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ABSTRACT We design, develop, and experimentally validate a complete integrated software/hardware
platform for airborne cognitive networking in both indoor and outdoor environments. We first present the
concept of all-spectrum cognitive networking and describe a distributed algorithm for maximizing network
spectral efficiency by jointly optimizing channel access code-waveforms and routes in a multi-hop network.
We then discuss system design parameters and implementation details for setting up a software-defined radio
(SDR) testbed that enables reconfigurability at the physical (PHY), medium-access control (MAC), and
network (NET) layers of the network protocol stack, either by a user or by means of autonomous decisions.
Our algorithmic developments toward spectrally-efficient cognitive networking are software optimized on
heterogeneous multi-core general-purpose processor-based SDR architectures by leveraging the design of a
novel software-radio framework that offers self-optimization and real-time adaptation capabilities at the
PHY, MAC, and NET layers of the network protocol stack. We verify our system design approach in
a large-scale testbed deployment of ten terrestrial and one airborne SDR platforms at the Stockbridge
Controllable Contested Environment at the Air Force Research Laboratory, Rome, NY, USA. Proof-of-
concept experimental results from both indoor and outdoor testbed deployments show that the proposed
system can be used to build all-spectrum cognitive networks that withstand intentional interference at PHY
and NET layers and can cognitively coexist with non-cross-layer optimized networks.

INDEX TERMS Cognitive radio, cross-layer design, distributed computing, dynamic routing, multi-core
processing, software-defined radio, waveform design.

I. INTRODUCTION
Future airborne networks will be defined by the resilience
to maintain wireless connectivity in dynamic communication
environments and the intelligence to adapt to varying traffic
loads, RF interference, and frequent network failures. The
design of airborne networks is challenged by rapidly chang-
ing network dynamics, limited energy and link-bandwidth

capacity between high/low-speed mobile wireless nodes that
are either geographically or hierarchically dispersed [1]–[3].
Existing design approaches rely on either channel/network
emulations [4]–[6] or implementation of layered wireless
network protocol architectures on off-the-shelf radio devices
[7], [8]. As a result, integration of autonomous radio recon-
figuration functionalities to unmanned aerial vehicle (UAV)
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platforms [9] and their evaluation in real-time remains quite
challenging.

Wireless links in UAVnetworks are subject to time-varying
quality due to high mobility, distance-dependent path loss,
interference, multi-path, and doppler effects among others.
Communication is fundamental to UAV networks. Contrary
to terrestrial networks, UAV wireless networks rely on dis-
tributed network protocol architectures that have both cog-
nitive coexistence and intra-network interference-avoidance
requirements [2]. Node mobility exposes UAV wireless links
to unpredictable interference levels that are time-varying
and location-dependent, therefore dynamic management of
link parameters is needed for being robust to network dis-
ruptions at any time and location. Continuously changing
channel and interference conditions entail new network layer
designs [9], where routes in multi-hop airborne networks
are jointly optimized with communication link parameters
at each hop. The requirements listed above are particularly
important for UAV swarms because network disruptions
may prevent the delivery of sensed data to the appropriate
processing nodes, lead to insufficient situational awareness
for effective in-field planning, and result in delayed/lost
command-and-control messages, thereby creating significant
deviation from the desired system behavior. At best, this
will increase the time and number of assets required to
complete a mission; at worst, it may result in mission fail-
ure. The ability to recover from the loss of communication
to any node is necessary to resilient operation of airborne
networks [3].

Airborne communication systems can significantly benefit
from the integration of cognitive radio (CR)-based resource
allocation schemes, which can further enhance spectrum uti-
lization efficiency and guarantee network connectivity when
airborne communication links are constrained or unavail-
able. A comprehensive survey regarding spectrum utiliza-
tion trends and CR in aeronautical communication systems
can be found in [10]. Spectrum occupancy measurements
show that certain parts of the radio spectrum, particularly
frequency bands allocated for air-to-ground communications,
remain underutilized [11], [12]. This is partly due to the
adoption of protocol architectures that rely on static resource
allocation. Additionally, inherent couplings between the
physical (PHY), medium-access control (MAC), and
network (NET) layers of the network protocol stack entail
dynamic control and management of shared networking
resources that vary in frequency, time, and space. Multi-
UAV mesh networks with information sharing and multi-
hop routing introduce additional communication overhead
and require new protocol designs to maximize network
throughput performance [9]. Consequently, self-optimized,
reconfigurable network protocol architectures that imple-
ment distributed, cross-layer optimized control decisions are
expected to satisfy the dynamic demands and complex cross-
layer interactions in future airborne mesh networks [13].

In this work we present, for the first time, a sys-
tematic analysis across the PHY, MAC, and NET layers

of the network protocol stack toward the implementation
and real-time validation of all-spectrum cognitive network-
ing [14] in a software-defined radio testbed. We consider
the development of an ‘‘elastic’’ testbed comprised of cross-
layer cognitively optimized links that are co-located with
static/baseline non-cognitively optimized links. The ‘‘elas-
tic’’ testbed consists of terrestrial and airborne integrated
software/hardware platforms. Cognitive links implement a
novel distributed approach for spectral efficiency maximiza-
tion by jointly designing channel-access waveforms that
span the entire available spectrum (all-spectrum channel-
ization) and selecting network routes under both intra- and
inter-network interference scenarios. We first identify system
design challenges regarding software, hardware, and base-
band processing requirements at PHY, MAC, and NET layers
to fulfill the needs of the proposed distributed algorithm
for cross-layer interactions and cognitive decision-making.
Additionally, we discuss signal processing details for the
implementation of the cognitive framework including frame
design, time and frequency synchronization, and code-
waveform optimization. The modular architecture of the pro-
posed platform allows us to abstractly define networking
protocols with (or without) cross-layer interactions in a high-
level description language and separate verification of upper-
layer networking functionalities and physical-layer designs.
Proof-of-concept experimental results from both indoor and
outdoor testbed deployments show that the proposed cogni-
tive platform can withstand intentional interference at PHY
and NET layers as well as enable cognitive coexistence with
non cross-layer optimized networks.

The development of the ‘‘elastic’’ testbed enables acceler-
ated design and validation of cross-layer optimized network
protocol solutions in realistic scenarios. Our main contribu-
tions can be summarized as follows:
• Cross-layer System-Level Analysis. We identify sys-
tem design challenges and requirements at PHY, MAC,
and NET layers for the implementation of all-spectrum
cognitive networking.

• Distributed Network Optimization.We propose com-
putationally efficient code-waveform optimization tech-
niques and distributed network control mechanisms to
handle real-time waveform and routing decisions at each
cognitive network node.

• Software-Radio Reconfigurable Framework. We
develop a complete integrated software/hardware
radio reconfigurable framework to enable the first
field deployment of all-spectrum cognitive network-
ing on a hybrid ground-air software-defined radio
testbed.

• Testbed Evaluation. We experimentally validate
all-spectrum cognitive networking in realistic testbed
scenarios (both indoor and outdoor) and show that cog-
nitively optimized network nodes can withstand both
PHY- and NET-layer interference and enable underlay
spectrum coexistence with non cross-layer optimized
network nodes.
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II. RELATED WORK
Cognitive radio has emerged as a promising technol-
ogy to improve spectrum utilization efficiency in wireless
networks [15]–[18] while cognitively networked UAVs
have attracted interest for public safety and next-generation
first-responder applications [19], [20]. Implementation of
cognitive decision making algorithms for optimal network
control yet remains quite challenging [21]. In this section,
we review state-of-the-art work in i) airborne cognitive
networking, ii) cognitive radio algorithms for (joint)
optimization of resource allocation parameters at either
one or multiple layers of the network protocol stack, and
iii) software-defined/cognitive radio testbeds.

A. AIRBORNE COGNITIVE NETWORKS
The need for cognitive spectrum sensing and sharing in
aeronautical communication networks is highlighted in [22].
Cognitive radio is proposed in [23] as a solution to meet
future UAV communication demands, particularly latency-
sensitive control and high-throughput sensor data. Work
in [24] proposes to use the position of a UAV as an addi-
tional degree of freedom to protect primary user trans-
missions in an underlay dynamic spectrum access scheme
[17]. A survey in energy-based spectrum sensing tech-
niques is studied in [25] for broadband VHF (B-VHF)
cognitive aeronautical communication systems. Cognitive
algorithms for LTE-A aerial base stations for public safety
applications are discussed in [26].

