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ABSTRACT This paper investigates the lag synchronization of memristive neural networks (MNNs) with
mixed delays via adaptive control. Based on the switching jump properties of memristors and the assumption
that the activation functions are bounded, three lemmas are derived first to deal with the theoretical analysis
difficulties caused by the existences of time delays and time lag. By designing a series of suitable adaptive
controllers, we prove that the considered MNNs can achieve asymptotic lag synchronization, exponential
lag synchronization, and finite-time lag synchronization, respectively. Adaptive control can avoid the
large control gains very well, and adaptive control can be used even when the system parameters are
unknown.Moreover, extra calculations are not required to determine the appropriate control gains. Numerical
simulations are presented to verify the effectiveness of the obtained theoretical results.

INDEX TERMS Memristive neural networks, adaptive controllers, lag synchronization, mixed delays.

I. INTRODUCTION
In 1971, Chua [1] predicted that besides inductor, capac-
itor and resistor, there should exist another basic circuit
element—memristor. In 2008, HP Laboratory manufactured
the prototype of memristor [2], since then, memristor has
attracted great attention frommany research areas.Memristor
reflects the relationship between flux and charge, and its
memristance varies with the amount of the passed charge [3],
so memristor has the memory function.

An important application of memristor is to construct
memristive neural network (MNN) [4]. In the circuit imple-
mentment of neural network, scholars usually used resistors
to imitate synapses. However, we know that synapses play an
important part inmemory formation, while the common resis-
tors don’t have the memory function. Relatively speaking,
memristor behaves more like the real synapse. If the above-
mentioned resistors are replaced by memristors, the usual
artificial neural network [5] will become a memristive neural
network, which can simulate the function of human brain
better [6].

Recently, the dynamic analysis of MNNs has become a hot
topic [7]–[12]. Especially, considerable publications on the

synchronization of MNNs have been reported [13]–[26]. The
first correct result about the synchronization of MNNs has
been published in [23], where detailed analysis was given
why the classical state feedback controller cannot synchro-
nize MNNs. Then, the techniques have been extended to
impulsive control in [24]. Moreover, new analytical tech-
niques were provided to further explain the control method
in [25] and [26], and the finite-time synchronization of
delayed MNNs has also been considered in [25].

To the best of our knowledge, most works about the
synchronization of MNNs were related to complete synchro-
nization [27]. However, it is believed that complete synchro-
nization may be unrealistic in some application fields. For
example, in the large-scale network, because of the finite
signal transmission speed, the existence of time delay is
unavoidable, so the signal that the receiver receives at time
t + δ may be the one that was sent at time t . As an important
synchronization type, lag synchronization means that two
systems can achieve synchronization with a constant time
lag δ > 0 [28]. Obviously, lag synchronization is very
applicable to the aforementioned case. Up to now, the lag
synchronization of MNNs has been investigated in [29]–[37].
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In [30], by designing feedback controllers, the exponential lag
synchronization of coupled MNNs with discrete delays was
investigated via ω-Measure. By adopting hybrid switching
control, the exponential lag synchronization of MNNs with
constant delays was addressed in [31].

Because of the limitation of theoretical derivations,
the control gains of the controllers in [30], [31], and [33]–[37]
may be too large in some cases. However, adaptive controllers
can solve this problem very well, and adaptive controllers can
be applied even when the system parameters are unknown.
In [29], [32], and [38]–[43], adaptive control was used to
discuss the synchronization of MNNs with discrete delays.
In [39], the adaptive finite-time synchronization of MNNs
with discrete delays was considered, but the designed adap-
tive controller was very complex. As far as we know, there
still has been no publication about the adaptive lag synchro-
nization of MNNs with distributed delays nowadays. What is
more, the analysis techniques used in [29]–[43] cannot be uti-
lized to deal with the adaptive lag synchronization of MNNs
with distributed delays. However, since there exist parallel
pathways with various axon lengths and sizes, we should also
consider distributed delay in the studies of neural networks.
Fortunately, the results in [44] and [45] have shed some light
on studying the adaptive asymptotic/exponential lag synchro-
nization of MNNs with distributed delays.

