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ABSTRACT Depth estimation is essential for many human-object interaction tasks. Despite its advantages,
traditional depth sensors, including Kinect or depth camera, are always not wearable-friendly due to several
critical drawbacks, such as over-size or over-weight. Monocular camera, on the other hand, provides a
promising solution with limited burden to users and attracts more and more attentions in the literature.
In this paper, we propose a depth estimation method with monocular camera. Our main idea lies in the
weak-supervised learning model of monocular depth estimation based on left and right consistency. To learn
an accurate depth estimation, on our training step, we employ LiDAR data, which are generated by laser radar
with very high depth accuracy, to semi-supervise the learning scheme. We train our network on ResNet and
propose a new penalty function, which takes into account the LiDAR depth loss in training. Compared with
several state-of-the-art monocular camera depth estimators, our proposed method obtains the highest depth
accuracy.

INDEX TERMS Wearable devices, depth estimation, deep learning, weak supervision, sparse optimization.

I. INTRODUCTION
In the last decade, we have witnessed the bloom of wearable
devices in our daily life. Many researches have been deployed
on wearable devices with topics ranging from communica-
tions [1]–[3] to computer vision [4]. In wearable-device-
orientated computer vision, accurate depth has been proved to
improve the performance of many applications, e.g., semantic
segmentation [5], pose estimation and body posture recogni-
tion [6], with respect to its RGB-only counterpart.

Traditional methods of estimating depth from monocular
image enforce optical geometric constraints or some environ-
mental assumptions, such as Structure from Motion (SFM),
focus or variations in illumination. In absence of such con-
straints or assumptions, however to develop a computer vision
system capable of accurately monocular cues is a task. There
are estimating depth maps by exploiting challenging two
difficulties in this task. One is that a common computer vision
system can extract information used for inferring 3D structure
from monocular image like human brain. The other is that

the task is a technically ill-posed problem: a 2D image to an
infinite number of real world scenes.

In order to finally obtain reliable 3D structure information,
SFM algorithm [7] is necessary to make the longer baseline
between the two cameras. Research of binocular or multi-
view method has been well studied in general. However,
there are still some difficulties, such as weak texture region
matching in this topic. In addition, due to its efficiency, many
researchers focus on the restoration of scene depth informa-
tion from a single image captured from a monocular camera.
Monocular camera depth estimation is low-cost, convenient
and flexible in application and, as a result, suitable for light-
weight devices in particular the wearable devices.

In the absence of optical geometric constraints or related
environmental assumptions, estimating the scene depth from
a monocular image is a morbid issue, that is, a two-
dimensional image can be generated from infinite number
of real 3D scenes. This intrinsic uncertainty in mapping a
single image to a depth map determines that in principle it
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is impossible for the visual model to estimate an exact depth
value from a single image. However, it is also well-known
that human is able to perceive fairly reliable 3D structure
from one single eye. This shows that it is feasible to estimate
the depth map with certain reliability from the monocular
image. The difficulty of monocular camera depth estima-
tion is how to design a computer vision system to estimate
a relatively reliable depth map like the human monocular
vision.

In the field of computer vision,manyworks have been done
in the early stage to study the task of image depth estimation
from monocular images. In 2005, Saxena et al. [8] proposed
make3D. Make3D first runs superpixel segmentation of the
image. Taking each super-pixel as a plane, make3D estimate
the correlations of these planes by Markov random field
and finally estimates the depth of each plane. Subsequently,
Liu et al. [9] applied the continuous conditional random
field (CCRF) to the depth estimation model and, similar to
make3D, taken into account the correlation of the planes
corresponding to superpixels. This kind of methods are used
in the modeling process to extract the manual features from
the image, and these features do not represent the 3D structure
of the scene properly. Therefore, the performance of these
methods is not very satisfactory.