B. COGNITIVE RESOURCE ALLOCATION ALGORITHMS
All-spectrum cognitive networking in [14] proposes for the
first time in the literature, joint distributed power, code-
waveform, and route optimization in a cognitive multi-hop
network. Work in the field of all-spectrum channelization
considers the design of code-waveforms for secondary
(ad-hoc) wideband links that cooperate [27], or simply coex-
ist without any form of cooperation with primary (spectrum
licensees) wideband [28] and narrowband [29] stations in an
underlay fashion. Since the spectrum environment in a multi-
hop network varies in time and space, and interference to pri-
mary stations depends on the location of the cognitive nodes,
it is important to jointly and dynamically optimize PHY-layer
and routing functionalities at each network node. Transmit
power and spectrum sensing parameters are optimized in [30]
to minimize energy consumption in a cooperative-sensing-
based code-division multiple access (CDMA) cognitive
network.

Outside the framework of code-waveform based cognitive
channelization altogether, interesting work in the form of
joint beamforming and power allocation is reported in [31],
while multi-antenna cognitive beamforming and interference
avoidance algorithms are described in [32] and [33]. Hybrid
overlay/underlay CR transmission systems in [34] and [35]
efficiently exploit both unused and underutilized spectrum

through orthogonal-frequency-division-multiplexing (OFDM)
and multicarrier-CDMA.

An extensive overview of routing techniques for multi-
hop cognitive radio networks can be found in [36]. A dis-
tributed algorithm for joint routing and dynamic spectrum
allocation in unused spectrum bands (i.e. ‘‘white spaces’’) is
proposed in [37]. Distributed routing to reduce interference
to primary stations and minimize route delay is proposed
in [38], while [39] describes a route selection algorithm based
on location information and locally available spectrum access
opportunities at each node. Two classes of routing protocols
in [40] aim to reduce end-to-end latency and increase energy
efficiency and throughput based on cooperative routing and
spectrum aggregation techniques. On-demand based routing
in [41] is conducted based on clustering of nodes according
to spectrum availability, power, and node stability. Finally,
work in [42] describes a joint rate adaptation, channel assign-
ment, and routing approach to maximize network resource
utilization.

C. SOFTWARE-DEFINED/COGNITIVE RADIO TESTBEDS
Indoor testbed deployments in [43]–[45] describe hard-
ware and software requirements toward rapid evaluation of
CR protocols in real-world conditions with software-defined
radio (SDR) and Android OS devices. All-spectrum cogni-
tive channelization around wideband and narrowband pri-
mary stations is evaluated for the first time in an indoor
SDR testbed in [29]. Work in [46] describes an experi-
mental prototype for multi-antenna cognitive beamforming,
while over-the-air experiments in [47] and [48] evaluate
a hybrid overlay/underlay CR technique. Experimental work
for spectral coexistence in ‘‘white spaces’’ is presented
in [49], [50]. A software-defined CR prototype based on
off-the-shelf IEEE 802.11a/b/g wireless cards is developed
in [51]. A distributed algorithm for joint routing and dynamic
spectrum access in ‘‘white spaces’’ is implemented in SDRs
in [52], while [53] evaluates the algorithm in SDRs that
communicate with each other through a wireless network
emulation platform. Simulations and experiments on an
SDR testbed in [54] evaluate the performance of different
routing protocols for CR networks. Route selection schemes
based on reinforcement learning and spectrum leasing are
experimentally evaluated in an SDR testbed in [55].

In the following sections, we describe a reconfigurable
software/hardware framework that enables self-optimization
of protocol parameters across multiple layers of the network
protocol stack in response to dynamic conditions. Partic-
ularly, we discuss the requirements, design considerations,
and algorithmic developments towards the first field deploy-
ment and evaluation of all-spectrum cognitive networking in
a hybrid ground-air software-defined radio testbed. Finally,
we present proof-of-concept results that demonstrate cogni-
tive coexistence and interference avoidance, capabilities criti-
cal to satisfy the increasing throughput demands of unmanned
airborne networks while maintaining connectivity in dynamic
environments.
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FIGURE 1. The ‘‘elastic’’ network: cross-layer optimized cognitive links
(red-colored) are co-located with static/baseline links (blue-colored) that
implement a layered network protocol stack. Solid lines depict selected
routes from source s to destination d , while dashed lines depict
alternate routes.

III. SYSTEM OVERVIEW
In this section, we provide a system overview of the ‘‘elastic’’
network. More specifically, we present the PHY-layer signal
model for all-spectrum cognitive and static/baseline links,
reviewMAC- andNET-layer protocol functionalities and def-
initions, and describe the proposed cross-layer optimization
algorithm for code-waveform and routing adaptation.

A. SYSTEM MODEL
We consider an ‘‘elastic’’ network comprised of cogni-
tively cross-layer optimized wireless links that are co-located
with static/baseline, non-cognitively optimized wireless links
that implement a layered network protocol stack (Fig. 1).
Traffic flows for both networks are carried over multi-hop
routes and traffic demands consist of unicast sessions that
are characterized by a source node s and a destination
node d . Static/baseline network nodes have pre-assigned
unique code-waveforms and routes, while cognitive net-
work nodes jointly optimizemodulating code-waveforms and
selected routes in a continuous fashion on a hop-by-hop
basis.

1) PHYSICAL LAYER
We let (i, j) denote a wireless link and consider data frame
transmissions between transmitter i and receiver j. The data
frame is comprised of N information symbols that are drawn
from a complex constellationA and aremodulated by awave-
form ψij(t) of duration T . More specifically, the transmitted
signal for the link (i, j) can be written as

xij(t) ,
√
Ei

N−1∑
n=0

bi[n]ψij(t − nT )ej(2π fct+φi) (1)

where Ei > 0 denotes the transmitted energy per symbol,
bi[n] ∈ A is the n-th information symbol and φi is the carrier
phase related to carrier frequency fc at the i-th transmitter. The

modulating waveform for link (i, j) is given by

ψij(t) ,
L−1∑
l=0

sij[l]gTc (t − lTc) (2)

where sij[l] ∈
{
±1/
√
L
}
is the l-th bit of a length-L binary

code, and gTc (·) is a square-root-raised-cosine (SRRC) pulse
with roll-off factor α and duration Tc, so that symbol duration
T = LTc and bandwidth B = (1+ α)/Tc.
Transmitted signals are considered to propagate over

Rayleigh fading channels withM resolvable paths and expe-
rience multi-user interference and complex additive white
Gaussian noise (AWGN) at the receiver. Multipath fading
is modeled by a linear tapped-delay line with taps that are
spaced at intervals of Tc and are weighted by independent
fading coefficients. The received signal after carrier down-
conversion at fc+1fij at the j-th cognitive receiver is written
as

yij(t) ,
M−1∑
m=0

h̃ij[m]
N−1∑
n=0

bi[n]ψij(t − (m+ nL)Tc)

· e−j2π1fijt + i(t)+ z(t) (3)

where 1fij is the carrier frequency offset (CFO) due to
manufacturing imperfections between the local oscillators
of the i-th transmitter and j-th receiver and h̃ij[m] =√
Eihij[m]e−j(2π fcmTc−φi) denotes the complex baseband

channel coefficients for them-th path.We consider block flat-
fading channels, where

{
hij[m]

}M−1
m=0 are independent zero-

mean complex Gaussian random variables that model the
fading phenomena and are assumed to remain constant over a
coherence time interval Td = N ·T . Additive white Gaussian
noise and interference from co-located baseline and cognitive
transmitters is denoted by z(t) and i(t), respectively.

2) MEDIUM ACCESS CONTROL LAYER
Both baseline and cognitive networks implement
a CDMA-based random access MAC protocol, whereby a
network node accesses the channel as soon as there are
packets in its queue. However, non-zero cross-correlation
between different code-waveforms at co-located wireless
links may result in multiple-access interference (MAI).
Additionally, channelization of the available bandwidth may
be different at each hop in a multi-hop path, while at the
same time network traffic dynamics and routing of traffic
flows may frequently change. Therefore, controlling the
interaction between routing and code-waveform design at the
physical/link layer is of fundamental importance.

3) NETWORK LAYER
We consider that each network node maintains a separate
queue for each session d for which it is either a source or an
intermediate node. The queue size at the i-th network node is
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updated as follows

Qdi (t + 1) ,

Qdi (t)+ ∑
k,k 6=i

Rdki(t)−
∑
j,j6=i

Rdij(t)+ µ
d
i (t)

+
(4)

where Qdi (t) is the number of queued frames of session d
waiting for transmission, µdi (t) is the endogenous traffic
arrival rate of session d , and Rdij(t) is the transmission rate
(in packets/s) on link (i, j) for session d at time t .

B. CROSS-LAYER COGNITIVE ADAPTATION
1) CENTRALIZED APPROACH
Ideally, at each hop of the cognitive network, a network-
throughput optimal controller, for each decision period,
should maximize a weighted-sum of differential backlogs∑

i

∑
j6=i

Cij(sij,Ei) ·1Qij(t) (5)

where 1Qij(t) , maxd
[
Qdi (t)− Q

d
j (t)

]+
and the optimal

weights are given by the link data rates

Rdij(t) ,

{
Cij(sij,Ei), if d = d∗ij (t)

0, otherwise
(6)

where Cij , B log2
(
1+ SINRij

)
is the channel capacity

for bandwidth B and an instantaneous value of SINRij and
d∗ij (t) = argmaxd {Qdi (t)− Q

d
j (t)}.