In view of the above analysis, this paper investigates the
adaptive lag synchronization of MNNs with mixed delays.
By designing a series of adaptive controllers, we will prove
the considered MNNs can achieve asymptotic lag synchro-
nization, exponential lag synchronization and finite-time lag
synchronization, respectively. The contributions of our paper
include: (1) In engineering applications, finite-time syn-
chronization [46]–[52] is more valuable than asymptotic/
exponential synchronization. Based on novel finite-time syn-
chronization analysis techniques, the finite-time lag synchro-
nization of MNNs is discussed in this paper by designing a
simple adaptive controller. (2) In recent years, the scholars
have done some researches on the lag/adaptive synchroniza-
tion of MNNs. However, the time delays that they considered
were mainly discrete delays. In this paper, MNNs with mixed
delays are considered. (3) In the existing works about the lag
synchronization of MNNs with time-varying discrete delays,
when t was replaced by t − δ, fk (xk (t − τk (t))) was replaced
by fk (xk (t − δ − τk (t))). Of course that is not right. In this
paper, fk (xk (t− τk (t))) is replaced by fk (xk (t− δ− τk (t− δ)))
when t is changed into t − δ. (4) The existences of time
delays [53] and time lag usually make the theoretical analysis
of lag synchronization difficult. In this paper, we first derive
Lemmas 2,3 and 4, which can make the remaining theoretical
derivations very concise.

We organize the remainder of this paper as follows.
Some necessary preliminaries are introduced in Section 2.
In Section 3, the main results of this paper are presented.
Numerical simulations are given to validate the effectiveness
of our theoretical results in Section 4. The conclusion of this
paper is provided in Section 5.

II. NETWORK MODEL AND PRELIMINARIES
Consider such a MNN model with mixed delays:

ẋj(t) = −dj(xj(t))xj(t)+
n∑

k=1

ajk (xj(t))fk (xk (t))

+

n∑
k=1

bjk (xj(t))fk (xk (t − τk (t)))

+

n∑
k=1

cjk (xj(t))
∫ t

t−ρk (t)
fk (xk (s))ds+ Ij, t ≥ 0,

(1)

j = 1, 2, . . . , n, where xj(t) denotes the voltage of capacitor
Cj; dj(·) > 0 represents the rate of neuron self-inhibition;
fk (·) stands for the activation function; τk (t) denotes the dis-
crete delay, which satisfies 0 ≤ τk (t) ≤ τk ; ρk (t) denotes
the distributed delay, which satisfies 0 ≤ ρk (t) ≤ ρk ; Ij is
the external input; dj(xj(t)), ajk (xj(t)), bjk (xj(t)) and cjk (xj(t))
denote the memristive connection weights, and

dj(xj(t)) =
1
Cj

[
n∑

k=1

(Mjk + M̃jk + M̂jk )× signjk +
1
Rj

]
,

ajk (xj(t)) =
Mjk

Cj
× signjk , bjk (xj(t)) =

M̃jk

Cj
× signjk ,

cjk (xj(t)) =
M̂jk

Cj
× signjk , signjk =

{
1, j 6= k,
−1, j = k,

(2)

here Mjk , M̃jk , M̂jk express the memductances of memristors
Rjk , R̃jk , R̂jk , respectively. What is more, Rjk represents the
memristor between fk (xk (t)) and xj(t), R̃jk represents the
memristor between fk (xk (t − τk (t))) and xj(t), R̂jk represents
the memristor between

∫ t
t−ρk (t)

fk (xk (s))ds and xj(t), and Rj is
the parallel-resistor. The circuit implementation of MNN (1)
is illustrated in Fig.1. Based on the property of memristor,
we set

dj(xj(t)) =

{
d́j,

∣∣xj(t)∣∣ ≤ Tj,
d̀j,

∣∣xj(t)∣∣ > Tj,

ajk (xj(t)) =

{
ájk ,

∣∣xj(t)∣∣ ≤ Tj,
àjk ,

∣∣xj(t)∣∣ > Tj,

bjk (xj(t)) =

{
b́jk ,

∣∣xj(t)∣∣ ≤ Tj,
b̀jk ,

∣∣xj(t)∣∣ > Tj,

cjk (xj(t)) =

{
ćjk ,

∣∣xj(t)∣∣ ≤ Tj,
c̀jk ,

∣∣xj(t)∣∣ > Tj,
(3)

for j, k = 1, 2, . . . , n, where d́j, d̀j, ájk , àjk , b́jk , b̀jk , ćjk , c̀jk
are known constants. The initial condition of MNN (1) is
xj(s) = ϕj(s) ∈ C([−τ, 0],R), j = 1, 2, . . . , n, where
τ = max

1≤k≤n
{τk , ρk}.

