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ABSTRACT Effective texture classification requires image descriptors capable of efficiently detecting,
extracting, and describing the most relevant information in the images, so that, for instance, different texture
classes can be distinguished despite image distortions such as varying illuminations, viewpoints, scales, and
rotations. Designing such an image descriptor is a challenging task that typically involves the intervention
of human experts. In this paper, a general method to automatically design effective image descriptors is
proposed. Our method is based on grammatical evolution and, using a set of example images from a texture
classification problem and a classification algorithm as inputs, generates problem-adapted image descriptors
that achieve very competitive classification results. Our method is tested on five well-known texture data
sets with different number of classes and image distortions to prove its effectiveness and robustness. Our
classification results are statistically compared against those obtained by means of six popular hand-crafted
texture descriptors in the state of the art. This statistical analysis shows that our evolutionarily designed
descriptors outperform most of those designed by human experts.

INDEX TERMS Image texture analysis, image classification, classification algorithms, genetic
programming, evolutionary computation.

I. INTRODUCTION
Computer Vision (CV) applications frequently deal with
visual features known as textures; these may be present in
images as natural or human-made objects, such as clouds,
sand, mosaic, carpet, etc. Basically, a texture is a property of
a region which can be easily recognized by a human through
visual inspection. However, from the point of view of digital
image processing there is not a generally accepted formal def-
inition of texture [42]. According to some authors [55], [61],
there are two main approaches to defining texture. Under the
Structural approach, texture is a set of primitives, often called
texels or textons, arranged in some regular or repeated spatial
relationship. According to the Statistical approach, texture is
a quantitative measure computed from the gray-level inten-
sities of an image. While the first approach may describe
well some human-made textures, the second approach ismore
general, computationally efficient, and is used more often in
practice. Dealing with textures is a challenging task; several

techniques have been proposed to deal with texture-related
problems, such as searching for anomalies in a specific tex-
ture, splitting an image into different regions, and recogniz-
ing what a region represents based on examples of labeled
textures [51]. In this work, we discuss this latter problem,
known as texture classification.

Solving texture classification problems involves solving
classification tasks mainly defined around three spaces [8]:
• The Pattern Space, with dimensionality R, consists of

digital images captured from the real world.
• The Feature Space, an intermediate space, consists of

simpler abstractions of the elements in the Pattern Space,
and usually it has a dimensionality N � R; such dimen-
sionality reduction may result from selecting the most rep-
resentative characteristics of images to construct a feature
vector.
• The Classification Space, with dimensionality K

(number of classes in the problem), is generated by means
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of a classification algorithm that produces a partition of the
feature space.

Although classifiers partitioning the feature space can be
based on different approaches (such as mathematical, statisti-
cal, neural-inspired, etc.), the No-Free-Lunch Theorem states
that no single classification algorithm can achieve the top
performance on every problem [29], [62]. This implies that
the definition of the feature space may play an important role,
affecting a classifier’s performance for a specific problem.
Unfortunately, it is not always clear which features should be
used to form the feature space. It is desirable that features
simultaneously be discriminative and robust (offering invari-
ance to image distortions such as changes in illumination,
viewpoint, rotation, etc.), but this is not easy to achieve.
Thus, the motivation behind the present study is to develop
a methodology for automatic feature extraction.

Texture descriptors have been specifically designed to per-
form the feature extraction process, detecting the visual char-
acteristics of textures and allowing their classification [5].
The design of said descriptors is a subject of ongoing
research, given that there is no single descriptor capable of
representing all types of textures effectively and robustly.

Currently, there is a growing trend towards the develop-
ment of preprocessing and transforming data methods to
enhance pattern representation and to improve pattern clas-
sification [15], [57]. Several of these methods avoid the
intervention of human experts to some degree; these can
use neural network-based approaches such as in the Deep
Learning (DL) [31] paradigm, or optimization methods such
as Genetic Programming (GP) [38] and Grammatical Evolu-
tion (GE) [52], among others. The DL approaches have been
successfully applied to extract machine-learned features for
image classification problems (e.g. object recognition) [15],
but recent studies show that texture classification with hand-
crafted descriptors, such as Local Binary Patterns (LBP)
and Haralick’s texture descriptors can equal or surpass the
performance of DL approaches [12], [13], [19], [39]. Simpler
descriptors signify lower computational costs than highly-
dense-connected neural networks; besides, DL approaches
also require a considerably large number of examples for their
training.