Recently, breakthroughs have been made in the field of
deep learning. CNN has achieved great success in many other
computer vision tasks mainly due to its powerful regression
and self-taught feature expressions abilities. The multi-scale
CNN proposed by Eigen et al. [10] is one of the first meth-
ods to apply CNN to monocular image depth estimation.
Multi-scale CNN is divided into two parts when dealing with
depth estimation tasks. First, the global structure of one scene
is estimated by the coarse-scale part of the network. Then,
the fine-scale part of the network uses the local information of
the underlying features of CNN to optimize the global struc-
ture.Multi-scale CNN also proposes a loss function for super-
vised learning of depth estimation problem. The loss function
consists of the absolute depth of the scene and the relative 3D
structure learning. In addition, Eigen and Fergus [11] in their
subsequent works extended their researches.

Following the study by Eigen et al., a large number of
works on the application of CNN-based depth estimation
from monocular images have been proposed. The DCNF-
FCSP model proposed by Liu et al. [12] unifies CNN and
CRF in a deep learning framework. CNN, in this work,
extracts relevant features from the image and CRF provides
the final prediction result which is smooth and edge-
preserving. Because of the superpixel segmentation, the
number of nodes in CRF is drastically reduced, making
the accurate inference process of the maximum posterior
probability (MAP) of the CRF computationally feasible.

Taking into account that the depth monitoring information
provided by sensors are not ideal in general, the performance
of deep learning models, thus, may be depressed due to the
uncertainty. Garg et al. [13] proposed a reconstruction error
using stereoscopic image pairs as the unsupervised learning

method. Their works enable the CNN train and predict depth
maps without in-depth monitoring information.

Many related work have demonstrated that the number
of CNN stack layers is very important for the performance
of CNN. Thanks to the birth of deeper CNN structure,
many computer vision tasks, including depth estimation, have
achieved better results. However, in depth estimation tasks,
the network structure is not easy to be too deep because
the potential and fatal problem of gradient disappearance,
which makes CNN difficult to train. In order to increase the
number of layers to obtain better performance and, mean-
while, to keep CNN easy to train, Cao et al. [14] applied the
deep residual network proposed by He et al. [15] to depth
estimation. Cao et al. quantified the scene depth and treated
the depth estimation problem as a pixel-level classification
problem.

Recently, Godard et al. [17] proposed an unsupervised
deep neural network with left-right consistency which shows
promising prediction accuracy. Themain idea in [17] is taking
the right camera image as the supervisor to train the left one
and vice versa. The model in [17] is able to build a 512×256
depth mapwithin 35ms, indicating real-time solution to many
wearable applications. In this paper, we use a similar fashion
as to [17] although we additionally employ the sparse LiDAR
depth data as the weak supervision signal to further optimize
Godard’s model.

The rest of this paper is organized as follows. Section II
gives the reviews of related works in depth estimation from
left-right consistency. Our network, in particular the con-
struction of LiDAR loss term, is described in Section III.
Section IV shows the experimental results on benchmark
datasets. We conclude our works in Section V.

II. MONOCULAR DEPTH ESTIMATION WITH
LEFT-RIGHT CONSISTENCY
Godard et al. [17] use an unsupervised learning method to
estimate the depth value of the monocular RGB image. The
basic idea is to match the pixels of left and right views to get
the disparity map. The depth map is calculated from Eq. (1)
based on the obtained disparity, camera baseline b and focal
length f .

d = b× f /disparity, (1)

The architecture proposed by Godard et al. [17] is inspired
by Mayer’s DispNet [28] which uses image reconstruction
loss to minimize photometric errors. In order to improve
estimation, Godard uses Left-Right Consistency to optimize
the model. Works in [17] first takes the left view as input and
use the right view as the supervision. The main idea in their
works is the assumption that with a perfect depth estimation
in hand, we are then able to perfectly reconstruct the right
view from the left one and vice versa. As shown in [17],
minimizing the joint loss of these two processes can get a
better prediction depth accuracy. Works in [17] also use four
different scales as inputs to improve the output resolution of
the neural network.
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In [17], the loss function follows
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The first part of the loss function, C l
ap and C

r
ap, are photo-

metric image reconstruction cost of the left and right camera,
respectively. C l

ap of the left camera follows
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ij)

2
+(1− α)

∥∥∥I lij − Î lij∥∥∥ , (3)

where the superscript l indicates the left camera in general,
SSIM is the structural similarity index and α is the weight.

