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ABSTRACT In practical application, the synchronization tracking of teleoperation system requires the fast
speed and strong robustness. It is the ideal control effect that the synchronization errors between master and
slave robots can converge to zero in finite time. In this paper, we propose the new nonsingular terminal sliding
mode and the adaptive finite-time control method for position tracking in teleoperation system. First, a novel
nonsingular terminal sliding mode is designed to provide higher tracking precision and robustness. Second,
the radial basis function neural networks are applied to solve dynamic uncertainties, and the adaptive laws
are proposed to estimate the uncertain parameters and upper bounds of estimation. Then, the corresponding
finite-time controllers of master and slave robots are designed. Third, based on the Lyapunov stability
theory, synchronization performances of the closed-loop system are proved to be stable state and finite time.
Finally, simulations are achieved, and some comparisons with two nonsingular terminal sliding mode control
schemes and two PD methods are shown. The simulation results verify the effectiveness of the proposed
control laws.

INDEX TERMS Teleoperation system, finite-time control, nonsingular terminal sliding mode, adaptive
control, varying time delay.

I. INTRODUCTION
Teleoperation system extends the capability of human oper-
ation in an unknown and dangerous environment. A typical
teleoperation system consists of the master robot, remote
slave robot, a human operator, task environment and com-
munication channel connecting with master and slave side.
Providing stable position synchronization and environmen-
tal force feedback are the essential performance in con-
trolled teleoperation systems. Moreover, synchronization
control performance is very important for teleoperation sys-
tem and has been wildly investigated in many research
works [1]. In practical teleoperation system, external dis-
turbance, indeterminate and nonlinear dynamic model, com-
munication time-delay are unavoidable problems, and these
issues need to be considered in position synchronization con-
troller design [2], [3].

Many control structures and control algorithms have
been proposed to overcome these issues. Anderson and
Spong [4] applied the passivity control approach based on
scattering theory to stabilize the system with communica-
tion time delays. Niemeyer and Slotine [5] introduced the

wave-variables structure based on scattering theory to
improve the time delay communication channel as the pas-
sive part. And then, some improved wave-variable archi-
tectures were proposed for synchronization tracking in
teleoperations [6]–[8]. Furthermore, many other control
structures and methods were introduced to handle position
tracking problems in teleoperation system with communi-
cation time delays, such as fuzzy control [9], adaptive con-
trol [10]–[14], robust control [15], state feedback control
based on Lyapunov-Krasoviskill stability theory [16]–[18]
and sliding mode control.

The sliding mode (SM) control method has been used in
controlling various nonlinear systems. Many literature and
research works introduced the SM for trajectory tracking
control of robotic manipulators. However, the system states
cannot achieve finite-time convergence in traditional SM
control [19]. The terminal sliding mode (TSM) control was
proposed to perform the convergence of system states in
finite-time [20]. In recent years, many improved TSM control
methods have been applied to tracking control of manipula-
tors [19], [21]–[23]. In addition, the SM control and related

40940
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-1982-6780


H. Zhang et al.: Adaptive Finite-Time Synchronization Control for Teleoperation System With Varying Time Delays

improvement algorithms have also been used in teleoperation
systems. In literature [24], the sliding mode control was
proposed for telerobot system with communication delay.
Yang et al. [25]–[27] designed three fast nonsingular finite-
time control schemes based on TSM for teleoperation system
with constant communication delay to make the synchroniza-
tion error of teleoperation system quickly converge to zero in
finite-time, respectively. In [25] a novel switching terminal
sliding mode surface was designed, and fuzzy logic systems
were introduced to approximate the uncertain part of dynamic
in teleoperation robots. In [26] the new error transformed
variables were considered in TSM design, and the neural
networks were applied for uncertain approximation. In [27],
a nonsingular terminal sliding mode (NTSM) was designed
and a finite-time control strategy was presented for teleoper-
ation system under communication delay.

Although TMS based finite-time methods have been
applied in teleoperation controllers design and have achieved
the fast regulation speed, there are still some problems need to
be improved. For one thing, the time delays of teleoperation
communication channel in those work [24]–[27] are all con-
stants, but actually, the time delays are time-varying in sys-
tem. For another, as the sliding mode structures mentioned in
above literature are composed of synchronous errors and error
differential forms, the dynamic performance characteristics
of the system could be loosed under varying communication
delays and operator force effect. Recently, the integral TSM
has been used in robot manipulators with higher steady-state
tracking precision and robustness [28]. Zhao et al. [29] pro-
posed integral SM control to guarantee synchronization con-
trol stability for bilateral teleoperation system. But in [29],
time-varying delays and finite-time convergence are not con-
sidered.