Regarding optimization methods, stochastic search and
machine learning algorithms are typically used in combina-
tion in order to improve classification performance by means
of identifying optimum feature subsets, from a given set of
features proposed by human experts. In this case, the specific
classification algorithm is involved as part of the optimization
function used to drive the optimization process [10], [48].
A recent proposal consists in combining several primitive
operators through GP and Multi-Objective GP (MOGP) to
artificially synthesize image descriptors capable of deal-
ing with tasks such as object recognition [49], [50], object
detection [23], and interest point detection [43], [44], [60].
MOGP algorithms have also been used to generate holis-
tic descriptors for scene recognition problems [40], [54].
In contrast to the numerous efforts devoted to generating

image descriptors for object and scene recognition, there are
considerably fewer works proposing the use of GP algorithms
for texture classification [2]–[5], [37].

The main contribution of this work is a GE-based method-
ology that automatically generates texture descriptors opti-
mized for a given classification problem while only requiring
as inputs the texture classification problem and a specific
classification algorithm. During the evolutionary process,
candidate texture descriptors that detect and extract fea-
tures of the texture images are generated and evaluated. The
extracted features are contained in a histogram-based feature
vector, which is a simple, fast to calculate, and commonly
used texture representation [21]. The output of our proposed
methodology is a problem-adapted texture descriptor gen-
erated without prior knowledge of the dataset and without
involving a human expert, but evolved to favor classification
performance on the given problem.

The rest of this paper is organized as follows. Section II
describes the proposed methodology and related concepts.
Section III contains the experimental design, the datasets
description and parameter settings. Experimental results are
reported and discussed in Section IV. Finally, our conclusion
and directions for future work are offered in Section V.

II. PROPOSED METHODOLOGY AND CONCEPTS
In general, an adequate feature representation, or feature set,
is essential to achieving high performance in a classification
task. However, it is often not easy to determine the most
suitable feature set for a given problem. A common practice is
to use state-of-the-art texture descriptors that have been tested
in similar kinds of problems, but there is no guarantee that
such descriptors will work well on the new texture problems.
Besides, it may be necessary to identify the appropriate clas-
sifier to deal with the proposed feature space.

The purpose of our proposed methodology is to automati-
cally generate problem-adapted texture descriptors guided by
the classification performance on said problem. The evolved
descriptors detect and exalt texture features represented as a
histogram-based feature vector, thus achieving a significant
dimensionality reduction, from the total number of pixels in
an image to a feature space of only 2b dimensions, where b is
the image’s color-depth.

The advantage of our methodology is that it enables the
automatic design of texture descriptors without requiring
prior knowledge of the particular texture problem, thus dis-
pensing with a human expert. Additionally, our methodology
is implemented under a modular design, producing a fea-
ture extractor that is not attached to any particular classifier
(similar strategies are followed in [2]–[4], [43], [44], [49],
and [50]). Fig. 1 shows a diagram of our proposed methodol-
ogy, where one can observe that the descriptor is generated as
a program, defined by an ad-hoc language. This methodology
is based on Grammatical Evolution (GE, Section II-A). The
required inputs are: a sample set of texture images from
the classification problem and a classifier (gray elements
in Fig. 1).
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FIGURE 1. Methodology for automatic design of texture descriptors.

By means of GE (represented by the dotted rectangle),
our proposal generates a problem-adapted texture descriptor
(black element in Fig. 1). The following sections describe in
detail each of the elements required by our proposal.

A. GRAMMATICAL EVOLUTION
Grammatical Evolution (GE) [52], a grammar-based form of
Genetic Programming (GP) [38], automatically creates syn-
tactically correct programs, according to a language related
to the kind of problem at hand. The GE is built around three
main elements [58]: a Context-Free Grammar in Backus-
Naur Form (CFG-BNF, Section II-B) as a way to represent
programs; a Search Engine (Section II-C) to explore the pro-
gram space looking for the optimal program; and a Mapping
Process (MP, Section II-D) to ‘derive’ or decode programs.
The quality of each program is evaluated bymeans of a fitness
function (Section II-E).

Several variants of GE have been proposed, according to
the search engine that is employed. In this work, the Differ-
ential Evolution Algorithm is used as the search engine; this
configuration is known as Grammatical Differential Evolu-
tion [45] (GDE). GDE achieves a more compact represen-
tation of solutions, compared to the original GE technique
that employs a Genetic Algorithm as search engine. This is
because GDE can handle real values instead of only binary
ones. GDE also has fewer parameters than the original GE
and Grammatical Swarm [47] (which uses Particle Swarm
Optimization as search engine).