Throughout this paper, set d j = min{d́j, d̀j}, avjk =

max{
∣∣ájk ∣∣ , ∣∣àjk ∣∣}, bvjk = max{

∣∣∣b́jk ∣∣∣ , ∣∣∣b̀jk ∣∣∣}, cvjk =

max{
∣∣ćjk ∣∣ , ∣∣c̀jk ∣∣}, for j, k = 1, 2, . . . , n.
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FIGURE 1. The circuit implementation of MNN (1), where Jj = Ij Cj is the external inputs, λj , θj and σj are the outputs,
j = 1,2, . . . ,n.

MNN (1) is referred to as the drive system, the correspond-
ing response system can be written as

ẏj(t) = −dj(yj(t))yj(t)+
n∑

k=1

ajk (yj(t))fk (yk (t))

+

n∑
k=1

bjk (yj(t))fk (yk (t − τk (t)))

+

n∑
k=1

cjk (yj(t))
∫ t

t−ρk (t)
fk (yk (s))ds+ Ij + uj(t), (4)

t ≥ δ, j = 1, 2, . . . , n, here uj(t) denotes the appropriate
controller. The initial condition of MNN (4) is yj(s) = ψj(s+
δ) ∈ C([−τ, 0],R), j = 1, 2, . . . , n. dj(yj(t)), ajk (yj(t)),

bjk (yj(t)) and cjk (yj(t)) are given by

dj(yj(t)) =

{
d́j,

∣∣yj(t)∣∣ ≤ Tj,
d̀j,

∣∣yj(t)∣∣ > Tj,

ajk (yj(t)) =

{
ájk ,

∣∣yj(t)∣∣ ≤ Tj,
àjk ,

∣∣yj(t)∣∣ > Tj,

bjk (yj(t)) =

{
b́jk ,

∣∣yj(t)∣∣ ≤ Tj,
b̀jk ,

∣∣yj(t)∣∣ > Tj,

cjk (yj(t)) =

{
ćjk ,

∣∣yj(t)∣∣ ≤ Tj,
c̀jk ,

∣∣yj(t)∣∣ > Tj,
(5)

for j, k = 1, 2, . . . , n.
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Let the synchronization errors be ej(t) = yj(t)− xj(t − δ).
From MNNs (1) and (4), it follows that

ėj(t) = −dj(yj(t))ej(t)+ Rj(t)

− (dj(yj(t))− dj(xj(t − δ)))xj(t − δ)+ uj(t), (6)

t ≥ δ, j = 1, 2, . . . , n, where

Rj(t) =
n∑

k=1

ajk (yj(t))fk (yk (t))

−

n∑
k=1

ajk (xj(t − δ))fk (xk (t − δ))

+

n∑
k=1

bjk (yj(t))fk (yk (t − τk (t)))

−

n∑
k=1

bjk (xj(t − δ))fk (xk (t − δ − τk (t − δ)))

+

n∑
k=1

cjk (yj(t))
∫ t

t−ρk (t)
fk (yk (s))ds

−

n∑
k=1

cjk (xj(t − δ))
∫ t−δ

t−δ−ρk (t−δ)
fk (xk (s))ds. (7)

Let e(t) = (e1(t), e2(t), . . . , en(t))T . The initial condition
of error system (6) is ej(s) = ψj(s+δ)−ϕj(s), j = 1, 2, . . . , n.
Assumption 1: |fk (·)| ≤ Mk for some constants Mk > 0,

k = 1, 2, . . . , n.
Lemma 1 [54]: Suppose V (x) : Rn → R is a C−regular

function. If x(t) is absolutely continuous on each compact
subinterval of [0,+∞), then x(t) andV (x(t)) : [0,+∞)→ R
are derivable for a.a.t ∈ [0,+∞), what is more,

d
dt
V (x(t)) = v(t)ẋ(t), ∀v(t) ∈ ∂V (x(t)),

here ∂V (x(t)) denotes the generalized gradient of V .
Lemma 2: sign(ej(t))(−dj(yj(t))yj(t) + dj(xj(t − δ))xj(t −

δ)) ≤ −d j
∣∣ej(t)∣∣+Tj ∣∣∣d́j − d̀j∣∣∣ · ∣∣sign(ej(t))∣∣, j = 1, 2, . . . , n.