In this paper, the adaptive finite-time control based on
NTSM is proposed for synchronization control of teleopera-
tion system under varying time delays and uncertain dynamic
parameters. The designed sliding mode consists integral
term of synchronization errors to improve the stability and
dynamic performance of the control process. The master and
slave controllers are designed based on nonsingular TSM
method. The Radial Basis Function (RBF) neural networks
are introduced to approximate the uncertainties in teleoper-
ation dynamics. The adaptive laws with dead zone form are
applied to estimate the bound of estimation. By Lyapunov sta-
bility methods, we establish the stability criteria and prove the
finite-time convergence of tracking errors. Finally, the sim-
ulations with 2-dof teleoperation system and comparisons
with other control methods are performed, the effectuality
and analysis of the proposed control method are shown.

This paper is organized as follows. In section II, the system
dynamics, preliminaries of RBF neural network, and lem-
mas for controller design analysis are given. The adaptive
finite-time controllers are designed and stability of closed-
loop system is analyzed in section III. We illustrate some
simulation results and analysis in section IV. Finally, this
paper is concluded in section V.

There are some mathematical symbols used in this paper
need to be explained as: Rn is the (n × 1)-dimensional
real vector space, for any vector x ∈ Rn, the norm of
x is represented as ‖x‖. Rn×n is the (n × n)-dimensional
real matrix sapce. λmin(A) and λmax(A) denotes the mini-
mum and maximum eigenvalues of the matrix A, for any
matrix A ∈ Rn×n.

II. PRELIMINARY
A. DYNAMIC MODELS OF A TELEOPERATOR
The teleoperation system studied in this paper is consisted
of a pair of single manipulators with the same mechanism at
master and slave sides. Each n-dof manipulator is modeled
by Euler-Lagrange theory. The dynamic descriptions of tele-
operation system are expressed as:

Mm(qm)q̈m + Cm(qm, q̇m)q̇m + Gm(qm)
+Fm(qm, q̇m) = τm + JTm fh,

Ms(qs)q̈s + Cs(qs, q̇s)q̇s + Gs(qs)
+Fs(qs, q̇s) = τs − JTs fe.

(1)

where m and s represent master side and slave side, respec-
tively; q̈m ∈ Rn and q̈s ∈ Rn are the vectors of the joint
accelerations; q̇m ∈ Rn and q̇s ∈ Rn denote the joint velocity
vectors; qm ∈ Rn and qs ∈ Rn represent the vectors of the
joint positions. Mm(qm) ∈ Rn×n and Ms(qs) ∈ Rn×n denote
the inertia matrices; Cm(qm, q̇m) ∈ Rn×n and Cs(qs, q̇s) ∈
Rn×n are the matrices of centripetal and Coriolis torques;
Gm(qm) ∈ Rn and Gs(qs) ∈ Rn denote the friction torque
vectors; τm ∈ Rn and τs ∈ Rn represent the applied control
torques; fh ∈ Rn and fe ∈ Rn describe the human-operator
and environment forces applied to the manipulators at
master and slave side; Jm ∈ Rn×n and Js ∈ Rn×n denote
the master and slave Jacobian matrices. The robotic manip-
ulator in (1) has some well-known structure properties, for
i ∈= m, s, the properties are revisited as following [30]:
Property 1: The inertia matrix Mi(qi) is the symmetric

positive definite and has the upper and lower bounds as
0 < λmin(Mi(qi))I ≤ Mi(qi) ≤ λmax(Mi(qi))I , where I is
an identity matrix.
Property 2: The Ṁi(qi)−2Ci(qi, q̇i) is the skew symmetric

matrix. Thus the equation xT (Ṁi(qi) − 2Ci(qi, q̇i))x = 0 for
any vector x ∈ Rn is established.
Assumption 1: The human-operator force fh, environment

force fe, master Jacobian matrix Jm, and slave Jacobian
matrix Js are all assumed to be locally essentially bounded.
In practical applications, it is very difficult to get the exact

values of robot dynamic parameters. So uncertain dynamic
parts are introduced into the description of master and slave
robot models. For j = m, s, we have

Mi(qi) = Moi(qi)+1Mi(qi),

Ci(qi, q̇i) = Coi(qi, q̇i)+1Ci(qi, q̇i),

Gi(qi) = Goi(qi)+1Gi(qi).

where Moi(qi), Coi(qi, q̇i), and Goi(qi) represent the nominal
parts in dynamic models; the matrices 1Mi(qi), 1Ci(qi, q̇i),
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and vector 1Gi(qi) are the dynamic uncertain parts. There-
fore, dynamic models of teleoperation system (1) can be
rewritten as:

Mom(qm)q̈m + Com(qm, q̇m)q̇m + Gom(qm)
= τm + JTm fh + Hm(qm, q̇m, q̈m),

Mos(qs)q̈s + Cos(qs, q̇s)q̇s + Gos(qs)
= τs − JTs fe + Hs(qs, q̇s, q̈s).