The objective function in (5) is defined based on the
principle of dynamic back-pressure, first introduced in [56],
and provably achieves optimal network throughput by jointly
optimizing resources at the physical/link and routing lay-
ers [57]. However, in practice, real-time implementation of
the above ideal throughput-optimal resource allocation policy
requires global knowledge of all feasible resource allocations
as well as a centralized algorithm to solve a non-linear prob-
lem [14] in a time-slot basis.

2) DISTRIBUTED/UNCOORDINATED ALGORITHM
In this work, we propose to implement a distributed algo-
rithm for joint waveform and route adaptation that aims
to maximize aggregate network throughput based on real-
time distributed decisions that are driven by locally collected
information at the cognitive network nodes [14]. Assum-
ing fixed network topology and transmit energy Ei, the
i-th backlogged node first maximizes a local utility function
Uij = Cij ·1Q′ij(t), where

1Q′ij(t)

,

{∑
d Q

d
i (t)−

∑
d Q

d
j (t), if

∑
d Q

d
i (t) 6=

∑
d Q

d
j (t)

1, otherwise
(7)

over all feasible next hops j by optimizing modulating wave-
forms sij based on locally collected spectrum information.

FIGURE 2. Pseudocode for the cognitive code-waveform and routing
algorithm.

Then, each node will access the channel by selecting the
waveform that optimizes its local utility. Particularly, the
i-th backlogged node, at each decision period, implements the
following algorithm:
1) Find the set of feasible next hops for each session d that

are neighbors to node i.
2) Maximize link-capacity Cij by optimizing code-

waveforms sij for each of the feasible next hops.
3) Select as next hop j∗ the one with maximal utility Uij.
The algorithm returns the selected next hop j∗ accord-

ing to the queue size and capacity information reflected in
the utility function Uij. The optimization is carried out at
each successive next hop to form a multi-hop path termi-
nating at the destination. Fig. 2 depicts the steps of the
distributed algorithm. Low computational complexity algo-
rithms for solving the waveform optimization problem in
the second step of the algorithm are proposed in section IV-D.
At the last step of the algorithm, each cognitive network
(source or intermediate) node calculates utility values Uij for
all candidate hops and selects the hop with maximum utility.

IV. SYSTEM DESIGN CONSIDERATIONS
In this section, we describe the system design considerations
and challenges related to the implementation and deployment
of the proposed distributed algorithm in a software-defined
radio testbed. Specifically, we summarize our developments
with respect to modulation and error-correction encoding
schemes, frame detection and synchronization, maximum-
SINR filtering, code-waveform optimization, medium access
control, network, and application layer protocols.

A. MODULATION & ERROR CORRECTION ENCODING
Both networks may utilize phase-shift-keying (PSK) and
quadrature-amplitude-modulation (QAM) schemes, such as
BPSK, 4/8/16/32/64-PSK/QAM and select convolutional
error-correcting codes that are punctured according to the
coding rate.

B. FRAME DETECTION & SYNCHRONIZATION
The byte format of the transmitted data frame is depicted
in Fig. 3. Data frames are prefixed with NET-layer
headers that contain source, next hop, and destination
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FIGURE 3. Data frame structure.

TABLE 1. Data frame parameters.

MAC addresses, as well as a frame number. Subsequently,
the frames are appended with a 32-bit cyclic-redundancy
check (CRC) for error detection and a repetitive pattern
of 4-bytes that contain information regarding the whitener
offset and frame length. Whitener offset information is
utilized by a randomizer block at the PHY layer to
XOR payload bytes with a pseudo-noise (PN) sequence
to evenly distribute power across the available bandwidth.
Finally, at the PHY layer, each payload data frame is
appended with a randomly-generated access code train-
ing sequence unique to each (i, j)-th link (used for fine
time-synchronization and channel estimation), a guard-band
interval, and a frame synchronization/detection sequence.
Table 1 presents the PHY-layer parameters of the data link.
We utilize a synchronization/detection sequence based on

chirp sequence keying (CSK) that is known at the receiver
a priori. Chirp sequences are selected due to their superior
correlation characteristics in low SINR and multipath envi-
ronments [58], [59]. We generate frame detection sequences
consisting of four sub-chirps [59]. Every sub-chirp is a fre-
quency ramp with either increasing (up-chirp) or decreasing
(down-chirp) frequency in the upper or lower sideband of the
channel. Table 2 depicts the chirp synchronization sequence
parameters.

1) PRESENCE OF A FRAME
The beginning of a data frame is detected if the peak value of
the normalized cross-correlation between the received signal
and the chirp synchronization sequence exceeds a prede-
fined threshold value. Fig. 4 illustrates the sub-chirp pattern

TABLE 2. Chirp synchronization sequence parameters.

for link (i, j) and the output of the frame correlator with
the chirp synchronization sequence from over-the-air indoor
SDR measurements. After acquiring the beginning of a data
frame, the received signal (which includes access code and
payload samples) is pulse-matched filtered, sampled over the
multipath-extended duration of (NL +M − 1)Tc seconds

yij[n] , yij(kTc), k = nL, . . . , (nL + LM − 1),

for n = 0, . . . ,N − 1. (8)

with LM , L +M − 1. In the rest of this section we consider
frequency synchronized radio transceivers, thus 1fij is con-
sidered to be negligible. The chirp synchronization sequence
alone cannot accurately determine timing. Therefore, upon
the detection of a frame synchronization peak, fine synchro-
nization at the waveform-level is done as a separate step. Fine
timing synchronization is performed with a matched filter
that cross-correlates the received symbols with the access
code training sequence unique to each link and known at the
receiver a priori. The same access code sequence is used to
estimate multipath channel coefficients.

2) ABSENCE OF A FRAME
If we do not detect a distinct peak at the output of the frame
correlator, we assume that the received signal contains only

FIGURE 4. Received data frame (top). Normalized cross-correlation of the
received data frame with the chirp synchronization sequence (bottom).
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noise and interference (‘‘disturbance’’). Disturbance samples
as measured at the j-th receiver node are similarly pulse-
matched filtered and sampled over the multipath-extended
duration of (NL +M − 1)Tc seconds

d[n] , i(kTc)+ z(kTc)

= i[n]+ z[n], k = nL, . . . , (nL + LM − 1) (9)

where i[n] ∈ CLM models colored interference with autocor-
relation matrix RI , E{i[n]iH [n]} ∈ CLM×LM and z[n] ∈
CLM denotes zero-mean AWGN with covariance σ 2ILM . The
autocorrelation matrix of d[n] is defined as

RI+N , E
{
d[n]dH [n]

}
= RI + σ

2ILM . (10)

In practice, we use d[n] to recursively update an estimate of
the inverse autocorrelation matrix R̂−1I+N as

R̂−1I+N[n]

,
1
β

[
R̂I+N[n−1]−

R̂−1I+N[n−1]d[n]d
H [n]R̂I+N[n−1]

β+dH [n]R̂−1I+N[n−1]d[n]

]
(11)

where R̂−1I+N[0] = cILM , c � 1 and β ∈ [0, 1] denotes a
‘‘forgetting factor’’.

C. MAXIMUM SINR FILTERING & BIT RECOVERY
The received baseband signal vector in (8) can be rewritten
as

yij[n] = Hijsijbi[n]+ d[n], n = 0, · · · ,N − 1 (12)

where Hij is the multipath channel fading matrix between
transmitter i and receiver j given by

Hij ,
M−1∑
m=0

h̃ij[m]

 0m×L
IL×L
0(M−m−1)×L

 ∈ CLM×L . (13)

Assuming knowledge of the true autocorrelation matrixRI+N
and multipath channel coefficients Hij, the linear filter at the
receiver that exhibits maximum output SINR [60] is given by

wmax−SINR(sij) ,
R−1I+NHijsij

sTijH
H
ij R
−1
I+NHijsij

(14)

and will attain an SINR at the output of the filter equal to

SINRij(sij) , sTijH
H
ij R
−1
I+NHijsij = sTijPijsij (15)

where Pij , HH
ij R
−1
I+NHij � 0. We utilize the knowl-

edge of access code training symbols at the receiver to esti-
mate the SINR at the output of the maximum-SINR filter.
More specifically, we use the error vector magnitude (EVM)
of the soft-decoded received symbols given by

EVMij =

√√√√ 1
Nac

∑Nac−1
n=0

∣∣wH
max−SINR(sij)yij[n]− bi[n]

∣∣2
1
Nac

∑Nac−1
n=0 |bi[n]|

2
.