The GDE workflow in this work is as follows. First,
a population of candidate descriptors is created and initial-
ized, with each candidate descriptor being represented by an
n-dimensional vector of real values called codons; this vector
is a descriptor’s genotypic-form, which is transformed into
its phenotypic-form (or functional form) by means of the
CFG-BNF and an MP. Once the phenotypic-form of a can-
didate descriptor has been obtained, its quality (performance
on the given problem) is measured through the fitness func-
tion. Then the DE module applies different evolutionary
operators (mutation, crossover and selection) on the popula-
tion of descriptors with the objective of eventually produc-
ing a descriptor that solves the texture problem optimally.

The process produces a new population and the cycle is
repeated until one or more stopping criteria are satisfied.

B. CONTEXT-FREE GRAMMAR IN B-N FORM
AContext-Free Grammar in Backus-Naur Form is commonly
employed to define a language used to validate the syntax of
a program, but is also used in GE to design programs defined
by the rules in it [25]. A CFG-BNF is made up of the 4-tuple
{N , T , P, S}; where N is the set of Non-terminal symbols
that can be expanded into one or more Terminals and Non-
terminals; T is the set of Terminal symbols, i.e. the accepted
alphabet employed to generate valid programs; P represents
the set of Production rules that maps N → T , and S ∈ N
represents an initial symbol.

In this work, the proposed CFG-BNF provides the structure
of the language required to define texture descriptors. The
descriptors are generated using infix notation and these are
formed by the combination of primitive operators: High-
pass filters, Low-pass filters, Directional filters, Max-pooling
filters andArithmetic operators. These primitive operators are
described below.
High-Pass Filters: can highlight areas of greater variability

in an image. In our proposal, the Laplacian, Laplacian of
Gaussian, and Gaussian derivatives are used.
Low-Pass Filters: their purpose is to reduce the noise in

images by attenuating the high-frequency information. In this
work, the Gaussian, Average and Median filters are used.
Directional Filters: a Gabor Filter Bank (GFB) is a tech-

nique widely-used to analyze an image in its spatial and
frequency domains by applying a set of coordinated Gabor
filters [16]. In this work, GFBs composed of six Gabor fil-
ters each, are employed. The filters in a bank correspond to
different scales but the same orientation, as in [40] and [54].
Thus, a GFB applied to an image results in six convolved
images, one per filter; then the highest intensity value is
selected across them element-wise, producing a final image.
The configurations of the GFBs are shown in Table 1.

TABLE 1. Specific configurations of the Gabor filter bank.

Max-Pooling Filters: these filters return the maximum
value inside a given region of size n×n pixels. Their purpose
is to reduce the size of the representation (image size) while
preserving the most relevant information [17], [53]. In this
work, theMax-pooling filter is applied with different window
sizes and a stride = 2. If needed (e.g. to allow all operations
to be performed on images of the same size), the images are
re-scaled by bilinear interpolation [54].
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In addition to the use of image filters, basic arithmetic
operations between primitive operators are employed during
the evolutionary process that allow the generation of texture
descriptors capable of extracting multiple low-level features
from the images. Also, histogram equalization is used for
contrast adjustment, and intensity scaling (multiply an image
by 0.5 element-wise) is used for brightness adjustment.

The design of the CFN-BNF, made up by the 4-tuple
{N , T , P, S}, is discussed below. Notice that throughout these
sets of symbols and production rules, the closure property is
satisfied: every operator and function returns an image that
can become the input to any other operator or function.

The set of Non-terminal symbols (N ) can be seen as a
categorization of the primitive operators:

N = {〈Start〉, 〈MP〉, 〈Expr〉, 〈Filter〉, 〈Gau〉,

〈Lap〉, 〈GFP〉, 〈Arith〉, 〈op〉, 〈Terminal〉}

The set of Terminal symbols (T ) includes all the symbols
accepted for the generation of a valid texture descriptor:

T = {MP2,MP4,MP6,MP8,MP10,Gau1,Gau2,

GauDX ,GauDY ,Lap,LapG1,LapG2,GFB0,

GFB45,GFB90,GFB135,AverF,MedF,HEq,

AbsV , Sqr, Sqrt,Log,T0.5, Ig,+,−, a−, ∗, /, (, )}

A description of each terminal symbol and the parameters
setting for each primitive operator is shown in Table 2.