(2)

where Hm(qm, q̇m, q̈m) and Hs(qs, q̇s, q̈s) are defined as:
Hm(qm, q̇m, q̈m) = −1Mm(qm)q̈m −1Cm(qm, q̇m)q̇m
−1Gm(qm)− Fm(qm, q̇m),

Hs(qs, q̇s, q̈s) = −1Ms(qs)q̈s −1Cs(qs, q̇s)q̇s
−1Gs(qs)− Fs(qs, q̇s).

(3)

Remark 1: The uncertain parts Hm(qm, q̇m, q̈m) ∈ Rn×1 and
Hs(qs, q̇s, q̈s) ∈ Rn×1 are upper bounded by the following
form:

‖Hm(qm, q̇m, q̈m)‖ ≤ hm, ‖Hs(qs, q̇s, q̈s)‖ ≤ hs. (4)

B. RBF NEURAL NETWORKS
RBF neural network can approximate any smooth nonlinear
function with arbitrary precision [31]. It has faster learning
speed and can avoid the local minimum problem, which
attracts the attention of researchers and applications on robot
control [32]. The RBF neural network can approximate a con-
tinuous function f (x) : Rd

→ Re, which can be described as:

f (x) = wTϕ(x)+ ε. (5)

where ϕ(x) = [ϕ1, ϕ2, . . . , ϕn]T denotes the output vector of
the hidden layer, each element varphii(x) can be expressed as:

ϕi(x) = exp
[
−‖x − ci‖2/(2bi)

]
, i = 1, 2, . . . , n. (6)

x ∈ Ax ⊂ Rd is the input data vector;w ∈ Rn×e is the weight
matrix to connect with hidden layer and output; ci ∈ Rd and
bi > 0 are the center and width of the i-th node in hidden
neuron; ε ∈ Rd is the approximation error of RBF neural
network.
Remark 2:According to the universal approximation prop-

erty of neural networks, the uncertain part of Hm(qm, q̇m, q̈m)
and Hs(qs, q̇s, q̈s) in (3) can be described by the RBF neural
networks as:{

Hm(qm, q̇m, q̈m) = W T
mϕm + εm,

Hs(qs, q̇s, q̈s) = W T
s ϕs + εs.

(7)

W T
m , W

T
s , εm, and εs are the ideal weights in approximation,

respectively. The approximation errors εm and εs have the
upper bounds as ‖εm‖ ≤ ε̄m, ‖εs‖ ≤ ε̄s.
Thus the dynamic models (2) can be written as:

Mom(qm)q̈m + Com(qm, q̇m)q̇m + Gom(qm)
= τm + JTm fh +W

T
mϕm + εm,

Mos(qs)q̈s + Cos(qs, q̇s)q̇s + Gos(qs)
= τs − JTs fe +W

T
s ϕs + εs.

(8)

Remark 3: As the assumption 1, human-operator torque
JTm fh and environment torque JTs fe have upper bounds which
can be described as

‖εm + JTm fh‖ ≤ ωm, ‖εs − J
T
s fe‖ ≤ ωs. (9)

C. THE LEMMAS USED IN THIS PAPER
In this paper, some lemmas [33] are applied to analyze the
control system:
Lemma 1: Assume if a > 0, b > 0, and 0 < c < 1, then

the following inequality holds:

(a+ b)c ≤ ac + bc.

Lemma 2: Considering a dynamic system as: ẋ = f (x),
initial state: f (0) = 0, x ∈ Rn. This system is finite-time
stable, if there exists a positive scalar function V (x), values a,
b, and c, satisfy a, b > 0, 0 < c < 1, and following inequality
holds:

V̇ (x) ≤ −aV (x)− bV c(x).

and the setting time can be calculated as

T ≤
1

a(1− c)
ln
aV 1−c(x0)+ b

b
.