Proof: Four cases will be discussed respectively.
(1) When

∣∣xj(t − δ)∣∣ < Tj and
∣∣yj(t)∣∣ < Tj,

sign(ej(t))(−dj(yj(t))yj(t)+ dj(xj(t − δ))xj(t − δ))

= −sign(ej(t))(d́jyj(t)− d́jxj(t − δ))

= −d́j
∣∣ej(t)∣∣ ≤ −d j ∣∣ej(t)∣∣ . (8)

(2) When
∣∣xj(t − δ)∣∣ > Tj and

∣∣yj(t)∣∣ > Tj,

sign(ej(t))(−dj(yj(t))yj(t)+ dj(xj(t − δ))xj(t − δ))

= −d̀j
∣∣ej(t)∣∣ ≤ −d j ∣∣ej(t)∣∣ . (9)

(3) When
∣∣xj(t − δ)∣∣ ≤ Tj and ∣∣yj(t)∣∣ ≥ Tj,

sign(ej(t))(−dj(yj(t))yj(t)+ dj(xj(t − δ))xj(t − δ))

= −sign(ej(t))[dj(yj(t))ej(t)

+ (dj(yj(t))− dj(xj(t − δ)))xj(t − δ)]

≤ −d j
∣∣ej(t)∣∣+ Tj ∣∣∣d́j − d̀j∣∣∣ · ∣∣sign(ej(t))∣∣ . (10)

(4) When
∣∣xj(t − δ)∣∣ ≥ Tj and ∣∣yj(t)∣∣ ≤ Tj,

sign(ej(t))(−dj(yj(t))yj(t)+ dj(xj(t − δ))xj(t − δ))

= −sign(ej(t))[(dj(yj(t))− dj(xj(t − δ)))yj(t)

+ dj(xj(t − δ))ej(t)]

≤ −d j
∣∣ej(t)∣∣+ Tj ∣∣∣d́j − d̀j∣∣∣ · ∣∣sign(ej(t))∣∣ . (11)

The proof is completed.
Lemma 3: sign(ej(t))(−dj(yj(t))yj(t) + dj(xj(t − δ))xj(t −

δ)) ≤ −d j
∣∣ej(t)∣∣+ Tj ∣∣∣d́j − d̀j∣∣∣, j = 1, 2, . . . , n.

Proof: The proof of Lemma 3 is similar to that
of Lemma 2.
Lemma 4:

∣∣Rj(t)∣∣ ≤ 3j, j = 1, 2, . . . , n, where

3j =
n∑

k=1
2Mk (avjk + b

v
jk + ρkc

v
jk ).

Proof: By means of Assumption 1 and the assumption
0 ≤ ρk (t) ≤ ρk , this lemma can be easily proved.
Definition 1: If there exist constants γ > 0 and M∗ > 0

satisfying

‖e(t)‖ ≤ M∗e−γ (t−δ), t ≥ δ,

we say MNNs (1) and (4) realize exponential lag
synchronization.
Definition 2: If there exists a constant t∗(e(0)) > 0 such

that lim
t→t∗(e(0))

‖e(t)‖ = 0 and ‖e(t)‖ ≡ 0 for t > t∗(e(0)),

we say MNNs (1) and (4) realize finite-time lag synchroniza-
tion, and we call t∗(e(0)) the settling time.

III. MAIN RESULTS
We will design different kinds of adaptive controllers in this
part, which can guarantee MNNs (1) and (4) reach asymp-
totic lag synchronization, exponential lag synchronization
and finite-time lag synchronization, respectively.

A. ADAPTIVE ASYMPTOTIC LAG SYNCHRONIZATION
Theorem 1: If Assumption 1 holds, MNNs (1) and (4) can
realize asymptotic lag synchronization under such an adap-
tive controller:

uj(t)=−ξj(t)ej(t)− ηj(t)sign(ej(t)), j=1, 2, . . . , n, (12)

with {
ξ̇j(t) = αj

∣∣ej(t)∣∣2 ,
η̇j(t) = βj

∣∣ej(t)∣∣ , (13)

where αj > 0 and βj > 0 are constants.
Proof: Lyapunov function can be designed as:

V (t) =
1
2

n∑
j=1

∣∣ej(t)∣∣2 + n∑
j=1

[
1
2αj

(ξj(t)− ξj)2

+
1
2βj

(ηj(t)− ηj)2
]
,

where ξj and ηj are constants that will be determined later.