The production rules (P) are defined as follows:

P = {〈Start〉 ::= 〈MP〉 (〈Expr〉)

〈MP〉 ::= MP2 |MP4|MP6 |MP8|MP10

〈Expr〉 ::= (〈Expr〉〈Op〉〈Expr〉) |

〈Filter〉 (〈Expr〉) |〈Terminal〉

〈Filter〉 ::= 〈Gau〉 |〈Lap〉| 〈GFB〉|〈Arith〉

〈Gau〉 ::= Gau1|Gau2 |GauDX |GauDY

〈Lap〉 ::= LapG1 |LapG2|Lap

〈GFB〉 ::= GFB0 |GFB45|GFB90|GFB135

〈Arith〉 ::= AverF |MedianF |HEq|

AbsV |Sqr| Sqrt |Log|T0.5

〈Op〉 ::= + |−| a− |∗| /

〈Terminal〉 ::= Ig}

where there are Nr production rules that can be applied for
each Non-terminal. These rules are separated by a ‘‘|’’ (OR)
symbol and are enumerated from 0 to Nr − 1. Finally, the
initial symbol, S, is defined as 〈Start〉.

C. DIFFERENTIAL EVOLUTION SEARCH ENGINE
Differential Evolution is used in this work as a Search Engine
because it can be easily applied to a wide variety of prob-
lems with continuous variables and often shows better results
than a Genetic Algorithm and other evolutionary algorithms.
In addition, the DE parameters do not require the same fine

TABLE 2. Terminal symbols and parameters of the primitive operators.

tuning which is necessary for many other evolutionary algo-
rithms [34], [63]. Although there are several variants of DE,
this proposal is based on the DE/rand/1/bin scheme [59].
A detailed explanation follows.

At the start of the DE algorithm, a population P formed by
NP individuals of size L is uniformly and randomly generated
across the search space and evaluated using a fitness function.
For each individual (referred to as a target vector) in P,
a ‘mutant vector’ ω is generated using theMutation operation
defined in (1), where ε1, ε2, and ε3 are three different indi-
viduals randomly selected in the current generation (g), and
F ∈ (0, 2] is a constant factor that controls the amplification
of the differential variation.

ω = ε1 + F · (ε2 − ε3) (1)

Next, a trial vector γ is formed using the Crossover oper-
ation defined in (2), where indj indicates the j-th component
of the target vector, with j ∈ {1, . . . ,L}; r andj ∈ [0, 1) is a
uniform random number and Cr ∈ [0, 1] is a crossover rate.

γj =

{
ωj if randj ≤ Cr
indj otherwise

(2)

Finally, the Selection of the individuals that will form
the next generation (g + 1) is defined in (3), where f (·) is
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Algorithm 1: Differential Evolution

1 Require: NP, L, F , Cr – control parameters
2 Initialize Pg=0← {ind1, . . . , indNP}
3 Evaluate f (Pg)← {f (ind1), . . . , f (indNP)}
4 while (stopping criteria are not met) do
5 for each ind ∈ Pg do
6 Pg→ {ε1, ε2, ε3}
7 ω← Mutation (ε1, ε2, ε3,F)
8 γ ← Crossover (ω, ind,Cr )
9 Sind ← Selection (γ, ind)

10 end
11 g← g+ 1
12 Evaluate f (Pg)← {f (ind1), . . . , f (indNP)}
13 end
14 Return: Pg

a fitness function.

Sind =

{
γ if f (γ ) < f (ind)
indj otherwise

(3)

The process is repeated until one or more stopping criteria
are satisfied. A pseudocode of DE is shown in Algorithm1.

Once the evolutionary operators are applied, the resulting
vectors may contain non-integer values. These are rounded
and clamped within the adequate range (cf. [45]) before car-
rying out the Mapping Process, described below.

D. DEPTH-FIRST MAPPING PROCESS
A mapping process allows us to make a distinction between
the search space and the solution space; this is an important
aspect because it explains the use of different Search Engines
that operate only in the search space [46]. In this sense,
the candidate descriptors, referred to as ‘individuals’ in their
genotypic-form are evolved in an unconstrained evolutionary
search, without knowledge of their phenotypic equivalent but
knowing only their fitness values [52]. Different mappings
have been reported in the literature, such as Depth-First (the
canonical mapping in grammatical evolution), Breadth-First
and Position Independent Grammatical Evolution (πGE).
In this work, Depth-First is adopted because it is able to
generate larger tree structures more quickly than the other
mappings [46], implying a lower computational cost. In addi-
tion, it has been shown that Depth-First performs better than
Breadth-First and similarly to πGE [46].
TheDepth-First mapping process takes the genotypic-form

of an individual and the CFG-BNF to construct a derivation
tree by expanding all the left-most Non-terminal symbols
with a production rule selected by (4) [25],

Rule = Cv%Nr (4)

where Cv is a codon value which belongs to the individual,
Nr is the number of production rules available for the current
Non-terminal and % represents the modulus operator, which
ensures that Cv is mapped into the interval [0,Nr − 1].