III. CONTROLLER DESIGN
In this section, the adaptive finite-time control based on a
novel NTSM is proposed for teleoperation system with time-
variable delays and dynamic uncertainties. First, the integral
term of synchronization error is introduced to define the new
terminal sliding mode surface. The RBF neural networks
are employed to approximate the dynamic uncertain parts of
Hm(qm, q̇m, q̈m) and Hs(qs, q̇s, q̈s) in (2). The adaptive laws
are designed to converge synchronization tracking errors to
zero in finite-time. Then, the stability of closed-loop teleop-
eration system is proved via the Lyapunov stability theorem.

A. ADAPTIVE FINITE-TIME CONTROLLER DESIGN
We define the coordination joint tracking errors em, es
between master robot and slave robot is:

em(t) = qm(t)− qs(t − ds),

es(t) = qs(t)− qm(t − dm). (10)

where the dm and ds are the time-varying communication
delays between master and slave sides.
Assumption 2: The time-varying delays dm and ds are

assumed to have the upper and lower bound and satisfy:
0 < di < Di, |ḋi| ≤ D̄i, and |d̈i| ≤ D̃i for i = m, s.
The control object is that the position tracking errors

em and es can converge to a small neighborhood of zero
under asymmetric time-varying communication delays and
dynamic uncertainties, whether existing operator or environ-
ment forces in the teleoperation system.

The velocity errors ėm, ės and acceleration errors ëm, ës can
also be defined as following:

ėm(t) = q̇m(t)− q̇s(t − ds)(1− ḋs),
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ės(t) = q̇s(t)− q̇m(t − dm)(1− ḋm),

ëm(t) = q̈m(t)− q̈s(t − ds)(1− ḋs)2

+ q̇s(t − ds)d̈s,

ës(t) = q̈s(t)− q̈m(t − dm)(1− ḋm)2

+ q̇m(t − dm)d̈m. (11)

The nonsingular TSMs used in this work are defined as:

sm = ėm + λmem + ςm(em),

ss = ės + λses + ςs(es). (12)

where for i = m, s, function ςi(ei) = αisig(ei)ri1 +
βi
∫ t
0 sig(ei)

ri2dτ . Parameters of αi = diag(αi1, . . . , αin),
βi = diag(βi1, . . . , βin), and λi = diag(λi1, . . . , λin) are
all positive-definite diagonal matrices, 1 < ri1 < 2, 0 <

ri2 < 1. The function sig(x)r is defined as: sig(x)r =
[|x1|rsign(x1), |x2|rsign(x2), . . . , |xn|rsign(xn)]T , for vector
x = [x1, x2, . . . , xn]T ∈ Rn.
Remark 4: The sliding mode surface (12) contains the

integral term of tracking error, compared with the conven-
tional PD-type sliding surfaces, (12) can provide more stable
response and better dynamic characteristics.

Based on the differential definition of sig(x)r [22], the dif-
ferential of (12) to time is :

ṡm = ëm + λmėm + ς̇m(em),

ṡs = ës + λsės + ς̇s(es). (13)

where ς̇m(em) = αmrm1diag(|em|)rm1−1ėm + βmsig(em)rm2 ,
ς̇s(es) = αsrs1diag(|es|)rs1−1ės + βssig(es)rs2 .

The proposed controllers are designed as follows:

τm = τm1 + τm2 + τm3,

τs = τs1 + τs2 + τs3. (14)

The τm1 and τs1 are given as

τm1 = Mom[q̈s(t − ds)(1− ḋs)2 − q̇s(t − ds)d̈s
− λmėm − αmrm1diag(|em|rm1−1)ėm

−βmsig(em)rm2 ]+ Com(q̇m − sm)+ Gom,

τs1 = Mos[q̈m(t − dm)(1− ḋm)2 − q̇m(t − dm)d̈m
− λsės − αsrs1diag(|es|rs1−1)ės
−βssig(es)rs2 ]+ Cos(q̇s − ss)+ Gos. (15)

The τm2 and τs2 are given as

τm2 = −Km1sm − Km2sig(sm)σ ,

τs2 = −Ks1ss − Ks2sig(ss)σ . (16)

where Km1 = diag(km11, . . . , km1n), Km2 = diag(km21, . . . ,
km2n), Ks1 = diag(ks11, . . . , ks1n), and Ks2 = diag(ks21, . . . ,
ks2n) are all positive diagonal matrices, and 0 < σ < 1.