VOLUME 6, 2018 40771



C. Chen et al.: Adaptive Lag Synchronization of MNNs With Mixed Delays

Calculating the derivative of V (t), we can get that

V̇ (t) =
n∑
j=1

ej(t)ėj(t)+
n∑
j=1

ξj(t)− ξj
αj

· αj
∣∣ej(t)∣∣2

+

n∑
j=1

ηj(t)− ηj
βj

· βj
∣∣ej(t)∣∣

=

n∑
j=1

∣∣ej(t)∣∣ sign(ej(t)) [−dj(yj(t))yj(t)
+ dj(xj(t − δ))xj(t − δ)+ Rj(t)+ uj(t)

]
+

n∑
j=1

(ξj(t)− ξj)
∣∣ej(t)∣∣2 + n∑

j=1

(ηj(t)− ηj)
∣∣ej(t)∣∣

≤

n∑
j=1

∣∣ej(t)∣∣ [−d j ∣∣ej(t)∣∣+ Tj ∣∣∣d́j − d̀j∣∣∣+3j

− ξj(t)
∣∣ej(t)∣∣− ηj(t)]+ n∑

j=1

(ξj(t)− ξj)
∣∣ej(t)∣∣2

+

n∑
j=1

(ηj(t)− ηj)
∣∣ej(t)∣∣

=

n∑
j=1

(−d j − ξj)
∣∣ej(t)∣∣2

+

n∑
j=1

(Tj
∣∣∣d́j − d̀j∣∣∣+3j − ηj)

∣∣ej(t)∣∣ ,
where Lemma 3 and Lemma 4 have been used.

Choose ξj > −d j, ηj ≥ Tj
∣∣∣d́j − d̀j∣∣∣ + 3j, j = 1, 2, . . . , n,

then V̇ (t) < 0. It follows that MNNs (1) and (4) can realize
asymptotic lag synchronization.

B. ADAPTIVE EXPONENTIAL LAG SYNCHRONIZATION
Theorem 2: If Assumption 1 holds and 0 < µ ≤ 2 min

1≤j≤n
d j,

MNNs (1) and (4) can realize exponential lag synchronization
under such an adaptive controller:

uj(t) = −ξj(t)sign(ej(t))− ηj(t)xj(t − δ)sign(ej(t)xj(t − δ)),

(14)

j = 1, 2, . . . , n, with{
ξ̇j(t) = αj

∣∣ej(t)∣∣ eµ(t−δ),
η̇j(t) = βj

∣∣ej(t)xj(t − δ)∣∣ eµ(t−δ), (15)

where αj > 0 and βj > 0 are constants.
Proof: Lyapunov function can be designed as:

V (t) = eµ(t−δ)
n∑
j=1

e2j (t)+
n∑
j=1

[
1
αj
(ξj(t)− ξj)2

+
1
βj
(ηj(t)− ηj)2

]
,

where ξj and ηj are constants that will be determined later.

Calculating the derivative of V (t), we can get that

V̇ (t) = µeµ(t−δ)
n∑
j=1

e2j (t)+ e
µ(t−δ)

n∑
j=1

2ej(t)ėj(t)

+

n∑
j=1

ξj(t)− ξj
αj

· αj
∣∣ej(t)∣∣ eµ(t−δ)

+

n∑
j=1

ηj(t)− ηj
βj

· βj
∣∣ej(t)xj(t − δ)∣∣ eµ(t−δ).

By means of Lemma 4, it can be obtained that

2ej(t)ėj(t)

= 2ej(t)(−dj(yj(t))ej(t)+ Rj(t)+ uj(t)

− (dj(yj(t))− dj(xj(t − δ)))xj(t − δ))

= −2dj(yj(t))e2j (t)+ 2ej(t)Rj(t)− 2ξj(t)
∣∣ej(t)∣∣

− 2ηj(t)
∣∣ej(t)xj(t − δ)∣∣

− 2(dj(yj(t))− dj(xj(t − δ)))ej(t)xj(t − δ)

≤ −2d je
2
j (t)+ 23j

∣∣ej(t)∣∣− 2ξj(t)
∣∣ej(t)∣∣

− 2ηj(t)
∣∣ej(t)xj(t − δ)∣∣+ 2

∣∣∣d́j − d̀j∣∣∣ · ∣∣ej(t)xj(t − δ)∣∣ .
Then

V̇ (t)

≤ eµ(t−δ)
n∑
j=1

[
µe2j (t)− 2d je

2
j (t)+ 23j

∣∣ej(t)∣∣
− 2ξj(t)

∣∣ej(t)∣∣− 2ηj(t)
∣∣ej(t)xj(t − δ)∣∣

+ 2
∣∣∣d́j − d̀j∣∣∣ · ∣∣ej(t)xj(t − δ)∣∣+ 2(ξj(t)− ξj)

∣∣ej(t)∣∣
+ 2(ηj(t)− ηj)

∣∣ej(t)xj(t − δ)∣∣ ]
≤ eµ(t−δ)

n∑
j=1

[
(−2 min

1≤j≤n
d j + µ)e

2
j (t)