(16)

Consequently, a quality estimate of SINR for link (i, j) is
given by ŜINRij , 1/EVM2

ij. Finally, the receiver detects
the k-th transmitted symbol by minimizing the Euclidean
distance between the maximum-SINR filtered signal and the
transmitted symbols as follows

b̂i[n] , argmin
bi[n]∈A

∣∣∣wH
max−SINR(sij)yij[n]− bi[n]

∣∣∣2
for n = 0, . . . ,N − 1. (17)

D. WAVEFORM OPTIMIZATION
At the j-th receiver of each cognitive link we focus on the
design of a binary waveform s that maximizes SINR(s) at the
output of the maximum-SINR filter

sopt , argmax
sij∈

{
±

1
√
L

}L SINRij(sij) = argmax
sij∈

{
±

1
√
L

}L sTijPijsij. (18)

The problem of obtaining the optimal waveform for link (i, j)
is NP-hard [61], [62] and can be solved through exhaustive
search over all possible L-waveform-bit combinations. In the
next two subsections we present two computationally effi-
cient methods for optimizing waveform s for link (i, j).

1) RANK-1 WAVEFORM DESIGN
Given the eigendecomposition of Pij, where q1,q2, . . . ,qL
are the eigenvectors, and λ1 ≥ λ2 ≥ · · · ≥ λL > 0 are the
corresponding eigenvalues of Pij, the optimization problem
in (18) is rewritten as

sopt , argmax
sij∈

{
±

1
√
L

}L
{

L∑
i=1

λi

∥∥∥sijTqi∥∥∥2} (19)

where 0 ≤
∥∥sijTqi∥∥2 ≤ 1, for i = 1, 2, · · · ,L. If we simplify

the problem by keeping only the strongest term λ1

∥∥∥sTijq1∥∥∥2,
we obtain the rank-1 optimized waveform

ŝopt , argmax
sij∈

{
±

1
√
L

}L
{∥∥∥sTijq1∥∥∥2} = ± 1

√
L
sgn (< {q1}) (20)

where sgn(·) denotes the sign operator. Hence, a rank-1
optimal waveform is acquired by first relaxing the binary
constraint in the waveform optimization problem in (18)
and solving optimally the relaxed problem. Finally, we sim-
ply map (quantize) the minimum-eigenvalue eigenvector
of Pij to the binary field, by taking the sign of its
components [29], [63].

2) SINGLE-BIT FLIPPING (SBF) WAVEFORM DESIGN
A second computationally efficient algorithm for finding
a near-optimal solution to the binary code-waveform that
maximizes SINR at the output of the maximum-SINR fil-
ter is based on iterative single-bit flipping (SBF). Similar
algorithms have been studied in L1-subspace decomposition
[64] and channel coding [65] literature. The steps of the SBF
algorithm are described in detail in Fig. 5.
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FIGURE 5. Single-bit flipping (SBF) waveform design algorithm.

More specifically, SINR at the output of the maximum-
SINR filter can be written as

s(p)ij
T
Pijs

(p)
ij = s(p)ij

T (
<
{
Pij
}
+ j=

{
Pij
})

s(p)ij

= s(p)ij
T
<
{
Pij
}
s(p)ij =

1
L
Tr
(
<
{
Pij
})

+

∑
k

2s(p)ij [k]

(∑
l>k

s(p)ij [l]<
{[
Pij
]
k,l

})
(21)

where <{·} and ={·} denote the real and complex part of
a vector or matrix, respectively. By changing the sign of
the k-th waveform bit s(p)ij [k] in the p-th iteration of the
SBF algorithm, the post-filtering SINR value will change by

α(p)[k] , ±4s(p)ij [k]

∑
l 6=k

s(p)ij [l]<
{[
Pij
]
k,l

}. (22)

Consequently, if the result in (22) is negative, then flipping the
k-th code-waveform-bit from s(p)ij [k] to−s

(p)
ij [k] will increase

the post-filtering SINR value in (21). Obviously, flipping the
waveform-bit with the highest negative contributionwill offer
the biggest SINR increase. On the other hand, if there is no
bit flip that will increase the SINR value in (21), then the
SBF algorithm terminates.

Fig. 6 compares the post-filtering SINR loss of a ran-
domly generated binary code-waveform to a rank-1 optimal
and an SBF-optimized binary waveform as a function of
the number of interferers. Particularly, SINR loss is evalu-
ated with respect to the SINR of the optimal binary wave-
form sopt that is obtained through exhaustive search over
all possible L waveform-bit combinations. Additionally, bit
error rate (BER) versus SNR for the user of interest is
depicted for the different waveform optimization techniques
and fixed number of interferers equal to the code-waveform
length L = 8. In both simulations, the SNR for the user of
interest is fixed to 8 dB, while the SNRs of the interferers are
uniformly spaced between 8 and 11 dB.

E. MEDIUM ACCESS CONTROL
Each node accesses the channel using a random-access
ALOHA-like CDMA-based MAC scheme for each data

FIGURE 6. Post-filtering SINR loss of a randomly selected, a rank-1, and
a SBF-optimized waveform versus the number of interferers (top).
BER versus SNR of the user of interest for different waveform
optimization techniques (bottom).

frame. Waveforms at each cognitive link are dynamically
optimized on a hop-by-hop basis based on the algorithm
described in section IV-D. Baseline network links are
assigned to unique code-waveforms that remain fixed. The
proposed protocol is efficient both in environments where
carrier sensing cannot resolve the hidden/exposed terminal
problem and in networks with long-distance communication,
high data rates, and short frames. Additionally, no handshak-
ing mechanism for virtual carrier sensing is utilized, thus
powerful MAI from asynchronous transmissions is resolved
with retransmissions of data frames that are not successfully
acknowledged by the receiver.

At the MAC layer, a data frame is received success-
fully if the number of errors in the decoded informa-
tion bits is less than or equal to the maximum number
of (correctable) bit errors allowed by the forward-error-
correction (FEC) module. If no FEC is present, then the
data frame is successfully received when all information
bits are detected correctly. Subsequently, if the decoded
data frame is detected correctly, an acknowledgment (ACK)
frame is sent to the corresponding transmitter. Alternatively,
if the received data frame contains errors, the transmitter is
notified for a retransmission with a negative acknowledg-
ment (NACK) frame. Both ACK and NACK frames contain
queue size information to allow transmitting nodes to make
routing decisions. Fig. 7 describes the structure of the
ACK/NACK frames and the size of each data field in
bytes.

F. NETWORKING & APPLICATION LAYERS
Each network node continuously checks the queue that is
maintained for each session d at the NET layer for either
existing (if it is a source node) or new incoming (if it is an
intermediate node) frames. Subsequently, each transmitting
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FIGURE 7. Structure of acknowledgment (ACK/NACK) frames.

(source or intermediate) node in the cognitive network cal-
culates utility values Uij for each feasible next hop based
on queuing information and spectrum dynamics that are
received from acknowledgment and feedback/control packets
(discussed in section IV-G). Cognitive network nodes with
higher utility Uij will have higher probability to be selected
for transmission. If the destination is in the transmission range
of the transmitting (either source or intermediate) cognitive
network node, the differential backlog between the transmit-
ter and the destination is no less than the differential backlogs
between the transmitter and any other nodes, because the
queue length of the destination is zero. As a result, lightly
backlogged nodes (with smaller differential backlog) and
higher link capacity are selected as intermediate relays and
receive most of the network traffic. On the other hand, net-
work nodes in the baseline network consider fixed route and
waveform allocation.

The proposed network node architecture can accommo-
date end-to-end multimedia sessions, such as digital audio
and video sessions from source s to destination d . Desti-
nation network nodes implement a double-buffering archi-
tecture that enables reordering of chunks of received data
frames. Consequently, the nodes compensate for out-of-
order frame arrivals that may appear due to dynamically
selected multipath routes toward the destination network
node.

G. FEEDBACK CHANNEL
Cross-layer dynamicwaveform and route adaptation is imple-
mented in practice based on a closed-loop feedback/control
link that carries the optimized waveform and post-filtering
link SINRs to the transmitting (source or intermediate) cog-
nitive network nodes. The set of feasible next hops at each
cognitive network node can be obtained by either neighbor
discovery protocols or from position information (e.g. GPS)
of each node. Receiving (intermediate or destination) nodes,
that are candidates to be selected as next hops, send feed-
back/control frames to an associated transmitting node at time
intervals that are either preprogrammed by the user or calcu-
lated in an autonomous fashion. The structure of the feedback
link frames is illustrated in Fig. 8. Transmitting nodes can
take decisions on the modulating waveform and next hop
based on locally collected utility information from neigh-
boring nodes according to the algorithm described in Fig. 2.
Finally, waveform and routing decisions taken at each trans-
mitting node are broadcasted to the rest of the network.
A flow chart representation of the process of handling data
and feedback frames in cognitive network nodes is given
in Fig. 9.