Considering the approximation and upper bound of uncer-
tain parts in the system, for i = m, s the third term of
controllers τm3 and τs3 are described as:

τi3 =

−Ŵ
T
i ϕi − (ω̂i + ηi)

si
‖si‖

, if ‖si‖ 6= 0

−Ŵ T
i ϕi, if ‖si‖ = 0.

(17)

where ω̂i is the upper bounds estimation of adaptive parame-
ters, ηi is the positive controller design parameters.

The adaptive tuning laws are designed in following terms:
˙̂Wi = 0iϕisTi . (18)
˙̂ωi = ξi‖si‖. (19)

where i = m, s, 0i and ξi are the positive constants.
Remark 5: In practical control, as the uncertain parameters

and communication delays with time-varying, ‖sm‖ and ‖ss‖
cannot exactly reach to the zero in finite-time, the adaptive
parameters ω̂m and ω̂s could be increased boundlessly [23].
The way to solve this problem is to improve the adaptive
turning law (19) as the dead zoom form:

˙̂ωi =

{
ξi‖si‖, if ‖si‖ ≥ µi
0, if ‖si‖ < µi, i = m, s.

(20)

where µi is the small positive constant.

B. STABILITY ANALYSIS
Theory 1. Considering the teleoperation system (1) with the
control laws in (14)-(17) and adaptive laws in (18) (20),
the closed-loop teleoperation system is stable and the states
can converge to zero as ‖sm‖ = 0 and ‖ss‖ = 0 in finite-
time, if the inequalitys of ηm ≥ |ω̃m| + ‖W̃ T

mϕm‖ and ηs ≥
|ω̃s| + ‖W̃ T

s ϕs‖ are established. Where W̃i = Wi − Ŵi,
ω̃i = ωi − ω̂i for i = m, s.

Proof: 1) Let us consider the Lyapunov candidate V for
system stability analysis as:

V =
1
2
sTmMomsm +

1
2
tr(W̃ T

m0
−1
m W̃m)+

1
2
ξ−1m ω̃2

m

+
1
2
sTs Mosss +

1
2
tr(W̃ T

s 0
−1
s W̃s)+

1
2
ξ−1s ω̃2

s . (21)

With the Property 2, dynamics in (8), acceleration
errors ëm, ës in (11), and the differential of ṡm and ṡs in (13),
the differential of function V is given as follow:

V̇ = sTm{τm +W
T
mϕm + εm + J

T
m fh − Comq̇m − Gom

+Comsm +Mom[−q̈s(t − ds)(1− ḋs)2 + q̇s(t − ds)d̈s
+ λmėm + ς̇m]} + sTs {τs +W

T
s ϕs + εs − J

T
s fe − Cosq̇s

−Gos + Cosss +Mos[−q̈m(t − dm)(1− ḋm)2

+ q̇m(t − dm)d̈m + λsės + ς̇s]} − tr(W̃ T
m0
−1
m
˙̂Wm)

− ξ−1m ω̃m ˙̂ωm − tr(W̃ T
s 0
−1
s
˙̂Ws)− ξ−1s ω̃s ˙̂ωs. (22)

Employing the control laws (14)-(16) we can get

V̇ = sTm[τm3+W
T
mϕm+εm + J

T
m fh − Km1sm − Km2sig(sm)

σ ]

+ sTs [τs3 +W
T
s ϕs + εs − J

T
s fe − Ks1ss − Ks2sig(ss)

σ ]

− tr(W̃ T
m0
−1
m
˙̂Wm)− ξ−1m ω̃m ˙̂ωm

− tr(W̃ T
s 0
−1
s
˙̂Ws)− ξ−1s ω̃s ˙̂ωs. (23)

If ‖sm‖ ≥ µm and ‖ss‖ ≥ µs, with (9), the control
laws (17), adaptive laws (18), (20), and for vectors x, y ∈ Rn,
xT y ≤ |xT y| ≤ ‖x‖‖y‖, we can get

V̇ =−[sTmKm1sm+s
T
mKm2sig(sm)

σ
+sTs Ks1ss+s

T
s Ks2sig(ss)

σ ]
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+ sTm(εm + J
T
m fh)− (ω̂m + ηm)‖sm‖ − ω̃m‖sm‖

+ sTs (εs − J
T
s fe)− (ω̂s + ηs)‖ss‖ − ω̃s‖ss‖

≤−[sTmKm1sm+s
T
mKm2sig(sm)

σ
+sTs Ks1ss+s

T
s Ks2sig(ss)

σ ]