+ 2(
∣∣∣d́j − d̀j∣∣∣− ηj) ∣∣ej(t)xj(t − δ)∣∣+ 2(3j − ξj)

∣∣ej(t)∣∣ ].
Choose ξj ≥ 3j, ηj ≥

∣∣∣d́j − d̀j∣∣∣, j = 1, 2, . . . , n. Since

0 < µ ≤ 2 min
1≤j≤n

d j, then V̇ (t) ≤ 0, that means

V (t) ≤ V (δ) =
n∑
j=1

e2j (δ)

+

n∑
j=1

[
1
αj
(ξj(δ)− ξj)2 +

1
βj
(ηj(δ)− ηj)2

]
, t ≥ δ.

In view of

V (t) ≥ eµ(t−δ)‖e(t)‖2,

we have

‖e(t)‖2 ≤ V (t)e−µ(t−δ) ≤ V (δ)e−µ(t−δ), t ≥ δ.

Therefore,

‖e(t)‖ ≤
√
V (δ)e−

µ
2 (t−δ), t ≥ δ.
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C. ADAPTIVE FINITE-TIME LAG SYNCHRONIZATION
Theorem 3: If Assumption 1 holds, MNNs (1) and (4) will
realize finite-time lag synchronization under such an adaptive
controller:

uj(t)=−ξj(t)ej(t)− ηj(t)sign(ej(t)), j=1, 2, . . . , n, (16)

with {
ξ̇j(t) = αj

∣∣ej(t)∣∣ ,
η̇j(t) = βj

∣∣sign(ej(t))∣∣ , (17)

where αj > 0 and βj > 0 are constants.
Proof: Lyapunov function can be designed as:

V (t)=
n∑
j=1

∣∣ej(t)∣∣+ n∑
j=1

[
1
2αj

(ξj(t)− ξj)2+
1
2βj

(ηj(t)− ηj)2
]
,

where ξj and ηj are constants that will be determined later.
By means of Lemma 1, we calculate the derivative of V (t):

V̇ (t) =
n∑
j=1

sign(ej(t))ėj(t)

+

n∑
j=1

1
2αj
· 2(ξj(t)− ξj) · αj

∣∣ej(t)∣∣
+

n∑
j=1

1
2βj
· 2(ηj(t)− ηj) · βj

∣∣sign(ej(t))∣∣
=

n∑
j=1

sign(ej(t))
[
−dj(yj(t))yj(t)

+ dj(xj(t − δ))xj(t − δ)+ Rj(t)+ uj(t)
]

+

n∑
j=1

[
(ξj(t)− ξj)

∣∣ej(t)∣∣+(ηj(t)− ηj) ∣∣sign(ej(t))∣∣] .
By Lemma 2 and Lemma 4, it can be obtained that

V̇ (t) ≤
n∑
j=1

[
−d j

∣∣ej(t)∣∣+ Tj ∣∣∣d́j − d̀j∣∣∣ · ∣∣sign(ej(t))∣∣]
+

n∑
j=1

3j
∣∣sign(ej(t))∣∣− n∑

j=1

ξj(t)
∣∣ej(t)∣∣

−

n∑
j=1

ηj(t)
∣∣sign(ej(t))∣∣+ n∑

j=1

(ξj(t)− ξj)
∣∣ej(t)∣∣

+

n∑
j=1

(ηj(t)− ηj)
∣∣sign(ej(t))∣∣

=

n∑
j=1

(−d j − ξj)
∣∣ej(t)∣∣

+

n∑
j=1

(Tj
∣∣∣d́j − d̀j∣∣∣+3j − ηj)

∣∣sign(ej(t))∣∣ .

Choose ξj ≥ −d j, ηj = Tj
∣∣∣d́j − d̀j∣∣∣ + 3j + ωj,

j = 1, 2, . . . , n, where ωj > 0, we can get that

V̇ (t) ≤ −
n∑
j=1

ωj
∣∣sign(ej(t))∣∣ .

Let ω = min
1≤j≤n

ωj, then we have

V̇ (t) ≤ −ω
n∑
j=1

∣∣sign(ej(t))∣∣ .
Our aim is to prove there exist t∗ > 0 which satisfies

lim
t→t∗
‖e(t)‖ = 0 and ‖e(t)‖ ≡ 0, ∀t ≥ t∗.

