets 0 = {tk }Kk=1;
2) Initialization:

0← ∅;
K = 0;

3) Optimization:
DDD for n=1:N

DDD foreach frame f in video vn
DDD foreach tracked target tm in 0

move the MDP of target tm to the active state;
follow the policy in the active state and transfer to the state s;
if state s is lost state:

resize detections within ROI to the same size as tracking template,
and then compute features φ1 ∼ φ15;
follow the policy in the lost state and transfer to the state s;

end if
if state s is tracked state:

follow the policy in the tracked state and transfer to the state s;
if state s is updated state:

update the appearance model of the aggressive DCFB tracker;
K = K + 1;
if K >= 10 then:

update the appearance model of the conservative DCFB tracker;
K = 0;

end if
else:

the current state s is non-updated state;
end if

end if
DDD end for
DDD foreach lost target tm in 0

resize detections within ROI to the same size as target template,
and then compute features φ1 ∼ φ15 except φ11;
follow the policy in the lost state and transfer to the state s;
if state s is tracked state:

follow the policy in the tracked state and transfer to the state s;
if state s is updated state:

update the appearance model of the aggressive DCFB tracker;
K = K + 1;
if K >= 10 then:

update the appearance model of the conservative DCFB tracker;
K = 0;

end if
else:

the current state s is non-updated state;
end if

end if
DDD end for
DDD foreach detection dmn not covered by any target

initialize a MDP for the detection and store it to 0;
learn the the appearance models of the detection as eq. (3);
sort 0 via correlation response;

DDD end for
DDD end for

DDD end for

tracking benchmark. Before our work, the published MOT
approach which has the best performance on KITTI car
benchmark is RRC-IIITH [33]. It is seen that our approach
outperforms RRC-IIITH by 2.51% in MOTA. Moreover,
ID switch of our approach is also less than that of RRC-
IIITH. In the tracking-by-detection fashion MOT approach,
the detection results are very important for the performance of

MOT approaches. Thus, in order to compare our approach
with other state-of-the-art MOT algorithms fairly, we use
the same detection results for some state-of-the-art MOT
approaches which have release their codes. The comparison
result is listed in Table 3. Our approach ourperforms these
state-of-the-art MOT algorithms with the same detection
results.
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E. ABLATION STUDY
We design 15 dimension features for our MOT framework
as shown in Table 1. A thorough ablation analysis is per-
formed to verify the importance of these features. As shown
in Table 4, removing NCC values or responses significantly
deteriorates the performance of our algorithm since they
can address scale variant and occlusion. Distance and aspect
ratio also show their importance to our approach in Table 4.
We also show the influence of the update frequency of the
appearance model. K = 10 is the best choice as shown in
table 5, more quick update frequency may make target drift to
the corrupted training samples and a small update frequency
cannot handle the appearance change of object well. The
effect of two DCFB trackers is showed in Table 6.

F. QUALITATIVE RESULTS
In this section, we present qualitative results of some typical
challenging sequences in the road scenarios in Fig. 3 and
Fig. 4. These qualitative results clearly indicate that our
approach can address difficulties especially occlusion and
scale variant. For example, the first column of Fig. 3 shows
that our approach is robust to scale variant and background
clutter. The second, third column of Fig. 3 and the third
column of Fig. 4 indicate that our algorithm can well tackle
occlusion caused by the traffic sign, interaction among targets
and tree. The first and second column of Fig. 4 show the
robustness of the out-of-plane rotation and scale variant.

V. CONCLUSION
In this paper, an online MOT approach via combining dis-
criminative correlation filters with making decision was pro-
posed. In order to alleviate the adverse effect of the corrupted
training samples in DCFB method, whether to update the
appearance model of the target or not was regarded as a
state transition in MDP. In order to improve the robust of
our algorithm to the scale variant and occlusion, the state
transition was also modeled in the lost state. Moreover, two
DCFB trackers with different update frequencies and a novel
update strategy different from the common way were applied
to improve the robust of our algorithm to the occlusion and
scale variant. Furthermore, the part-based method was used
to extract effective features that help our algorithm to tackle
occlusion, interactions among targets and scale variant. The
results demonstrated the superiority of our method compared
with the existing methods for addressing occlusion and scale
variant. Experiment results in challenging tracking dataset,
KITTI tracking dataset, verified the efficiency of our pro-
posed MOT algorithm.

APPENDIX A
See Algorithm 1.

APPENDIX B
See Algorithm 2.
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