+ωm‖sm‖ − (ω̂m + ηm)‖sm‖

− ω̃m‖sm‖ + ωs‖ss‖ − (ω̂s + ηs)‖ss‖ − ω̃s‖ss‖

=−[sTmKm1sm+s
T
mKm2sig(sm)

σ
+sTs Ks1ss+s

T
s Ks2sig(ss)

σ ]

− ηm‖sm‖ − ηs‖ss‖ < 0. (24)

It follows that if ‖sm‖ ≤ µm and ‖ss‖ ≤ µs, with (9), the
control laws (17), adaptive laws (18), and (20) we have

V̇ ≤ −[sTmKm1sm + s
T
mKm2sig(sm)

σ
+ sTs Ks1ss

+ sTs Ks2sig(ss)
σ ]+ ωm‖sm‖ − (ω̂m + ηm)‖sm‖

+ωs‖ss‖ − (ω̂s + ηs)‖ss‖

= −[sTmKm1sm + s
T
mKm2sig(sm)

σ
+ sTs Ks1ss

+ sTs Ks2sig(ss)
σ ]+ (ω̃m − ηm)‖sm‖

+ (ω̃s − ηs)‖ss‖. (25)

If ηm ≥ |ω̃m| + ‖W T
mϕm‖, ηs ≥ |ω̃s| + ‖W

T
s ϕs‖, we can

obtain

V̇ ≤ −sTmKm1sm − s
T
mKm2sig(sm)

σ
− sTs Ks1ss

− sTs Ks2sig(ss)
σ
≤ 0. (26)

Similarly, whether ‖sm‖ ≤ µm or ‖ss‖ ≤ µs, with (9),
the V̇ ≤ 0 is always hold. Therefore, the stability of closed-
loop control system has been verified.
2) The finite-time proof is described as following.

We define another Lyapunov function candidate:

U =
1
2
sTmMomsm +

1
2
sTs Mosss. (27)

Applying the (8), (9), (11), (13), the control laws
in (14)-(17), adaptive laws (18), (20), we have

U̇ ≤ −[sTmKm1sm + s
T
mKm2sig(sm)

σ
+ sTs Ks1ss

+ sTs Ks2sig(ss)
σ ]+ ‖sm‖‖W̃ T

mϕm‖ + ‖ss‖‖W̃
T
s ϕs‖

+ωm‖sm‖ − (ω̂m + ηm)‖sm‖

+ωs‖ss‖ − (ω̂s + ηs)‖ss‖

≤ −[sTmKm1sm + s
T
mKm2sig(sm)

σ
+ sTs Ks1ss

+ sTs Ks2sig(ss)
σ ]+ (|ω̃m| + ‖W̃ T

mϕm‖ − ηm)‖sm‖

+ (|ω̃s| + ‖W̃ T
s ϕs‖ − ηs)‖ss‖. (28)

As ηm ≥ |ω̃m| + ‖W T
mϕm‖, ηs ≥ |ω̃s| + ‖W

T
s ϕs‖, we can

obtain

U̇ ≤ −sTmKm1sm − s
T
mKm2sig(sm)

σ

− sTs Ks1ss − s
T
s Ks2sig(ss)

σ

= −sTmKm1M
−1
omMomsm − sTmKm2sig(sm)

σ

− sTs Ks1M
−1
os Mosss − sTs Ks2sig(ss)

σ . (29)

Km1M−1om , Km2M
−
σ+1
2

om , Ks1M−1os , and Ks2M
−
σ+1
2

os are the
diagonal matrices. We define

km1 = λmin(Km1M−1om ) =
λmin(Km1)

λmin(M
−1
om )

> 0,

ks1 = λmin(Ks1M−1os ) =
λmin(Ks1)

λmin(M
−1
os )

> 0.

According to the meaning of diagonal matrix and
lemma 1, we can write (29) as following relational expres-
sion:

U̇ ≤ −km1sTmMomsm − λmin(Km2)(sTmsm)
σ+1
2

− ks1sTs Mosss − λmin(Ks2)(sTs ss)
σ+1
2

≤ −km1sTmMomsm − λmin(Km2)(sTmM
−1
omMomsm)

σ+1
2

− ks1sTs Mosss − λmin(Ks2)(sTs M
−1
os Mosss)

σ+1
2 . (30)

We define

km2 = λmin(Km2)λmin(M
−
σ+1
2

om ) > 0,

ks2 = λmin(Ks2)λmin(M
−
σ+1
2

os ) > 0.