Obviously, if ‖e(t)‖ 6= 0, then

V̇ (t) ≤ −ω
n∑
j=1

∣∣sign(ej(t))∣∣ ≤ −ω.
So there always exists a constant t0 =

V (0)
ω

such that

lim
t→t0
‖e(t)‖ = 0 and ‖e(t)‖ ≡ 0, t ≥ t0.

Let t∗ = inf {t ∈ (0, t0] : ‖e(s)‖ ≡ 0, s ≥ t}, then we have

lim
t→t∗
‖e(t)‖ = 0 and ‖e(t)‖ ≡ 0, t ≥ t∗.

According to Definition 2, MNNs (1) and (4) can realize
finite-time lag synchronization.
Remark 1: As far as we know, the lag synchronization

of delayed MNNs has been considered in [29], [30], and
[32]–[34]. However, the authors believed that fk (xk (t−τk (t)))
should be replaced by fk (xk (t − δ − τk (t))) when t was
changed into t − δ. Obviously, it is not right. In this paper,
fk (xk (t − τk (t))) is replaced by fk (xk (t − δ− τk (t − δ))) when
t is changed into t − δ.
Remark 2:Because of the conservativeness of strict deriva-

tions, the control gains of the controllers in [30], [31], and
[33]–[37]may be very large sometimes. In this paper, the con-
trollers that we adopt are adaptive controllers, which can
avoid the large control gains very well.
Remark 3: Among the results about the lag synchroniza-

tion of MNNs [29]–[37], most were associated with asymp-
totic synchronization or exponential synchronization. In this
paper, not only asymptotic lag synchronization and exponen-
tial lag synchronization but also finite-time lag synchroniza-
tion is considered.
Remark 4: Due to traffic jams and the finite speeds of sig-

nals transmission, discrete delays [55]–[57] inevitably exist in
neural networks. On the other hand, because there exist paral-
lel pathways with various axon lengths and sizes, we should
also consider distributed delay in the studies of neural net-
works. However, most results about the dynamic analysis
of MNNs only considered MNNs with discrete delays. The
mixed delays of this paper include discrete delays and dis-
tributed delays, so the MNN model considered in this paper
is less conservative.
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Remark 5: In this paper, it is proved that MNNs (1) and (4)
can realize synchronization with a lag time δ. If the lag time
δ = 0, the results of this paper imply that MNNs (1) and (4)
can achieve complete synchronization.
Remark 6: As far as we know, it is usually difficult to

study the lag synchronization of MNNs with distributed
delays. In this paper, by adopting the analysis techniques used
in [21] and [45], we can effectively solve the difficulty
caused by the existence of time delays, including distributed
delays. Undeniably, the finite-time synchronization analysis
techniques in this paper are similar to those used in [12],
[47]–[50], and [52]. However, the controllers in this paper are
adaptive controllers, while the controllers in [12], [47]–[50],
and [52] were feedback controllers.

IV. NUMERICAL EXAMPLES
Next we provide some numerical simulations to verify the
theoretical results in Section 3.

Consider a delayed MNN model:

ẋj(t) = −dj(xj(t))xj(t)+
2∑

k=1

ajk (xj(t))fk (xk (t))

+

2∑
k=1

bjk (xj(t))fk (xk (t − τk (t)))+ Ij

+

2∑
k=1

cjk (xj(t))
∫ t

t−ρk (t)
fk (xk (s))ds, j=1, 2, (18)

where

d1(x1(t)) =

{
0.9, |x1(t)| ≤ 1.2,
1.1, |x1(t)| > 1.2,

d2(x2(t)) =

{
1.1, |x1(t)| ≤ 1.2,
0.9, |x1(t)| > 1.2,

a11(x1(t)) =

{
−0.5, |x1(t)| ≤ 1.2,
−0.6, |x1(t)| > 1.2,

a12(x1(t)) =

{
3, |x1(t)| ≤ 1.2,
3.2, |x1(t)| > 1.2,

a21(x2(t)) =

{
5, |x2(t)| ≤ 1.2,
5.1, |x2(t)| > 1.2,

a22(x2(t)) =

{
−0.5, |x2(t)| ≤ 1.2,
−0.4, |x2(t)| > 1.2,

b11(x1(t)) =

{
−0.1, |x1(t)| ≤ 1.2,
−0.2, |x1(t)| > 1.2,

b12(x1(t)) =

{
5, |x1(t)| ≤ 1.2,
5.2, |x1(t)| > 1.2,

b21(x2(t)) =

{
3, |x2(t)| ≤ 1.2,
3.1, |x2(t)| > 1.2,

b22(x2(t)) =

{
−0.1, |x2(t)| ≤ 1.2,
−0.2, |x2(t)| > 1.2,

c11(x1(t)) =

{
−0.4, |x1(t)| ≤ 1.2,
−0.2, |x1(t)| > 1.2,

c12(x1(t)) =

{
0.5, |x1(t)| ≤ 1.2,
0.5, |x1(t)| > 1.2,

c21(x2(t)) =

{
0.7, |x2(t)| ≤ 1.2,
0.2, |x2(t)| > 1.2,

c22(x2(t)) =

{
−0.4, |x2(t)| ≤ 1.2,
−0.5, |x2(t)| > 1.2.