In training, the network learns to generate images by
sampling pixels from the opposite stereo image. The image
formation model uses the image sampler of the Spatial Trans-
formation Network (STN) [22] plus the disparity map to sam-
ple the input image. STN uses bilinear sampling where the
output pixel is a weighted sum of four input pixels. Compared
to other methods [13], [23], the bilinear sampler is differen-
tiable and can be seamlessly integrated into fully convolution
architecture, a promising property indicating no additional
designs on cost function simplification or approximation.

The second part of the loss function, Cds, is the parallax
smoothness loss. This part encourages local smoothness of
the parallax and the L1 loss function is used in the disparity
gradient. Since depth discontinuities typically occur at image
gradients, similar to [24], we use image gradients to weight
the cost function using edge-aware terms.

C l
ds =

1
N

∑
ij

∣∣∣∂xd lij∣∣∣ e−∥∥∥∂x I lij∥∥∥ + ∣∣∣∂yd lij∣∣∣ e−∥∥∥∂yI lij∥∥∥, (4)

where ∂xd lij is the disparity gradients on the x-axis of the left
image and ∂xI lij stands for the image gradients on the x-axis
direction.

The third part,Clr , is the disparity left and right consistency
check. In order to produce a more accurate disparity map,
Godard trains the network to predict left and right image
differences and takes only the left view as input to the net-
work. In order to ensure consistency, Godard introduces the
L1 differential consistency as part of the model. The cost
function attempts to equalize the left parallax view to the
projected right parallax view.

C l
lr =

1
N

∑
ij

∣∣∣∣d lij − d rij+d lij
∣∣∣∣ , (5)

where d lij is the left camera disparity value at position (i, j)
and d r

ij+d lij
is the projected disparity value of the right camera.

To improve depth accuracy, Ma and Karaman [18] propose
a different new model for ordinary supervised learning [19]
with sparse depth samples and RGB images. Works in [18]
use the residual sampling module of Laina et al. [19] to learn
more features and, in return, improve the prediction accuracy
and output resolution.

III. SPARSE OPTIMIZATION UNDER WEAK
SUPERVISION
A. MODEL OPTIMIZATION
The left-right consistency provides a promising solution to
unsupervised depth learning. Despite its advantages, one crit-
ical drawback of this method is the relatively low accuracy in
depth estimation. The employment of accurate depth image,
even a sparse one, is shown in [18] to be able to improve
the accuracy. Motivated by the left-right consistency and
training by sparse depth image, in this paper, we propose to
use sparse LiDAR data to learn an accurate depth estimation
network. We show the framework of our proposed model
in Fig. 1.

Of each input raw color image, we first read its correspond-
ing LiDAR data and transfer the very accurate depth values
from the world coordinate to the image coordinate, or equiva-
lently, we obtain the ground truth sparse depth image.We then
train the left/right image along with their sparse depth image
in our network and use the trained network to predict the
depth values of any new monocular image. We show in Fig. 2
the input and output of our method where we take the raw
RGB image and the corresponding sparse LiDAR data as
input for training, and the trained network outputs the depth
estimation in return.

Given a sparse LiDAR image, we need to employ those
sparse depth samples in training, or equivalently to carefully
design the loss function to fit depth samples. Since the LiDAR
point cloud data is sparse, as shown in Fig. 2 (b), in this paper,
only the pixels with valid depth values are used to calculate
the loss function.We propose a new depth loss term, as shown
in Eq. (6).