The (30) can be writeen as

U̇ ≤ −2km1(
1
2
sTmMomsm)− 2ks1(

1
2
sTs Mosss)

− 2
σ+1
2 km2(

1
2
sTmMomsm)

σ+1
2

− 2
σ+1
2 ks2(

1
2
sTs Mosss)

σ+1
2

≤ −k1U − k2U
σ+1
2 . (31)

where ρ =
σ+1
2 , k1 = min(2km1, 2ks1), and k2 =

min(2
σ+1
2 km2, 2

σ+1
2 ks2). So based on the lemma 2, the trajec-

tory errors at master and slave sides can converge to zero in
finite time. The reaching time can be calculated as

T ≤
1

k1(1− ρ)
ln
k1U1−ρ(0)+ k2

k2
. (32)

FIGURE 1. Teleoperation system simulation considered in simulation
analysis.

IV. SIMULATIONS
This section describes the simulation experiments to evaluate
the proposed control scheme. We used MATLAB software to
perform related simulation experiments. Themaster and slave
robots in teleoperation system are considered to be the 2-dof
robot armswith revolute joints. The system structure is shown
in Fig. 1, the dm and ds represent the communication delays
between master and slave controllers. We define zi1 = (mi1+
mi2)l2i1, zi2 = mi2l2i2, zi3 = 2mi2li1li2, zi4 = (mi1 + mi2)li1,
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and zi5 = mi2li2 for i = m, s. The dynamic descriptions of
teleoperation system are given as following:

Moi(qi) =
[
zi1 + zi2 + 2zi3cosqi2 zi2 + zi3cosqi2

zi2 + zi3cosqi2 zi2

]
,

Coi(qi, q̇i) =
[
−zi3q̇i2sinqi2 −zi3(q̇i1 + q̇i2)sinqi2
zi3q̇i1sinqi2 0

]
,

Goi(qi) =
[
Goi1 Goi2

]T
,

Fi(qi, q̇i) = fi1qi + fi2sign(q̇i),

Ji =
[
Ji11 Ji12
Ji21 Ji22

]
,

Goi1 = −zi4gcosqi1 + zi5cos(qi1 + qi2),

Goi2 = zi5cos(qi1 + qi2),

Ji11 = −li1sin(qi1)− li2sin(qi1 + qi2),

Ji12 = −li2sin(qi1 + qi2),

Ji21 = li1cos(qi1)+ li2cos(qi1 + qi2),

Ji22 = li2cos(qi1 + qi2).

For simulation analysis, we choose the parameters in
teleoperation dynamic as[34]: mi1 = 2.51kg, mi2 = 1.32kg,
li1 = 0.87m, li2 = 0.76m, fm1 = 0.3, fm2 = 0.2, fs1 = 0.2,
fs2 = 0.1, g = 9.8m/s2. The values of zi1, zi2, zi3, zi4,
and zi5 can be calculated by the above parameters, however,
in practical we can only obtain inaccurate parameters of
dynamic models, so we use the values of zi1 = 2.5, zi2 = 0.7,
zi3 = 0.8, zi4 = 3.0, and zi5 = 0.8 as the nomi-
nal model parameters for controllers design; the uncertain
parts are described as: 1Mm(qm) = 0.1sin(2t)Mom(qm),
1Cm(qm, q̇m) = 0.08sin(3t)Com(qm, q̇m), 1Gm(qm) =
0.05sin(3t)Gom(qm), 1Ms(qs) = 0.1sin(2t)Mos(qs),
1Cs(qs, q̇s) = 0.1sin(4t)Cos(qs, q̇s), 1Gs(qs) = 0.06sin(4t)
Gos(qs). The initial states of system are set as qm(0) =
[0.1, 0.15]T , q̇m(0) = [0, 0]T , qs(0) = [0, 0]T ,
q̇s(0) = [0, 0]T . The parameters of controllers are λm =
diag(6.6, 6.1), λs = diag(8.5, 7.9), αm = diag(11.5, 11.8),
αs = diag(9.5, 9.3), βm = diag(5.15, 3.15), βs =
diag(3.15, 3.35), rm1 = 1.2, rm2 = 0.48, rs1 = 1.3,
rs2 = 0.5, Km1 = diag(11.8, 11.2), Km2 = diag(8.0, 7.8),
Ks1 = diag(12.5, 12.1), Ks2 = diag(8.3, 7.8), σ = 0.12,
0m = 17.8, 0s = 15.8, µm = 0.05, µs = 0.05, ξm = 1.1,
ξs = 0.8. The time-varying delays at master and slave sides
are set as dm = 0.2+ 0.05sin(t)+ 0.06sin(3t)+ 0.02sin(6t)
and ds = 0.2 + 0.05sin(t) + 0.06sin(3t) + 0.02sin(8t)
in Fig. 2. We assumed that the human operator force exerts
at y direction as shown in Fig. 3, and no force is exerted in x
direction. The force applied from 10 s to 12 s and 20 s to 22 s
are 30N and 40N respectively. The slave robot is in the free
state with noexternal force.

