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ABSTRACT Ultra-dense small cell networks represent a key future network solution that can help meet
the exponentially rising traffic requirements of modern wireless networks. Backhauling these small cells are
an emerging challenge to the extent that various cells are likely to have different backhaul constraints. The
user-centric backhaul scheme has been proposed in the literature to jointly exploit the diversity in users’
requirement and backhaul constraints. In this paper, we propose a novel scheme, termed the memory-based
hybrid scheme, which additionally also exploits the predictability in a user’s mobility. We compare the novel
scheme to two variants of memory-less user-centric backhaul implementations and show significant gains
in convergence time (15%), user-centric KPIs (51% and 82%) at the negligible cost 2% loss in cumulative
throughput. The novel scheme requires additional memory in user-devices to store learned values, which is
nonetheless well justified in view of the considerable gains achieved.

INDEX TERMS Heterogeneous networks (HetNets), user cell association, user-centric, backhaul, memory-
based learning.

I. INTRODUCTION
The proliferation of smartphones in the recent years has
led to an astounding growth in the mobile data traffic. It is
anticipated that mobile subscriptions will reach 8.9 billion by
2022 [1] thus increasing aggregate required throughput by a
factor of 1000 [2]. In addition to this, with the introduction
of role-specific disparate devices (ranging from simple sen-
sors to smartphones) in the past few years, the user service
requirements have become diverse. Users tend to prefer one
performance metric over another due to device capabilities,
host application genre, and user preferences. The fifth gen-
eration (5G) mobile networks address the aforementioned
challenges of the exponential increase in demands for wire-
less bandwidth as well as users’ covetous approach towards
high quality service requirements through densification of
small cells, known as Heterogeneous Networks (HetNets).
However, due to economically infeasible backhaul options
that were available at the advent of small cells, the bottleneck
has shifted from air interface to the backhaul [3], [4]. With
backhaul as the new bottleneck and users’ diverse service

requirements coupled with their increasing demands for high
quality, self optimization has become an inevitable necessity
for 5G. Accordingly, self optimization network-based (SON-
based) backhaul-aware user cell association techniques with
convincing results have been proposed in the literature and
are presented in what follows.

Driven by multi-tier heterogeneous cellular networks and
growing number of bandwidth-hungry applications, uplink
traffic is generated more than downlink traffic in an uncor-
related fashion, and thus state-of-the-art max-received signal
strength (RSS)-based UA becomes suboptimal [5]. Hence,
Elshaer et al. [6] introduce the concept of decoupled down-
link/uplink (DUDe) user cell association (UA) for load
balancing keeping in view the cell load and backhaul
throughput constraints. Simulations demonstrate that DUDe,
a heuristics-based UA algorithm, ameliorates throughput
for cell edge users as compared to max-RSS-based UA.
Similarly, a distributed UA scheme is proposed in [7] that
balances the network load while taking into account the
backhaul delay and reliability constraints. It is shown through
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simulations that the proposed algorithm leads to significant
improvements in reducing delay and improving reliability
when compared against traditional UA scheme. A joint down-
link UA based on sum user rate maximization for two-tier
HetNets with regard to wireless backhaul constraints is inves-
tigated in [8]. Z and R [9] propose a waterfilling-like UA
scheme that is based on users sum rate maximization, while
keeping in view the specific backhaul constraints for small
cells. A heuristics-based UA algorithm is presented in [10]
that addresses backhaul load balancing while imposing con-
straints on backhaul constraints along with radio conditions.
Simulation results signify that the proposed algorithm copes
up with backhaul congestion situations better than the tradi-
tional UA schemes. Pantisano et al. [11] conceive a content-
aware game theoretic-based UA algorithm that equips small
cells with capabilities of caching multimedia content in order
to improve users’ quality of experience (QoE) under backhaul
throughput constraints.

Although designed to optimize constrained backhaul links,
the aforementioned UA schemes nonetheless operate in cell-
centric fashion and fail to account for the diverseQoE require-
ments of users. Keeping in view the dominant role of users’
key performance indicators (KPIs) in 5G era [12], a novel
concept of user-centric backhaul-aware (UCB) UA is devised
in [13]. The UCB scheme is focused on maximizing users’
experience, while considering different backhaul attributes
such as throughput, latency, reliability, etc. It enables users
to associate with a potential cell that could satisfy their
QoE requirements. Cells exploit Q-learning to dynamically
optimize their cell range expansion offsets (CREOs)—which
represent network end-to-end constraints and capabilities—
according to network and user indicators. It is shown through
simulations that the proposed UCB scheme leads to substan-
tial improvements in users’ QoE, while falling fractionally
short of the capacity achieved with cell-centric backhaul-
aware schemes. In our previous work [3], we presented an
alternate way of implementation of UCB scheme, where
we equip small cells with fuzzy Q-learning capabilities to
virtually tailor their range as per users’ service requirements.
The inherent flexibility of fuzzy Q-learning coupled with a
well devised exploitation-exploration strategy enables fuzzy
Q-learning-based UCB scheme to yield superior results and
makes it computationally much more efficient as compared
to basic UCB scheme.