FIGURE 8. Feedback/control frame structure.

V. HARDWARE AND SOFTWARE PROCESSING
In section V we discuss hardware and software process-
ing challenges for the implementation and deployment of
our algorithmic developments in a large-scale cross-layer-
reconfigurable software-defined radio testbed.

A. COGNITIVE RADIO HARDWARE ARCHITECTURE
Software-defined radio technology proposes a paradigm shift
from inherently inflexible hardware-radio platforms by com-
bining analog static (front-end) circuits and digital hard-
ware (back-end) that are easily reconfigurable via software
updates. SDR-based architectures are therefore ideal for rapid
prototyping and testing of new applications and commercial
standards.

A generic SDR front-end contains analog circuitry for
signal up/down-conversion from baseband to a desired
center or intermediate frequency (IF) as well as radio-
frequency (RF) amplifiers and passband filters for signal
conditioning. Baseband signal processing is performed dig-
itally at the SDR back-end [1]. To leverage the function-
alities of a typical heterogeneous hardware architecture,
execution of different algorithms may be split between
a field-programmable gate array (FPGA) and a general-
purpose processor (GPP), generally connected through a
high-speed data bus.

High parallelism offered by the FPGA enables acceler-
ation of computationally intensive signal processing func-
tionalities, such as filtering. On the other hand, development

FIGURE 9. Flow chart showing the process of data and feedback
reception and cognitive functionalities executed at each receiver node.
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FIGURE 10. Hardware and software architecture of the proposed
cognitive software-radio platform.

and implementation of signal processing operations on GPPs
generally involves shorter development cycles. GPPs are
also well-suited for the implementation of highly branch-
ing algorithms. We facilitate rapid development, prototyp-
ing, and testing of the proposed cognitive channelization
and routing algorithm by implementing signal process-
ing and upper-layer networking in a GPP-based SDR.
Basic digital upsampling, downsampling, and signal fil-
tering at IF are implemented in the FPGA (as depicted
in Fig. 10).

B. SOFTWARE RADIO RECONFIGURABLE FRAMEWORK
Software implementation of our algorithmic developments
described in the sections above are hosted by a software-
radio framework that runs entirely in a GPP and enables self-
optimization and real-time reconfiguration at PHY, MAC,
and NET layers of the network protocol stack. In its current
instantiation, the framework is implemented in a host-PC and
takes advantage of the modularity and flexibility of the GNU
Radio open-source framework and the multi-core processing
libraries supported by Python.

1) PHY-LAYER BASEBAND PROCESSING
We utilize the GNU Radio open-source software application-
programming interface (API) to implement new signal
processing blocks and applications in C++ and Python.
A collection of connected blocks with a particular flow of
samples from a source towards a sink is called flowgraph.
A great advantage of GNU Radio is that apart from real-time
signal processing of samples from an SDR, it can also be used
for PHY-layer simulations. This is easily possible by looping
back the generated sample stream into the receiver without
interfacing actual radio hardware. The GNU Radio frame-
work handles tasks such as memory allocation and sample
transfer between signal processing blocks in a stream-based
fashion. In this work, we rely on GNU Radio mechanisms

such as stream tags and message ports to enable packet-based
processing at each network node.

Stream tags offer the ability to align metadata with specific
samples in a stream to denote information such as packet
boundaries. A more generic asynchronous message passing
mechanism uses protocol data units (PDUs) to transfer an
arbitrarily large chunk of data and metadata between any set
of GNU Radio modular blocks with the use of message ports.
Message ports follow a publisher/subscriber model where
receive queues exist at message input ports.

Fig. 11 provides an abstract illustration of the transmit
and receive flowgraphs in GNU Radio. Multiple instances of
transmit and receive flowgraphs may run in parallel at each
network node. User datagram protocol (UDP)-type message
ports are utilized to exchange PHY-layer related information
with the protocol execution logic of MAC and NET-layer
functionalities. More specifically, upstream information to
the MAC layer is comprised of payload bytes, post-filtering
SINR estimates, and optimized code-waveform designs at the
receiver flowgraph. Payload bytes, waveform updates, and
user-driven decisions for waveform adaptation are exchanged
downstream from MAC to PHY-layer blocks at the transmit-
ter and receiver flowgraphs.

NET-layer data frames are first inserted to the transmitter
flowgraph in the form of PDUs. Subsequently, data frames are
converted into stream-based samples and are appended with
MAC and PHY-layer headers as described in section IV-B.
Prior to streaming samples to the digital-to-analog con-
verter (DAC) and the SDR front-end device, the samples
undergo continuous functions such as waveform modulation
and pulse-shape filtering. Stream tags are used to denote the
beginning and the end of a data frame.

The receiver implements frame detection as a continuous
streaming block that operates on the stream of the incom-
ing samples from the analog-to-digital converter (ADC)
of the SDR. Detected frames are formatted as PDUs and
are passed through waveform-level synchronization, chan-
nel estimation, maximum-SINR filtering, and minimum-
distance detection operations. If no data frame is detected,
compound disturbance (noise and interference) samples are
used to maintain an up-to-date estimate of the inverse
autocorrelation matrix (as discussed in section IV-B). At reg-
ular time intervals a (user-defined or autonomous) decision
mechanism at the NET layer triggers the waveform opti-
mization process. The optimized waveform and post-filtering
SINR values are communicated to the upper layers to create
the feedback/control link frame. The optimized waveform is
fed back to both the transmitter and receiver PHY-layer in
the form of a PDU to update waveform-dependent PHY-layer
signal processing blocks in GNU Radio.

2) CROSS-LAYER PROCESSING
The software architecture of each network node is divided
into four interacting planes: decision, control, data, and
register [66] that enable separation of data processing, logical
control, and decision-makingmechanisms from the execution
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FIGURE 11. PHY- and lower-MAC (transmitter and receiver) signal processing blocks in GNU Radio. Both blocks and connections to radio front-end(s) and
upper networking layers (i.e. MAC) are the same for both static and cognitive network nodes.

of the protocol stack. Fig. 10 depicts the software/hardware
architecture of the proposed cognitive radio platform. Data
processing and handling of data and control queues takes
place in the data plane. The execution logic of data pro-
cessing in the data plane is controlled by three execution
engines that are defined in the control plane. Execution
engines contain finite state machines (FSMs) that imple-
ment the execution logic of the transmit and receive MAC
and NET-layer protocols. Fig. 12 depicts the three FSM
designs comprised of symbolic states and extended state
transitions that are defined as a triplet of events, conditions,
and actions [66]. Actions are designed to trigger data plane
functionalities, while events occur as a result of data plane
actions. Actions and events (as depicted in the FSM state-
transitions of Fig. 12) are primitive building blocks that
can be used to decompose a wide range of wireless net-
working protocols. As a result, the execution of the proto-
col stack in the data plane can be easily reconfigured by
simply changing the order of execution of the blocks of
actions and events. The register plane stores and manages
access to system parameters and state variables at different
network layers, look-up-tables (LUTs) for the implementa-
tion of different MAC and routing protocols, and control
messages such as queue updates from next-hop network
nodes.

The proposed software-radio framework is implemented
in a host GPP using Python’s multi-processing library to
allow multiple processes to run in parallel by distributing
processing across multiple computing resources. Queues are
used to buffer and transfer data bytes between processes in
a thread-safe manner. The framework is programmed in a
modular manner such that multiple instances of each plane
can be generated and run in parallel to handle data that may

arrive from multiple network nodes. Intermediate network
nodes must be capable of processing frames that may arrive
frommore than one neighbor network nodes at the same time.
In GNU Radio separate instances of transmit and receive
signal processing flowgraphs are initialized for communi-
cation with candidate next-hop neighbor nodes. Similarly,
multiple instances of the decision, control, data, and register
planes are initialized and process frames received from dif-
ferent sources in an independent fashion. In the data plane
a dedicated handler is initialized for each UDP socket to
control communication between lower-layer baseband signal
processing blocks inGNURadio and the rest of the data plane
blocks. Streams of transmitted/received bytes are placed in
a queue and handled by data plane/GNU Radio processes.
In the same way, asynchronous waveform updates and post-
filtering SINR messages are communicated to the upper-
layers of the network protocol stack via dedicated handlers
for UDP sockets.