Let f1(v) = f2(v) =
|v+1|−|v−1|

2 , I1 = sint, I2 = cost , τ1(t) =
τ2(t) = et

1+et and ρ1(t) = ρ2(t) = 1 + sint , we can get that
M1 = M2 = 1, τ1 = τ2 = 1, ρ1 = ρ2 = 2, τ = 2. The
initial condition of MNN (18) is x1(s) = −0.5, x2(s) = 1.2,
s ∈ [−2, 0].
This is the corresponding response system:

ẏj(t) = −dj(yj(t))yj(t)+
2∑

k=1

ajk (yj(t))fk (yk (t))

+

2∑
k=1

bjk (yj(t))fk (yk (t − τk (t)))+ Ij

+

2∑
k=1

cjk (yj(t))
∫ t

t−ρk (t)
fk (yk (s))ds+uj(t), j=1, 2.

(19)

Let the initial condition of MNN (19) be y1(s) = 0.7,
y2(s) = 0.4, s ∈ [−2, 0]. The synchronization errors are
defined as ej(t) = yj(t) − xj(t − δ), j = 1, 2, here δ = 1.
Fig.2 shows the evolutions of the synchronization errors e1(t)
and e2(t) when u1(t) = u2(t) = 0.

FIGURE 2. Evolutions of the synchronization errors when
u1(t) = u2(t) = 0.

According to Theorem 1, we choose αj = 1, βj = 1,
ξj(0) = 0, ηj(0) = 0, j = 1, 2, then MNNs (18) and (19)
can realize asymptotic lag synchronization under
the controller (12). Fig.3 illustrates the corresponding
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FIGURE 3. Evolutions of the synchronization errors under controller (12).

FIGURE 4. Evolutions of x1 and y1 under controller (12).

FIGURE 5. Evolutions of x2 and y2 under controller (12).

synchronization errors, and Fig.4 and Fig.5 present the
evolutions of x1 and y1, x2 and y2. The evolutions of the
control gains of controller (12) are given in Fig.6 and Fig.7
respectively.
Remark 7: In Fig.2, the synchronization errors when

uj(t) = 0, j = 1, 2 are not equal to zero obviously, that means
MNNs (18) and (19) have not achieved lag synchronization.
In Fig.3, the synchronization errors between MNNs (18) and
(19) under controller (12) tend to zero within t = 3, that
means MNNs (18) and (19) have achieved lag synchroniza-
tion. Fig.4 and Fig.5 show that MNNs (18) and (19) have

FIGURE 6. Evolutions of ξ1(t) and ξ2(t) in controller (12).

FIGURE 7. Evolutions of η1(t) and η2(t) in controller (12).

realized lag synchronization with a lag time δ = 1. Fig.6 and
Fig.7 illustrate that ξj(t) and ηj(t) tend to some small con-
stants when t > 2.
Remark 8: Although some system parameters in MNNs

(18) and (19) are quite large, one can see from Fig.6 and
Fig.7 that the control gains are always very small, which fully
illustrates the advantage of the proposed adaptive controllers.
In [29], [32], adaptive control has also been utilized to deal
with the lag synchronization of delayed MNNs. However,
the evolutions of the control gains were not provided in the
Numerical Simulations of [29], [32].

V. CONCLUSION
This paper discusses the adaptive lag synchronization control
of MNNs with mixed delays. By adopting a series of suitable
adaptive feedback controllers, we prove that the considered
MNNs can achieve asymptotic lag synchronization, exponen-
tial lag synchronization and finite-time lag synchronization,
respectively. Adaptive control can avoid the large control
gains perfectly, and adaptive control can be applied even
when the system parameters are unknown. What is more,
no excessive calculation is needed to determine the desirable
control gains. We also provide some numerical simulations to
illustrate the validity of our theoretical results. In the future,
we will consider the applications of MNNs in the fields of
image encryption and optimal computation.
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