Though having significantly diverse service requirements,
users’ exhibit a high level of predictability in their mobility
patterns [14]. Users usually visit business areas or working
places during daytime or weekdays while return to residential
areas at nights or on weekends [15]. Studies reveal that users’
mobility depends on historical patterns and can be predicted
with an accuracy of 93-95% even for those who travel over
long routes/distances [14], [16]. A few recently proposed
UA schemes explored the aspect of exploiting predictable
users’ mobility patterns for delivering high-quality services.
For instance, Cacciapuoti [17] propose a distributedmobility-
aware UA strategy for 5G mmWave networks that takes into

account the load of the small cells. Simulation results validate
superior performance of the proposed UA algorithm as com-
pared to the traditional RSS-based UA. In [18], a two-step
mobility-aware hybrid scheme is proposed, which involves
both user and the network, for radio access technology (RAT)
selection in a multi-RAT network. In the first step, a user
selects a list of best available networks based on RSS and
user mobility profile. In the second step, the network asso-
ciates the user to an appropriate RAT based on multi criteria.
Simulation results indicate high precision achieved with the
proposed scheme than that with the traditional approach. The
aforementioned mobility-aware schemes, however, do not
consider backhaul constraints for UA and hence may lead to
unsatisfactory users’ performance [10]. Accordingly, we pro-
pose a novel memory-based user-centric backhaul-aware UA
scheme that exploits high predictability in users’ mobility
patterns to guarantee user-centric services, while respecting
backhaul constraints. In our scheme, cells broadcast multiple
optimized bias factors with each bias factor representing an
end-to-end network capability and constraint. In our pro-
posed scheme, cells employ a hybrid approach, exploiting
strengths of both fuzzy Q-learning and Q-learning, to dynam-
ically tailor their virtual footprints according to the network
and users indicators. The novelty of this work is that cells,
equipped with cognizant abilities, are able to store and sub-
sequently broadcast optimal bias values corresponding to
different users’ mobility patterns as well as QoE profiles in
order to have a significant reduction in optimization time.
On the other hand, users keep a location-based history of
normalized measured QoE and utilize the same besides user-
centric bias values to select a cell that potentially meets their
QoE requirements.

The main contribution of this paper is the novel memory-
based user-centric backhaul-aware UA scheme which inves-
tigates memory-awareness both from small cells and users’
perspective. Our proposed scheme yields remarkable gains
in users’ Key Performance Indicators (KPIs), which would
dominate the 5G era [12], as compared toMemory-Less (ML)
Q-learning-based scheme [13] and ML fuzzy Q-learning-
based scheme [3]. Furthermore, our proposed scheme is
computationally more efficient than ML schemes and thus
practically relevant to 5G since it enables dense number of
small cells, one of the key enablers of 5G, to simultaneously
optimize bias values.

The rest of the paper is organized as follows. Section II
presents the system model, whereas distributed SON-based
UA problem is formulated in Section III. Our proposed
memory-based scheme supported by preliminary results,
analysis and insights is described in detail in Section IV.
We conclude the paper in Section V.

II. SYSTEM MODEL
A two-tier downlink HetNet comprising N small cells
overlaid within C macro cells is considered. The geo-
graphic locations of small cells and macro cells are
defined by (xn, yn), n ∈ {1, 2, . . . , n, . . . ,N } and (xc, yc),
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c ∈ {1, 2, . . . , c, . . . ,C} respectively. Each cell gets an equal
share of a set of K resource blocks, where each resource
block consists of s subcarriers each having a bandwidth of
B Hz, to deliver services to its associated users. Every cell
broadcasts O number of CREOs, each CREO corresponds
to different end-to-end limitations and capabilities of the
network such as throughput, latency, energy efficiency, etc.
A high CREO value signifies that the cell is capable to
deliver better end-to-end network performance, whereas a
low CREO value represents end-to-end constraint of the net-
work for the respective CREO. Heterogeneous technologies
including optical fiber, G.fast and microwave are utilized for
backhauling small cells, however, each small cell is provi-
sioned with only one last-mile backhaul link to connect to the
core network. We impose this restriction in order to inhibit
the complexity of the routing algorithm that increases with
increase in the number of last-mile backhaul links between
a small cell and core network. We finally assume that all
the small cells have the same RAN architecture (D-RAN,
C-RAN, F-RAN).