We implement two parts of simulation experiments in this
section to show the performance of proposed control method:
the first part is synchronization tracking control analysis of
teleoperation with varying time delays, dynamic uncertain-
ties, and the human-operator force effect; the second part is
the comparisons with other synchronization control methods
under the same experimental conditions as above part.

FIGURE 2. Communication delays at master side dm and slave side ds.

FIGURE 3. External force of the human operator fh in y direction.

FIGURE 4. Joint positions of master and slave robots qm1, qm2, qs1,
and qs2.

FIGURE 5. Synchronization position errors at the master side
em1 and em2.

The simulation results for proposed control, PD1 and
PD2 are shown in Fig. 12 and Fig. 13, respectively. From
which, it can be seen that the proposed NTSM produces a
better tracking performance over PD control in [31] and [35].
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FIGURE 6. Synchronization position errors at the slave side es1 and es2.

FIGURE 7. Adaptive estimated parameters Ŵm and Ŵs of uncertain parts .

FIGURE 8. Adaptive estimated values ω̂m and ω̂s of upper bounds .

A. PERFORMANCE ANALYSIS OF
PROPOSED CONTROLLERS
The simulation results of master and slave robots joint posi-
tions are shown in Fig. 4. The synchronization tracking errors
em1, em2 at master side and the tracking errors es1, es2 at slave
side are shown in Fig. 5 and Fig. 6, respectively. It is obvious

FIGURE 9. Master control torque τm and slave control torque τs.

FIGURE 10. Tracking error comparison with other NTSM methods at
master side.

that the synchronization tracking errors can converge to zero
in finite time with operator force and varying time delays.
The adaptive estimated values Ŵm, Ŵs, ω̂m, and ω̂s are given
in Fig. 7 and Fig. 8. It can be obtained that the adaptive values
are bounded, which infer that the approximation errors of
RBF neural networks are bounded and the closed loop system
can stay in stable state. The control torques of master and
slave robots are shown in Fig. 9. The effect of time-varying
delays and sign functions cause the oscillations in control
torque signals. Our simulation experiments show that the
oscillatory degree of control torque is inversely proportional
to the speed of system regulation.

B. COMPARISON WITH OTHER CONTROL SCHEME
To elucidate the effectiveness of proposed control method,
the comparisons of control effect with NFTSM in [25]
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FIGURE 11. Tracking error comparison with other NTSM methods at
slave side.

FIGURE 12. Tracking error comparison with PD control at master side.

and [35] (NTSM1 and NTSM2) and the PD methods in [31]
and [36] (PD2 and PD1) are performed in this subsection.

The comparisons of tracking errors between pro-
posed controllers, NTSM1 and NTSM2 are shown
in Fig. 10 and Fig. 11. It is clearly that these three methods
can converge the synchronization errors to zero in finite
time. At the beginning of simulation, the proposed method
and NTSM2 have the similar convergence rates, and the
convergence rate of NSTM1 is the slowest. However, with

FIGURE 13. Tracking error comparison with PD control at slave side.

the operator force is exerted, the proposed control scheme
has the better robustness and convergence performance than
NTSM1 and NTSM2.

As the results, from the simulation analysis in this section,
the teleoperation system can achieve well stable state and
robustness with dynamic uncertainties, varying time-delay,
and operator force exerted.

V. CONCLUSIONS
In this paper, considering the dynamic uncertainties and time-
varying delays, the novel NTSM surface and dead zone
adaptive laws are introduced into controller design. With
the proposed control method, stable synchronization tracking
between master and slave robots in teleoperation system
is achieved, the robustness and convergence rates are also
improved. And then, the simulations with proposed method
and other control schemes are performed, and the effective-
ness of our controllers has been verified. Moreover, the prob-
lem of oscillation in control torques need to be satisfactorily
solved, and the proposed adaptive finite-time controller in
this paper will be verified by experiments when the hardware
platform of teleoperation system is built.
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