3) DISTRIBUTED DECISION MAKING
The proposed software-radio framework incorporates a deci-
sion plane that enables on-the-fly reconfiguration of user-
defined decision algorithms without affecting the execution
of the network protocol stack. The decision plane is inter-
faced with the control and data planes through the register
plane and contains a set of decision algorithms for fixed
and cognitive waveform and routing allocation that can be
executed in parallel. Algorithms can be executed in a syn-
chronous or asynchronous fashion and modify parameters
across PHY, MAC, and NET layers of the network protocol
stack without influencing the on-going protocol execution
logic. Both control and data planes can reconfigure their
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FIGURE 12. Upper MAC- and NET-layer FSM architectures executed at the each network node. State transitions are executed based on the definition of
events that are depicted in the arches of the FSMs. (a) Upper MAC-layer transmit FSM. (b) Upper MAC-layer receive FSM. (c) NET-layer FSM.

execution logic by checking the updated parameters in the
register plane. The decision plane is optional upon design
therefore, it may be enabled or disabled to accommodate
centralized or distributed control of cross-layer optimized
parameters.

4) COMPUTATIONAL PERFORMANCE
Improved computational performance through threaded oper-
ation and optimized instructions is essential for the soft-
ware implementation of the proposed cross-layer optimized
transceiver that is entirely hosted by a GPP. Before we
started this project, there was no transmitter/receiver design
available in GNU Radio that implements adaptive code-
waveform-based multiple access. Therefore, it was unclear
whether it was possible to realize and execute the pro-
posed cross-layer optimized transceiver design in real-time
on a normal laptop or desktop PC or if splitting func-
tionalities between the GPP and the FPGA would be
required.

For small signal bandwidths, we are able to deal with trans-
mitted/received streams of data in real-time and exploit the
inherent capabilities of GNU Radio signal processing blocks
to distribute the load between the cores of a GPP. Real-time
processing implies that the average processing time per sam-
ple is smaller than the sample duration, thus the transceiver
does not drop samples, which may lead to wrong interpre-
tations of measurement results. To further speed up compu-
tations, the individual blocks exploit vectorized instructions
that multicore CPUs provide through single-input multiple-
data (SIMD) extensions like MMX, SSE, and AVX. With
GNU Radio, these instructions are accessed through the
vector-optimized library of kernels (VOLK) [1], [67], which
provides optimized implementations of common signal pro-
cessing functions.

5) SCALABILITY/INTEROPERABILITY
The architectural components of the proposed software-
radio framework enable either network-level simulations
by re-directing the generated NET and MAC-layer frames

to a UDP/TCP socket instead of GNU Radio transmitter/
receiver or PHY-level simulations by looping back the
generated sample stream in GNU Radio into the receiver
without interfacing an actual SDR hardware. GNU Radio
aids simulation setup by providing models for hardware
impairments like phase noise and clock drift, as well
as propagation environments like AWGN, Rayleigh, and
multipath fading. Interoperability tests are conducted with
different SDR platforms and GPP architectures (such as
Intel i5/i7, and ARM Cortex-A15). Table 3 summa-
rizes the SDR platforms and host-PC models and fea-
tures that are utilized for both simulation and experimental
testing.

VI. THE ‘‘ELASTIC’’ TESTBED IMPLEMENTATION
In this section, we identify and discuss system implemen-
tation details for the deployment of an ‘‘elastic’’ network
testbed comprising of co-located terrestrial cognitive and
baseline network nodes that operate in the presence of
an airborne RF interferer. Fig. 13(a) presents a testbed
schematic that depicts data command-and-control and clock-
synchronization connections in the software-defined radio
testbed. Fig. 13(b) provides illustrations of the testbed hard-
ware units, which include terrestrial and airborne modular
SDR, clock generation/distribution, and host-based visualiza-
tion platforms. Table 3 lists the selected hardware platforms
with further details.

A. SDR PLATFORMS
Both cognitive and baseline network nodes in the ‘‘elastic’’
network are based on the Ettus Research family of Uni-
versal Software Radio Peripherals (USRPs). USRP SDRs
are connected to a Linux-based host-PC with either an
external high-speed Gigabit Ethernet (GigE) or USB 3.0
data interface. All models of the USRP family can inter-
face to the proposed cognitive radio framework through
the USRP Hardware Driver (UHD) software API that
acts as a host communication driver for controlling the
SDRs.
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FIGURE 13. Testbed implementation overview: (a) Data command-and-control GigE links and clock distribution connections for both terrestrial and
airborne SDR platforms. (b) Assembled off-the-shelf airborne and terrestrial SDRs with data command-and-control, clock generation/distribution, and
host-based visualization units.

TABLE 3. Selected hardware components.

1) TERRESTRIAL NODES
Terrestrial nodes are based on the USRPN-series SDRs. Each
SDR contains a 14-bit dual 100 MSps ADC, a 16-bit dual
400MSpsDAC, aXilinx 3A-DSP FPGA-basedmotherboard,

and a 40 MHz bandwidth daughterboard that supports a
variable center frequency from 400 MHz to 4.4 GHz and
TX power of 20 dBm. Received baseband samples at the
SDR are sent to the host PC via a GigE data bus in the format
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of 4 bytes per complex sample, therefore the maximum
data rate over GigE is 125 MB/s

4 B/sample = 31.25 MSps (reduced
to 25 MSps due to overhead [1]).

2) AIRBORNE NODES
Airborne network nodes require a more compact and
lightweight SDR platform. Therefore, airborne nodes are
equipped with USRP B-series SDRs that offer a small-form-
factor, fully integrated, two-channel radio with continuous
RF coverage from 70 MHz to 6 GHz. Baseband samples
from the SDR are transferred to an ARM-based single-board
computer through a USB 3.0 connection. Both the radio and
host-PC offer a combined payload of less than 2 kg that can
be easily mounted to the airborne vehicle platform (Table 3)
and powered by a compact battery pack.

B. TESTBED OPERATION
1) COMMAND & CONTROL
Portable laptop PCs are used to control terrestrial SDRs.
Laptops are positioned in a central location (i.e. command-
and-control center) and control the SDRs through a GigE
switch. The GigE switch is used to route ACK/NACK frames
and feedback/control frames between network nodes. A ded-
icated desktop PC is utilized to store and display status-
update messages from the ‘‘elastic’’ network nodes which
are transmitted periodically to the desktop PC through the
GigE switch. During network deployment and testing it is
also important to remotely control the SDR on the airborne
interfering node. Particularly, we should be able to start,
stop, and reconfigure PHY-layer parameters such as the code-
waveform and transmission power during flight. Command
and control of the SDR on the airborne node is achieved by
remote access to the airborne host-PC over an 802.11n-based
wireless control link. The wireless control link is established
with a wireless access point on the ground and a USB-dongle
on the airborne platform. We select to operate the wireless
control link at 5 GHz to avoid interference with the flight
controller.

2) HOST-BASED VISUALIZATION
Cognitive and baseline network nodes can periodically send
status-update messages to a desktop PC to report modifica-
tions in parameters such as post-filtering link SINR, frame
queue sizes, optimized code-waveforms, and selected routes.
Status-update messages are displayed in real-time on a host-
based visualization that is built in Python. Display messages
are time-stamped and stored at the desktop PC for post-
processing offline analysis. A screenshot of the host-based
visualization for the ‘‘elastic’’ network testbed in an outdoor
environment is depicted in Fig. 18(c). A bar graph next
to each network node in the visualization demonstrates the
number of data frames waiting for transmission in the
network node queue. On the other hand, as the destina-
tion node does not have a network queue, the bar graph
depicts the total number of packets that have been correctly

received from the source of each session. Candidate routes
in the cognitive network are depicted as dashed lines,
while active routes for each session are displayed as solid
lines.

C. SYNCHRONIZATION
To compensate for time and frequency clock drifts
between terrestrial SDRs we utilize a GPS-disciplined
clock generation and distribution circuit. Particularly, one
GPS-disciplined Ettus Research OctoClock module
(as depicted in Fig. 13) generates and distributes high accu-
racy 10 MHz and 1 PPS signals to seven SDR nodes using
SMA cables. The eighth output of the OctoClock is uti-
lized as an external reference to a second OctoClock unit
which can distribute clock reference signals to eight addi-
tional SDRs. Reference clock signals can discipline SDRs
to a frequency stability of 0.01 ppm. Airborne SDR nodes
can optionally be equipped with on-board mounted
GPS-disciplined clock units that offer 10 MHz clock and
1 PPS reference signals and can achieve a global timing align-
ment of 50 ns in locked condition. However in the context of
this work, the airborne interfering node operates without any
requirement of either time or frequency synchronization to
the rest of the terrestrial network nodes.

VII. EXPERIMENTAL PROOF-OF-CONCEPT RESULTS
In this section we describe the design details of three exper-
imental scenarios toward the validation of the ‘‘elastic’’
network concept in both indoor and outdoor environments.
Each scenario addresses a challenging aspect of commu-
nication in UAV networks, as identified in the literature
(see section I) but is also applicable to cognitive radio
networks. We present experimental proof-of-concept results
for both testbed deployments and evaluate the ‘‘elastic’’
testbed in terms of end-to-end network throughput perfor-
mance, average post-filtering SINR at selected links, average
aggregate queue size at the intermediate nodes, and selected
routes.