Cs = αap(C l
ap + C

r
ap)+ αds(C

l
ds + C

r
ds)

+αlr (C l
lr + C

r
lr )+ αdpCdp, (6)

Compared with previous works, the most significant
change of our loss function in Eq. (6) is the last term Cdp,
the LiDAR loss, which follows

Cdp =
n∑
i=1

L(y∗i , yi), (7)

where y∗ is the ground truth depth value of the i-th pixel, y is
the estimated depth and L(y∗i , yi) is a loss function describing
the dissimilarity between y∗ and y. We will discuss on details
of L(·, ·) in Sec. III-B. Please notice that in Eq. (7), we only
sum up over pixels with valid LiDAR data, i.e., symbol n in
Eq. (7) is the number of pixels with LiDAR data, which is
much smaller than the total size of an image due to the sparse
LiDAR image we used in our method.

To employ LiDAR ground truth in our training, we need
first to map points generated by laser sensors (thus coor-
dinated by the world coordinate system) to the image
coordinate. It is well studied that given a certain point
with world coordinates [x, y, z]T , the corresponding image
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FIGURE 1. Framework of the proposed monocular depth estimation with Left-Right consistency and LiDAR weak
supervision. C: Convolution, UC: Up-Convolution, S: Bilinear Sampling, US: Up-Sampling and SC: Skip Connection.

coordinates [u, v]T follow

y∗

 uv
1

 = K

 xy
z

 (8)

where K is the camera internal matrix.

B. LOSS FUNCTION FOR LIDAR DATA
The loss function is used to measure the degree of inconsis-
tency between the predicted value y and the real value y∗.
It is a non-negative real-valued function and to indicate the
robustness of a model where a small value always indicates
an accurate estimation.

There are alternative common loss functions that perform
as promising candidates: the square loss function and the
absolute loss function. The absolute loss function is defined

by

L(y∗, y) =
∣∣y∗ − y∣∣ (9)

and the square loss function is

L(y∗, y) = (y∗ − y)2 (10)

Other than the choice of the loss function, another essential
parameter of our method is the LiDAR weight αdp. In our
paper, we test the alternative loss functions, i.e., the square
loss function and the absolute loss function on one benchmark
dataset and experimentally determine both the loss function
fashion and its weight (see Tab. 1 and Tab. 2 in Sec. IV-C).

IV. EXPERIMENTAL RESULTS AND ANALYSIS
The network of this article is implemented using
TensorFlow [20] and contains 31 million training parameters.
Using two Titan X GPUs, it takes about 12 hours to train on

TABLE 1. Comparison of absolute loss function and square loss function.

TABLE 2. Comparison of experimental results with different depths estimation loss term weights.
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FIGURE 2. Demonstration of our input and output. (a) Raw image,
(b) Sparse LiDAR, (c) Ground truth depth and (d) Our depth estimation.
(a) Raw image. (b) Sparse LiDAR. (c) Ground truth depth. (d) Our depth
estimation.

a 300,000 image data set (KITTI), which lasts for 50 epochs.
For a 512 × 256 image, the proposed neural network com-
pletes depth estimation in less than 35 milliseconds per
frame or 28 frames per second.

A. EXPERIMENT SETTINGS
In the optimization process, the weights of the first and sec-
ond term of the loss function are set to αap = 1 and αlr = 1,
respectively. The disparity map output by the neural network
is limited to be between 0 and dmax where dmax is 0.3× the
size of the given output image width. Since the employment
of multi-scale output in our model, the disparity between
adjacent pixels will differ by a factor of 2 between each scale
pair because of the upsampling. In order to remove errors
introduced by upsampling, the disparity smoothing terms αds
and scale r for each scale are scaled, in the purpose to get
smooth consistency among all levels. Thus, αds = 0.1/r . For
the depth-estimated loss item αdp, we set αdp = 0.1 accord-
ing to our experimental results which are not shown in this
paper.

For the choice of nonlinear part, we use exponential
linear units [21], instead of the commonly used modified
linear units (ReLU) [16], in our network. We have found
through experiments that ReLUs tend to prematurely fix the
intermediate-scale prediction parallax to a single value, lead-
ing to a narrow potential gap for further improvement by other
fine-tuning technologies. We replace the usual deconvolution
with the nearest neighbor sampling sum convolution [25].