The process is repeated until neither Non-terminal symbols,
nor codons, remain in the genotypic-form of an individual.

An example of the construction of a texture descriptor
is shown in Appendix. Note that during the evolutionary
process it is possible to generate texture descriptors that still
contain Non-terminal symbols, due to an insufficient number
of codons to expand them. In that case, those descriptors
are considered invalid and are discarded. An example of this
situation is also shown in Appendix.

E. FITNESS FUNCTION
Once the phenotypic-form of a candidate descriptor has been
obtained, it is necessary to quantify its quality, i.e. how well
it performs on the classification problem at hand. To achieve
this, a knowledge database is created from an image dataset
through a Feature Extraction Process that employs the candi-
date descriptor (Fig. 2).

FIGURE 2. Feature extraction process.

In the feature extraction process, a candidate descriptor is
applied to all images of a texture dataset in order to extract
their low-level features. Then, a histogram-based feature vec-
tor h(v) is calculated for each image according to (5), where
I (i, j) is an 8-bit (most common color-depth) texture image
of size m × n pixels, fd is a candidate texture descriptor,
v ∈ {0, 1, . . . , 28−1}, and δ(0) = 1 and zero elsewhere.

h (v) =
m∑
i=1

n∑
j=1

δ (fd (I (i, j))− v) (5)

After this, all histogram-based feature vectors are labeled
according to their texture class and recorded in a knowledge
database.

An example of the application of a generated texture
descriptor to a texture image is illustrated in Fig. 3. The
texture descriptor is MP2((Ig/Gau1(LapG2(Ig)))), and the
operations applied step by step are listed in Fig. 3, top to
bottom and then left to right. In the final step (labelled
‘‘6.-Histogram’’), a histogram-based feature vector is com-
puted using (5).

The knowledge database is then classified under a cross-
validation scheme and an average classification error-rate is
computed, which becomes the fitness value of the candidate
texture descriptor. The fitness value is obtained using (6),
where Er ∈ [0, 1] is the classification error rate, obtained
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FIGURE 3. Example of operations applied step-by-step. The contrast of
the images in this figure has been exaggerated for clarity.

by subtracting from 1 the average of the accuracies (acci) of
a given classifier using K -folds cross-validation [27].

Er = 1−

(∑K
i=1 Classifier [acci]

K

)
(6)

This concludes the explanation of the process for comput-
ing the fitness value of a candidate texture descripto.

III. EXPERIMENTAL SETUP
This section describes the experimental setup followed in
this work to test the effectiveness of our proposed method,
including the texture datasets and parameter settings.

A. DATASETS
Five well-known texture datasets [35] used in the literature
are employed. A concise description of these datasets is
provided below. Some examples of the texture datasets used
in this work are shown in Fig. 4.

The Kylberg texture dataset contains 28 classes of textur-
ized surfaces, such as fabrics, grains, sesame seeds, stone,
lentils, etc. as images of size 576×576 pixels. Despite its
large number of classes, it is one of the simplest datasets to
classify because as distortions it only includes rotations.

The UMD texture dataset comprises 25 classes of textures
such as fruits, plants, shelves of bottles, floors, buckets, etc. in
high- resolution images (1280×960 pixels) with distortions
including differences in illumination and viewpoint.

The UIUC dataset includes 25 classes of textures such as
gravel, wood, marble, fur, etc. as well as mixtures of them in
images of resolution 640×480 pixels. This dataset is probably
the most challenging one because the images show several
different distortions, such as rotations, viewpoint changes,
and differences in scale and illumination.

The KTH-TIPS dataset comprises 10 classes of different
texturized materials: sandpaper, crumpled aluminum foil,

FIGURE 4. Image examples from the datasets Used in this work.

linen, sponge, Styrofoam, cotton, corduroy, brown bread,
crackers and orange peel, in images of size 200×200 pixels
with changes in rotations, scale, and illumination.

The KTH-TIPS2b dataset is an extension of KTH-TIPS.
In the literature there are two versions of this dataset, one of
them with only 11 classes and another one with 44 classes.
In this work the latter version is used. Like KTH-TIPS,
the KTH-TIPS2b dataset contains different samples of mate-
rials with changes in rotations, scale, and illumination.

In our experiments, all the images in the different datasets
were transformed into gray-level images and resized to
512×512 pixels (the average of their original resolutions) in
order to use a standard resolution for processing them.

State-of-the-art results of Deep Learning and Evolutionary
approaches for classification of the datasets used in this work
are shown in Table 3. Said results constitute an overview
of the current techniques developed to solve the problem of
texture classification.