A. SCENARIOS
In each scenario, we build two independent but co-located
networks of terrestrial nodes. The first network operates on
statically assigned waveforms and fixed routes. The second
network consists of cognitively cross-layer optimized wire-
less links that are capable of dynamically adapting code-
waveforms and routes, as discussed in section III-B.
Multimedia traffic flows for both cognitive and baseline
networks are carried over unicast sessions from a source
node s to a destination node d . In both networks, we con-
sider uncoded transmissions of multimedia data that are
4-QAM modulated. The rest of the data-link parameters can
be found in Table 1.

1) NETWORK COEXISTENCE
The first testbed scenario evaluates the simultaneous oper-
ation of two independent wireless networks coexisting at
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FIGURE 14. (a) Indoor testbed deployment at the Department of Electrical Engineering, State University of New York at Buffalo. (b) One group
of intermediate (I2) and destination (D1) nodes from baseline and cognitive networks.

the same location, time, and frequency. Lack of network-
wide backhaul links and centralized common control in
UAV networks [2] leads to distributed self-reconfigurable
solutions to avoid multiple-access interference. We consider
fixed initialization of baseline network nodes on a static set
of code-waveforms and routes. Digital audio or video traffic
sessions are carried over a layered network protocol stack.
Baseline network operation is then disrupted by the deploy-
ment of a second network that is co-located in space, time, and
frequency with the baseline network and is initialized to the
same code-waveforms and routes. Multiple-access interfer-
ence between the co-located wireless links leads to increased
error rates in the received data frames, thus increases queue
backlogs at both the source and intermediate network nodes.
Data frames may be dropped completely if the maximum
number of re-transmissions is reached by the transmitting
nodes.

Our objective in this scenario is to eliminate destructive
interference and improve aggregate network throughput per-
formance by jointly optimizing code-waveforms and routes in
the cognitive network. Particularly, the decision plane in the
cognitive network nodes dynamically switches to the execu-
tion of the cross-layer optimization algorithm (as described
in Fig. 2) upon the arrival of an external trigger (coexist
mode).

2) NET-LAYER INTERFERENCE
The second testbed scenario considers network congestion
created by intentionally flooding the queue of an inter-
mediate network node in both cognitive and baseline net-
works. Resilient airborne network operation is achieved by
autonomous route reconfiguration to bypass network disrup-
tion and successfully deliver information messages to the
intended destination [3]. Random data frames, which mimic
the frame format of cognitive and baseline data links, are
generated but will not be correctly received and decoded.
The random frames are injected in both networks at the
same time. Cross-layer adaptation in the cognitive network is
expected to balance traffic loads at the intermediate network
nodes by jointly optimizing code-waveforms and selecting

routes that maximize local utility values Uij between trans-
mitter i and receiver j. As a result, multimedia sessions in
the cognitive network are expected to withstand NET-layer
interference by selecting to reroute traffic around the heavily
backlogged intermediate nodes. However, the same decision
logic is not adopted by the baseline network nodes, there-
fore network throughput performance is expected to degrade
significantly.

3) PHY-LAYER INTERFERENCE
Finally, the third testbed scenario considers disruption
of baseline and cognitive network operation due to
RF interference from either a mobile airborne or terres-
trial node. UAV networks encounter unpredictable location-
dependent interference [13] and should be capable of
autonomously adapting network parameters across multiple
layers to maintain link quality and network connectivity.
Particularly, we introduce awidebandRF interferer that trans-
mits data frames modulated by the same (heavily correlated)
code-waveform that is already utilized by other cognitive
and baseline links in the testbed. An airborne RF inter-
ferer is employed during outdoor testing, while a terrestrial
RF interferer is used for indoor tests. Based on simulation
results for code-waveform optimization (presented in section
IV-D), cognitive network links are expected to withstand
PHY-layer interference by jointly designing maximum-SINR
code-waveforms and selecting routes that maximize network
throughput. Depending on the power and location configu-
ration of the RF interferer, baseline links become heavily
backlogged due to destructive RF interference, thus base-
line network throughput performance is expected to degrade
notably.

B. INDOOR EXPERIMENTS
Indoor tests are conducted at the Department of Electrical
Engineering at the State University of New York (SUNY) at
Buffalo campus. The testbed is set up in a room of approxi-
mately 65 m2 as depicted in Fig. 14. Nine nodes are used to
build two co-located baseline and cognitive networks. Video
traffic is carried over a single unicast session from one source
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FIGURE 15. Difference of locally calculated utilities for cognitive links
S1–I1 and S1–I3 (top) and corresponding routing decisions (bottom)
at source node S1 for the network coexistence scenario with coexist
mode on.

network node S1 to a destination node D1. Baseline network
traffic can be routed only through intermediate nodes I1 and I2
(i.e. 2-hops from the destination). Video traffic in the cog-
nitive network is offered two additional 1-hop routes to the
destination either through intermediate node I3 or intermedi-
ate node I1. Consequently, the cognitive network is capable of
routing video frames to the destination throughmultiple paths
at the same time (e.g. destination D1 can receive from either
node I1 or I2 and I3 at the same time). A tenth node in the
testbed plays the role of an RF interferer that is preconfigured
to disrupt operation of the S1–I1 link.

1) NETWORK COEXISTENCE
Fig. 15 depicts locally calculated utilities for cognitive links
S1–I1 and S1–I3 and the corresponding routing decisions at
source node S1 for the network coexistence scenario. Utility
values U11 and U13 for the cognitive network are plotted
over a total time duration of 140 s and are calculated based
on feedback information from the intermediate nodes. More
specifically, queuing and post-filtering SINR information are
received at the source node through acknowledgment and
feedback/control packets that are sent by the intermediate
nodes at preconfigured time intervals of 3 s. We observe
that if U11 − U13 > 0 intermediate node I1 receives most
of the traffic from source node S1, otherwise node I3 is
selected as the next hop. Additionally, as data frames from
the source node are successfully transmitted to the next hops,
the magnitude of U11 − U13 decreases over time.

2) NET-LAYER INTERFERENCE
Locally calculated utility values for cognitive links S1–I1
and S1–I3 and the corresponding routing decisions at source
node S1 for the second scenario of NET-layer interference
are shown in Fig. 16. Intentional flooding of the queue of
cognitive network node I1 with 1000 frames is triggered by an
external trigger at approximately t = 25 s. We observe that
the proposed distributed cross-layer optimization algorithm

FIGURE 16. Difference of locally calculated utilities for cognitive links
S1–I1 and S1–I3 (top) and corresponding routing decisions (bottom)
at source node S1 before and after NET-layer interference.

FIGURE 17. Average post-filtering SINR for the S1–I1 link in both
cognitive and baseline networks (top) and end-to-end network
throughput performance reduction (in %) for the PHY-layer
interference scenario (bottom).

implemented in the cognitive network rapidly identifies the
sharp drop in utility calculated for the S1–I1 link and decides
to reroute video traffic through intermediate node I3. While
the utility of link S1–I1 varies slightly from changes in post-
filtering SINR due to code-waveform adaptation, the large
backlog prevents U11 from becoming larger than U13 and I1
remains inactive for the remainder of the experiment.

3) PHY-LAYER INTERFERENCE
Fig. 17 presents average post-filtering SINR performance
for link S1–I1 in both cognitive and baseline networks and
evaluates end-to-end network throughput performance for
the third scenario of RF interference. Only for this set of
experiments, traffic flows for both networks are carried over
the same fixed route S1–I1–D1. An RF wideband interferer is
configured to transmit at the same code-waveform with co-
located baseline and cognitive links S1–I1. The position of
the interferer is depicted in Fig. 14(a). Considering fixed rout-
ing and dynamic code-waveform adaptation at the cognitive
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FIGURE 18. (a) Outdoor testbed deployment dimensions. (b) Terrestrial and airborne network nodes at the Stockbridge Controllable Contested
Environment at the Air Force Research Laboratory in Rome, NY. (c) Host-based visualization depicts post-filtering SINRs (in dB) in real time for active
links and queue information in the form of a bar-graph next to each network node. Dashed red lines illustrate feasible routes in the cognitive network.
Solid blue and red lines depict selected routes in baseline and cognitive networks, respectively.

network, we observe that the post-filtering SINR for the
cognitive link S1–I1 is approximately 8 dB higher than the
SINR of the baseline link. The RF interferer operation is
activated by the user at t = 50 s. We observe that post-
filtering SINR drops significantly for both links. Although
the effect of RF interference is harsher for the cognitive link
SINR, code-waveform adaptation protects end-to-end net-
work throughput, which drops only by 15% compared to the
baseline network throughput that drops by 90%. The notable
degradation observed in the baseline network throughput per-
formance after t = 50 s is mainly due to the very low pre-
detection SINR at the receiver of I1.