As to training settings, we adopt Adam [26] to train the
neural network from scratch and cycle through 50 epochs,
where the size of each batch is 8, with Adam parameters
β1 = 0.9, β2 = 0.999 and ε = 10−8. The initial learning
rate is λ = 10−4 and is kept constant in the first 30 epochs.
Then, the learning rate becomes half of its previous value
every 10 epochs until the end.

We first test a gradual update schedule, as described by
Mayer et al. [28], in which the lower resolution image scale is
optimized. However, we find that optimizing four scales, not
the solo scale, can achieve more stable convergence. Similar
to [28], we use the same weights to measure the loss of each
scale because it is shown in many works that the unequal
weights may lead to a unstable convergence. In our work,
we test on batch standardization [27] but fail to find any
significant improvements introduced by the batch standard-
ization. Data enhancements are performed at the same time
when the data are read.

B. EVALUATION METRICS
In this paper, we adopt four common evaluation metrics,
absolute relative difference, square relative difference, root
mean squared error and accuracy with a certain threshold,
to verify the depth accuracy of each competing methods. The
definition of each metric are listed in the followings. In our
metric definition, y stands for an estimated depth value of one
pixel and y∗ is the ground truth value, T is the number of all
pixels.

Absolute relative difference (Abs Rel) is defined by

MAbsRel =
1
|T

∑
y∈T

|y− y∗|
y∗

(11)

Square relative difference (Sq Rel) is

MSqRel =
1
|T

∑
y∈T

|y− y∗|2

y∗
(12)

Root mean squared error (RMSE) is

MRMSE =

√√√√ 1
|T |

∑
y∈T

|y− y∗|2 (13)

As to Accuracy, we first define δ as depth error ratio of
one pixel, δ = max ( y

∗

y ,
y
y∗ ). Then, Accuracy is the number

of pixels with corresponding δ less than a threshold.

C. PARAMETER FINE-TUNING
In this section, we fine tune parameters of our method on
KITTI dataset. We test on three critical parameters in this
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TABLE 3. Input image resolution for each scale (units: pixels).

section, including the loss function (absolute vs. square),
the loss term weight αdp and the input image downsampling
scale factor.

In the first test, we compare the absolute loss function with
the square loss function, as defined in Sec. III-B. Experimen-
tal results are shown in Tab. 1. In Tab. 1, we compare the
alternative loss functions on KITTI dataset and, for a better
comprehension, we also list the performance of the network
in [17], which is considered as the benchmark method to
compare with.

As can be seen from Tab. 1, the model using the square loss
function obtains better performance in all metrics. Compared
with the benchmark method, the absolute value loss function
has a negative effect on the performance of the original
model. The square loss function is more sensitive to outliers.
When there are many outliers, the square loss function will
increase the penalty value and, as a result, accelerate the con-
vergence to the minimum value. In order to speed up the con-
vergence of the model and improve the prediction accuracy
of the model, in our following experiments, the square loss
function is used as the loss function of the depth estimation
loss term Cdp.
The LiDAR loss weight αdp is another critical parameter

in our method. The depth estimation loss term introduces
the LiDAR point cloud depth value as the ground truth into
the loss function, adding a weak supervision signal to the
original model, and guiding the predicted depth value to
approach ground truth. A proper αdp will benefit both con-
vergence speed and convergence direction. In order to verify
the influence of this weight on the convergence of the model,
in the second experiment, we test on several common choices
of αdp to experimentally set a fixed value of αdp. In this
experiment, we test with αdp = 10−1,0,1, as shown in Tab. 2.
In Tab. 2 we can see that the optimal αdp occurs at

αdp = 0.1. Although the LiDAR ground truth provides a
weak supervision to learning, the overall loss function still
prefers to use the traditional loss terms with larger weight and
the new LiDAR term with relatively low value.