B. EXPERIMENTS
Experiments were performed to assess the quality of the
descriptors generated by means of our methodology. A sin-
gle experiment considers one texture dataset of the ones
listed above and one the following classifiers: Support Vec-
tor Machine (SVM), k-Nearest Neighbor (k-NN) and Naïve
Bayes (NB). To ensure the consistency of the experimental
results, each experiment is executed 31 times independently
and the best texture descriptor found each time is recorded.
Finally, the median classification performance and standard
deviation of the 31 best texture descriptors are reported as the
results for a particular pair of dataset and classifier.

To compare the effectiveness of our proposed method,
the texture descriptor corresponding to the median of
the 31 experiments described above is measured against
six hand-crafted texture descriptors, namely: Histogram
of Oriented Gradients (HOG) [24], Haralick’s Texture
Features (HTF) [33], Multifractal Spectrum (MFS) [28],
Daubechies-4 wavelet transform (Daub-4) [1], [56], Local
Binary Patterns (LBP) [39] and Gabor Filter Banks (GFB)
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TABLE 3. Classification results (%) of different state-of-the-art approaches (Mean ± Std. Deva).

[16]. In this comparison, the classification parameters are
kept constant and 10-fold cross-validation is used to obtain
the accuracy of each hand-crafted descriptor on each of the
texture datasets for each of the classifiers listed above.

C. PARAMETER SETTINGS
The configuration of the different algorithms involved in the
generation of problem-adapted texture descriptors is reported
in this section, including those parameters used in their evo-
lution and for the classifiers used in their evaluation.

1) EVOLUTIONARY PARAMETERS
As mentioned in Section II, during the evolutionary process
a population of individuals is transformed into candidate
texture descriptors that are evaluated on a texture dataset.
Since image processing can be very expensive, the number of
individuals used in the experiments is relatively small, to limit
the computational cost. The population’s size is NP = 100;
and each individual is formed by L = 100 codons with
values in the range [0→255]. The constant of differentiation
is F = 0.5 and the crossover rate is Cr = 0.8; these
values are suggested in [25]. The evolutionary process ends
if an individual with a Fitness Value = 0 is found, or if the
Maximum Number of Generations = 500 is reached.

2) CLASSIFIERS PARAMETERS
Since the proposed methodology creates a problem-adapted
texture descriptor guided by the performance of a specific
classifier, SVMs, k-NN and NB are used in order to show
that, independently of the classifier, the method is capable of
evolutionarily designing texture descriptors that can compete
with the performance of hand-crafted ones. The classifiers

are obtained from the Waikato Environment for Knowledge
Analysis (WEKA) software [32].

SVM hyper-parameters are usually determined in practice
by Grid Search [14], evolutionary algorithms [30] or com-
bining both techniques [41]. However, parameter tuning is
outside the scope of this work, and performing it for each
individual candidate descriptor generated during the evolu-
tionary process could become prohibitively expensive. For
these reasons, SVMs with fixed parameters are used.

Two SVMs, one with Linear Kernel and one with a Radial
Basis Function (RBF) Kernel are used with their default
parameters in WEKA (C = 1 and γ = 0.01); small values
of C and γ tend to produce smooth decision surfaces and
prevent overfitting [6]. The k-NN algorithm is tested with
k = 1, 3. The NB classifier is used with a Normal probability
distribution. Cross-validation is applied with K = 10 folds.

IV. RESULTS AND ANALYSIS
In this section, the results of the experiments are presented
and discussed, starting with the results of the evolutionary
process. Themedian and standard deviation of the best (under
10-fold cross-validation) fitness values over 31 independent
runs are shown in Table 4. The problem-adapted descriptors
whose performance is the median of the experiments are also
reported.

Notice that for all the experiments the order of the stan-
dard deviation is between 1E-4 and 1E-2; this shows a high
consistency in the descriptors designed by our method, in the
sense that their performance is very similar. With regards to
the operators of the problem-adapted image descriptors, it can
be seen that most are formed by the combination of low-pass
and high-pass filters that interact with each other via arith-
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TABLE 4. Median Fitness over 31 runs Using a Particular Classifier (Median ± Std. Dev)

metic operations, especially divisions. In every case, once the
features have been extracted, the Max-pooling operation is
applied to reduce the size of the representation, preserving the
most relevant information. In every instance the evolutionary
process preferred a window of size 2×2 for the Max-pooling
operation.

Interestingly, for the KTH-TIPS dataset, the problem-
adapted descriptors were the largest (according to the number
of primitive operators that these contain) regardless of the
classifier used in their evaluation. Additionally, in most cases
the evolutionary process led the design towards the use of
Gabor Filter Banks.