C. OUTDOOR EXPERIMENTS
Outdoor field tests are conducted at the Stockbridge Con-
trollable Contested Environment (CCE) at the Air Force
Research Laboratory (AFRL) in Rome, NY. The testbed is
set up inside a netted enclosure of approximately 10, 000 m3

as depicted in Figs. 18(a) and 18(b). Ten nodes are used to
build two co-located baseline and cognitive networks and
an eleventh node is mounted to an airborne vehicle plat-
form. Digital audio and video traffic are carried over two
unicast sessions from two network source nodes S1 and S2
to a common destination node D1,2. Baseline network video
traffic is routed through intermediate node I1 while audio
traffic is routed through intermediate node I2. Video and
audio traffic in the cognitive network is offered two additional
1-hop routes to the destination, through node I2 and I1,
respectively. Consequently, both video and audio sessions in
the cognitive network can use the same intermediate network
node(s) at the same time. Additionally, backlogged interme-
diate nodes can offload their data queues by transmitting data
to the destination at the same time or even if they are not

selected as the next hop by neither of the two source nodes
(e.g. Fig. 18(c)). The eleventh node is mounted on an airborne
vehicle platform, which is controlled remotely to hover at
a height of approximately 5 m above ground. The posi-
tion of the airborne node is depicted in Fig. 18(a). The
airborne node acts as a dedicated RF wideband interferer
that intends to disrupt communication of both terrestrial
networks.

1) NETWORK COEXISTENCE
Fig. 19 depicts average aggregate queue size at intermediate
nodes I1 and I2 and compares the network throughput perfor-
mance of both cognitive and baseline networks for the sce-
nario of network coexistence. Dashed lines depict aggregate
queue size values over 80 s when the two co-located net-
works utilize the same code-waveforms and routes (coexist
mode off). We observe that average backlog at the inter-
mediate nodes increases due to increased multiple-access
interference.

Solid lines demonstrate the effects of cross-layer adap-
tation (coexist mode on) and show reduced average aggre-
gate queue size at the intermediate nodes of both networks.
In line with our expectations, when coexist mode is on,
the queue size of the intermediate nodes in the cognitive
network does not monotonically increase and remains low.
Adaptation of waveform and routes favors the cognitive
over the baseline network in terms of backlog and reduces
RF interference to the baseline network. Consequently,
the baseline network achieves 50% improvement in terms of
network throughput. At the same time, the cognitive network
throughput performance is improved by approximately 5%,
therefore aggregate network throughput is increased by
approximately 55%.
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FIGURE 19. Average aggregate backlogged frames at the intermediate
node queues in cognitive and baseline networks (top) and end-to-end
network throughput (bottom) performance improvement (in %) for
both networks before (coexist mode off) and after cross-layer
adaptation (coexist mode on).

2) NET-LAYER INTERFERENCE
Instantaneous queue size at each intermediate network node
and the end-to-end network throughput performance under
NET-layer interference conditions for both networks are pre-
sented in Fig. 20. The queues of both cognitive and base-
line nodes I2 are intentionally flooded with 1600 randomly
generated frames. Queue flooding is triggered by an exter-
nal trigger at t = 45 s. Since packets are rejected by the
receiver (D1,2), neither queue decreases and both cognitive
and baseline nodes I2 remain non-operational. We observe
that the queue size of baseline node I2 continues to increase
as new video frames arrive from the baseline source node S2.
On the other hand, cognitive source node S2 dynamically
reroutes video traffic through cognitive node I1, thus the
queue size at cognitive node I2 remains constant. End-to-end
network throughput performance for the baseline network is
notably degraded by 60%due to network congestion, whereas

FIGURE 20. Queue size at intermediate network nodes (top) and
end-to-end network throughput (bottom) performance reduction
(in %) for both networks under NET-layer interference.

FIGURE 21. Average post-filtering SINR at the output of the maximum-
SINR filter at receiver I2 (top) and end-to-end network throughput
(bottom) performance reduction (in %) for the PHY-layer
interference scenario.

cognitive network throughput performance only drops by
approximately 25%.

3) PHY-LAYER INTERFERENCE
Average post-filtering SINR and network throughput perfor-
mance results for link S2–I2 in the presence of an airborne
RF interferer are depicted in Fig. 21. An RF wideband
interferer is preconfigured to operate at the same code-
waveform with co-located baseline and cognitive terrestrial
links S2–I2. The airborne source of interference is activated
remotely at t = 20 s. We observe that the post-filtering
SINR for the cognitive link S2–I2 remains constant after
t = 20s, while the SINR of the baseline link drops by approx-
imately 10 dB. Cross-layer waveform and routing adaptation
at the cognitive network in the presence of the airborne
interferer protects cognitive end-to-end network throughput
which drops only by 5% compared to the baseline network
throughput performance that drops by 50%.

Fig. 22 shows the total squared correlation (TSC) [68]

between the optimized code-waveform sopt ∈
{
±1/
√
L
}L

,
‖sopt‖ = 1 for cognitive link S2–I2 and the code-waveform
of the airborne RF interferer sI . The code-waveform for link
S2–I2 is optimized at preconfigured intervals of 3 s, while the
code-waveform of the airborne interferer remains unchanged
for the total duration of 250 s. We define TSC

(
sopt , sI

)
as

TSC
(
sopt , sI

)
,
∣∣∣sToptsopt ∣∣∣2+∣∣∣sToptsI ∣∣∣2 + ∣∣∣sTI sopt ∣∣∣2+∣∣∣sTI sI ∣∣∣2
= 2+ 2

∣∣∣sToptsI ∣∣∣2 . (23)

Consequently, if code-waveforms sI and sopt are orthog-
onal, sToptsI = sTI sopt = 0 and TSC

(
sopt , sI

)
= 2.

Fig. 22 demonstrates that TSC is maximum at t =

20 s (i.e. airborne RF interferer is activated). Max-SINR
waveform optimization of the link S2–I2 results in
code-waveforms with low TSC values. Since wave-
form optimization for link S2–I2 accounts for multiple-
access interference from asynchronous transmissions in
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FIGURE 22. Total squared correlation between the optimized code-
waveform for cognitive link S2–I2 and the code-waveform used by
the airborne RF interferer.

co-located wireless links, we observe that TSC
(
sopt , sI

)
is

not minimized at all times.

VIII. CONCLUSION
Wepresent a complete integrated software/hardware platform
that enables the deployment of the first real-time software-
defined radio testbed for prototyping spectrally efficient
all-spectrum cognitive networks through cross-layer code-
waveform and routing adaptation. We present algorithmic
developments that span the three lowest layers of the network
protocol stack (PHY/MAC/NET) and analyze correspond-
ing software, hardware, and baseband processing require-
ments. We propose computationally efficient algorithms for
code-waveform optimization and implement distributed con-
trol mechanisms to handle real-time waveform and rout-
ing decisions at each cognitive network node. Subsequently,
we set up a programmable software/hardware radio reconfig-
urable framework that facilitates rapid implementation of the
proposed algorithms in heterogeneous GPP-based SDR plat-
forms. The proposed framework is optimized to run on multi-
core GPP architectures that equip both terrestrial and airborne
platforms. We address testbed operation challenges for the
deployment of a hybrid ground-air testbed and evaluate all-
spectrum cognitive networking in both indoor and outdoor
environments. Finally, experimental results include post-
filtering link SINR, queue size, utility measurements at the
intermediate network nodes, and network-throughput perfor-
mance comparison between baseline and cognitive networks
that implement cognitive waveform and routing adaptation.
Proof-of-concept results show that the proposed platform can
be used to build cross-layer optimized all-spectrum networks
that withstand interference at PHY and NET layers and max-
imize aggregate network throughput in underlay spectrum
coexistence scenarios.

APPENDIX
PROOF OF EQUATION (21)
Consider the positive semidefinite channel-processed
autocorrelation matrix Pij ∈ CL×L . Dropping the

subscript for simplicity, the matrix can be written as
P = <{P} + j={P}.

The imaginary part of any complex Hermitian matrix is
a skew-symmetric matrix, thus ={P} = −={P}T . For any

binary vector s ∈
{
±1/
√
L
}L

it holds that

sT={P}s = sT={P}T s = −sT={P}s (24)

therefore

sT={P}s = 0. (25)

The real part of any complex Hermitian matrix is a symmetric
matrix. As such we can write in quadratic form

sTPs = sT<{P}s =
L∑
l=1

L∑
k=1

s[l]s[k] [<{P}]k,l (26)

or equivalently

sTPs=
1
L
Tr(< {P})+

∑
k

2s[k]

(∑
l>k

s[l]<
{
[P]k,l

})
. (27)
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