Typically, there are two parts in our network: an encoder
and an decoder. The decoder uses a skip connection from the

encoder activation block to enable it to parse higher resolution
image details. There are four different scales (disp4 to disp1)
in [17] to output the parallax prediction, and the spatial reso-
lution on each subsequent scale is doubled, that is, the size of
the image input to each scale is the scale of the previous scale.
In this paper, we verify the use of multiple scales, as shown in
Tab. 3, for depth estimation. The corresponding experimental
results are shown in Tab. 4. In Tab. 4, the term ’scale i’ means
we employ the leading i scales in the network. Thus, the first
row in Tab. 4 refers to the simplest network in this test with
only one scale as input to our network and, in contrast, the last
row means the raw image is downsampled in all four scales
and we push all four downsampled (except the very first raw
input) to our network.

As shown in Tab. 4, there is not an overwhelming winner
in terms all seven metrics. Promising candidates come from
scale 1 and scale 4 which claims three and four champions
respectively in our test. Considering the slight superiority of
scale 4, or the employment of all four downsampled images,
over its counterpart, in this paper, we use scale 4 in our
method.

D. COMPARISON WITH STATE-OF-THE-ARTS
In this section, we compare our network with several state-
of-the-art methods to verify the superiority of our method.
The competing methods consist of works in [10] and [29]
and [17]. In [29], there are two kinds of networks, entitled
coarse and fine respectively. As to [17], we implement [17]
on both VGG and ResNet. Thus, in summary there are in
a total of five competing methods in this test, as shown in
Tab. 5.We also show in Fig. 3 several demonstrations of depth
estimation by all competing methods.

According to Tab. 5 we can observe the followings:
1) Depth estimation by left-right consistency performs

slightly better than the traditional estimation methods, such
as works in [10] and [29]. Left-right-consistency-based meth-
ods, i.e., works in [17] and ours, show relatively better results
compared with the non-consistency methods. In Tab. 5, our
method shows a significant improvement over the coarse net-
work in [10], e.g., 48.5% lower in terms of absolute relative
difference.

2) ResNet model can improve the performance compared
with VGG. Since the number of ResNet layers is higher than
VGG, the network is able to handle complicated hidden struc-
ture of depth mapping, local information and image features.
In Tab. 5, the replacement of VGG with ResNet offers an
8.8% increase in terms of RM SE of our method and 4.9%
of Godard et al. [17].

TABLE 4. Comparison of experimental results with different depths estimation loss term scale.
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FIGURE 3. Our monocular depth estimation results.
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TABLE 5. Comparison of Experimental Results of Two Neural Network Structures

3) Using LiDAR as weak supervision improves depth esti-
mation. Compared with its rivals, the proposed LiDAR-weak-
supervision on ResNet reaches the best performance in terms
of all metrics. The involvement of LiDAR data, even in a
sparse fashion, is able to improve depth estimation. E.g.,
in terms of square relative difference, the use of LiDAR data
obtains an increase of 8.7% compared with its non-LiDAR
counterpart.

V. CONCLUSION
In this paper, we propose a monocular depth estimation
method which is suitable for wearable devices. We train on
ResNet with sparse ground truth values coming from LiDAR
data and improve the depth estimation accuracy. In our train-
ing scheme, we construct our expected outputs in two fash-
ions. First, we adopt the left-right consistency model and take
the right camera images as the expected outputs under the
assumption that with an accurate depth estimation, we should
be able to re-construct images of the right camera from that
of the left one. Second, we use laser radar to directly obtain
the real depth of several individual points and take the LiDAR
depth as the ground truth values to compare with. We propose
a new cost function in our network to combine both camera-
consistency and LiDAR ground truth in training. We com-
pare the proposed method with several state-of-the-art depth
estimation methods and verify the superiority of our method.
Our proposed network can be implemented on a light-weight
device which requires very limited additional burden to users
and, as a result, is wearable-friendly in general.
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