The performance (classification accuracy) of our Problem-
Adapted Image Descriptors (hereafter referred to as PAID
for brevity) is compared against that of hand-crafted texture
descriptors in Table 5 for each of the considered classifiers
(Linear SVM, Radial SVM, 1-NN, 3-NN and NB respec-
tively). The values in bold typeface represent the best classi-
fication accuracies on each dataset. The results in Table 5 are
summarized below.

Using Linear SVM: on the Kylberg dataset the PAID
methodology achieves a performance close to 100%, out-
performing all the other descriptors; on the UMD dataset
PAID is placed second, with similar performance to that
of LBP; on the UIUC database, PAID significantly outper-
forms all other descriptors; on KTH-TIPS dataset, only LBP
performs slightly better than PAID; finally, on KTH-TIPS2b,
PAID outperforms all other descriptors except for LBP.

Using Radial SVM: PAID achieves higher perfor-
mance than all other descriptors on all datasets except

for KTH-TIPS. However, its performance this time is lower
than that achieved using Linear SVM.

Using 1-NN: PAID, MFS and LBP obtain the top 3 results
on all datasets, with very similar performance relative to each
other. The only exception is on the KTH-TIPS2b dataset,
where GFB performs significantly better than all others.

Using 3-NN: on the Kylberg dataset PAID obtains the
highest performance, closely followed by LBP; on the UMD
and UIUC datasets the highest performance is obtained
by MFS, closely followed by PAID; on KTH-TIPS the high-
est performance is obtained by MFS, followed by LBP; on
KTH-TIPS2b the GFB is highest, and followed by LBP.

Using Naïve Bayes: PAID performs better than the other
descriptors on all datasets except for KTH-TIPS2b, where the
LBP descriptor outperforms all other descriptors.

A statistical analysis based on non-parametric statistical
tests is performed in order to provide statistical support to
the results shown in Table 5. This analysis is described
below. Notice that performing a similar comparison against
the results reproduced in Table 3 would be inadequate, since
those results come from a diversity of works that follow dif-
ferent experimental methodologies and experimental setups;
however, said results provide a general context against which
one can place and visualize the potential of our proposed
methodology.

A. STATISTICAL ANALYSIS OF THE RESULTS
Three non-parametric tests are conducted to determine the
existence of statistically significant differences between the
performances of the texture descriptors compared, based on
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TABLE 5. Classification accuracies (%) of seven texture descriptors (Median ± Std. Dev).

TABLE 6. Ranks of texture descriptors according to Friedman (F), Aligned Friedman (AF), and Quade (Q) Tests.

the results reported in Table 5. The non-parametric tests are:
Friedman (F), Aligned Friedman Ranks (AF), and Quade
(Q); these tests are commonly used when the assumption of
Normality in the data distributions cannot be guaranteed and
the sample size is small [26]. The tests are obtained from the
CONTROLTEST and the MULTIPLETEST packages [26].

The ranks computed by means of each non-parametric
test are reported in Table 6. Notice that the smallest rank
corresponds to the best-performing descriptor and so on. The
numbers in bold typeface indicate the best ranked descriptor
per column. Although the rank order varies depending on the
non-parametric test and the classifier, it can be observed that
PAID is consistently (in 4 out of 5 cases) ranked first under
the Quade test (which provides a more robust statistic than
the other tests because it takes into account the difficulty of
the problems [26]). PAID is also consistently (again in 4 out
of 5 cases) ranked first under the Friedman test. These results
support the consistency of our method.

The p-value for each non-parametric test is reported
in Table 7. These values indicate whether the hypothesis
test is statistically significant or not at confidence α = 0.05.

The null hypothesis states that all the data samples come
from distributions with equal means; p-values lower than the
confidence level support the alternative hypothesis: that one
or more of the correlated samples is statistically different.
From Table 7 it can be appreciated that there are statistically
significant differences; therefore, post-hoc tests for multiple
comparisons are conducted in order to discern which of the
pairs of compared texture descriptors show significant differ-
ences between them.

TABLE 7. p-values of non parametric tests.

The adjusted p-values computed through Holm’s proce-
dure are reported in Table 8 for all possible pairs of tex-
ture descriptors and grouped column-wise according to the
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TABLE 8. Adjusted p-Values according to Holm’s procedure for all pairs of descriptors.

specific classifier used. The values in bold typeface indicate
that there is enough statistical evidence to reject the null
hypothesis at confidence level α = 0.05. Considering these
results and the ranks in Table 6, it can be concluded that
our problem-adapted image descriptors are quite competitive
against the other descriptors considered, overcoming most
of them (HOG, HTF, Daub-4 and GFB) with statistically
significant differences and achieving equivalent performance
to those of LBP and MFS.

V. CONCLUSION
In this paper we proposed a GE approach to deal with tex-
ture classification problems in a general way, by automati-
cally designing problem-adapted image descriptors capable
of detecting and extracting relevant features from images.
The extracted features provide an effective representation that
favors performance, measured as classification accuracy.

The proposed methodology was tested on five different
texture datasets that present images with distortions such
as translations, rotations, differences in illumination and
scale. Three different classification algorithms (with differ-
ent parameters) were also employed to drive the evolution-
ary process and show that our methodology is successful,
independently of the classifier. Statistical analysis of the
results indicate that our descriptors outperform the HOG,
HTF, Daub-4, and GFB texture descriptors, with statistically
significant differences and achieve classification accuracies
that are on a par with those of MFS and LBP.

Thus, the ability of our method to generate relatively gen-
eral solutions for feature extraction and representation of
texture datasets was demonstrated. More importantly, this is
achieved without prior knowledge of the specific problems
and without human intervention.

As future work, the robustness of our method will be
investigated against more difficult textures datasets, e.g.
those involving a larger number of classes, other kinds of
image distortions and real-life texture images. Due to the
use of a grammar, it is possible to expand our design of the
CFG-BNF to easily add domain knowledge; this offers a great
possibility to continue experimenting with additional feature
detection filters as primitive operators, without having to alter
other components of our method. In addition, it would be
interesting to perform parameter optimization of the image
descriptors automatically designed by our method, expecting
improvements in the classification process.

APPENDIX
CONSTRUCTION OF A TEXTURE DESCRIPTOR
A Depth-First mapping process that takes an individual in
its genotypic-form and a CFG-BNF are used to construct a
derivation tree from which a functional program (a texture
descriptor) is subsequently extracted in its phenotypic-form.

To build the derivation tree in Fig. 5, the production rules P
(Section II-B) and the individual shown in (7) are required.
As mentioned in Section II-A, each value in the individual is
a codon value (Cv) and Nr is the number of rules available for
the current non-terminal symbol to be expanded.

individual = {233, 20, 88, 3, 78, 34, 67, 20, 35, 57} (7)

In this example, the first Cv is 233, and the initial symbol
to be expanded is 〈start〉, with Nr = 1 (see the produc-
tion rules P). The expansion order is indicated in Fig. 5,
by the numbers on the arrows between blocks. For instance:
1 (233%1=0), means that the expansion order is 1 and
(233%1=0) is the application of (4).
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FIGURE 5. Derivation tree of the depth-first mapping process.

In the first expansion, the result of (4) shows that 〈start〉
must be expanded using the production rule 0, in this case:
〈Maxpooling〉 (〈Expr〉) .

After the first derivation, the second codon value Cv = 20
is read and the left-most non-terminal symbol is selected to be
expanded, in this example: 〈Maxpooling〉, which has Nr = 5.
Applying (4) to expand this non-terminal symbol corresponds
to the operation: 20%5=0; this means that 〈Maxpooling〉
must be expanded using the production rule 0, in this case:
MP2, which is a terminal symbol.

For the third expansion, Cv = 88 and the left-most Non-
terminal symbol is 〈Expr〉with Nr = 3. Performing the oper-
ation 88%3=1; thus 〈Expr〉 is expanded using the production
rule 1, i.e. 〈Filter〉 (〈Expr〉) .
The mapping process continues in this manner, always

replacing the left-most non-terminal symbol through a pro-
duction rule available for that symbol in the CFB-BNF and
chosen based on a codon value. The process ends when all
non-terminal symbols are transformed into elements of the
terminal set T .

Finally, the proposed program (8), formed by the terminal
symbols (gray squares in Fig. 5), is parsed from the derivation
tree, and evaluated via the fitness function.

Solution = MP2(Log(Sqr(Ig))) (8)

A. INVALID TEXTURE DESCRIPTOR
If all the codon values of an individual are consumed and the
program still contains Non-terminal symbols, then the latter
is considered invalid. For instance, if the individual: {233, 20,
88, 3, 78, 34, 67, 20, 55, 57} was used to build a derivation
tree, the generated program (9) would still contain the non-
terminal symbols 〈lap〉 and 〈Expr〉; therefore, this solution
could not be evaluated by the fitness function.

Solution = MP2(Log(Sqr(〈lap〉 (〈Expr〉)))) (9)
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