We randomly distribute a total ofU users with diverse qual-
ity of service requirements in the system. Each user associates
relative weights Wq with different QoS metrics Q, termed
as QoE targets, depending upon its application require-
ments, preferences, and device specifications. We assume
that the number of QoE parameters of each user is equal
to the number of CREOs broadcasted by the cells. How-
ever, a nil value is assigned to the irrelevant CREO or QoE
parameter. Users’ mobility is modelled according to random
waypoint (RWP) mobility model in which a user reaches
a randomly chosen destination waypoint l with a con-
stant speed. We consider different users’ mobility patterns
M = {m1,m2, . . .mu, . . . ,mU }, where each mobility pattern
mi, i ∈ {1, 2, . . . u . . . ,U} contains distinguished number
of users preferring high quality services. For the scope of
this paper, we redefine the term mobility pattern from a
small cell’s perspective as the unique number of localized
users categorized according to their high and/or low weight
associated to various performancemetrics. For instance, if we
take the case of two attributes namely throughput and reli-
ability then mobility pattern is the total number of users,
whose locations are known, grouped under the categories of
high-high, high-low, and low-high weights for throughput
and reliability respectively. For this purpose, we propose a
paging system [19] for macro cells that periodically collects
information about users’ location as well as weights allocated
to the attributes and disseminates the same to the small cells.
Since the focus of this paper is UA scheme, a descriptive
detail of the paging system is beyond the scope of this paper.
We illustrate two-tier systemmodel comprisingC macro cells
and N small cells in Figure 1.
We propose that small cells are able to optimize and subse-

quently keep bias values against various mobility patterns in
their memory. The set of mobility patterns against which the
bias offsets are already stored in the memory of a small cell n
is referred as Mn = {m1,n,m2,n, . . .mu,n, . . . ,mU ,n} with an

FIGURE 1. System model with C macro cells and N small cells.

associated parameter aMn such that

ami =

{
1, if mi,n ∈ (M ∩Mn)
0, if mi,n /∈ Mn

(1)

To exploit the predictability in mobility pattern, each user
keeps a location-based history of its measured QoE when
served by the cell n and utilizes this informationwhile ranking
potential candidate cells for association purpose. We now
elaborate the system model in the ensuing paragraphs with
the help of related equations.

The signal strength received on the downlink by a user
u from a small cell n over a resource block k,wherek ∈
{1, 2, . . . , k, . . . ,K }, is given by (2).

RSSn,u,k =
Pn
Un
× Hn,u,k (2)

Hn,u,k = χn × d−αnn,u × εn,u,k (3)

where Un represents the total number of users served by
the cell n and Pn is the total transmitted power of the cell n.
To emphasize upon the association problem and highlight the
potential gains of our proposed scheme, we have assumed
that only one resource block can be assigned to a user and,
hence, Pn instead of Pn,k—the power transmitted by cell n
over resource block k—is utilized in (2). The channel gain
between the transmitter, that is small cell n in this case,
and the receiver, the user u, is represented by Hn,u,k and
is given by the mathematical expression in (3). The power
of the received signal deteriorates in accordance with log-
distance path loss model, where αn and χn donate the path
loss exponent and propagation constant that are specific to
the cell n. The Euclidean distance between the cell n and the
user u, with geographic locations represented by (xn, yn) and
(xu, yu) respectively, is given by dn,u. Log-normal shadowing,
represented by εn,u,k , is assumed to be similar on all sub-
channels allocated to the single user u by the small cell n in
a resource block k . It is pertinent to mention that we do not
includemulti-path fading in the channel gain since the subject
fading varies rapidly than the time required to adjust a CREO
and hence gets averaged out.
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Each user ranks all the cells including macro cells accord-
ing to the criteria given by (4)

Ru,n =


RSSn,u,k +

∑|O|

q=1
wu,qvn,q

+wu(
∑|O|

q=1
wu,qQ

′

l,n,u,qt), if n ∈ N

RSSn,u,k , otherwise

(4)

where wu,q is the weight the user u allocates to the QoE
attribute q and vn,q is the respective bias value broadcasted by
the cell n. denotes The time-averaged normalized perceived
QoE of the user u served by the cell n at a location l is denoted
byQ

′

l,n,u,q, and t is the time-averaged number of associations
occurred between user u and cell n during last d visits to a
location l. To avoid overshadowing of user-centric values,
a factor of wu is multiplied with QoE history values in (4).
The user attempts to get associated with the highest ranked
to the lowest ranked candidate cell until it finds a cell, known
as server, with available resource blocks or is declared out of
coverage. In case, a user u successfully associates to a cell n
over {1, 2, . . . , k, . . .K } resource blocks, the corresponding
SINR is given as follows:

SINRn,u,k =
RSSn,u,k

σ 2 +
∑N

i=1,i 6=n RSSi,u,k +
∑M

j=1,j 6=n RSSj,u,k
(5)

where σ 2 defines the noise power in the received sig-
nal. The interference caused by macro cells and remain-
ing small cells is expressed by

∑M
j=1,j 6=n RSSj,u,k and∑N

i=1,i 6=n RSSi,u,k respectively. The theoretical bound on the
throughput achieved by the user u corresponding to the above-
mentioned SINR is represented by Shannon’s theorem in (6).

Tn,u,k = B log2(1+ SINRn,u,k ) (6)

where the bandwidth of resource block allocated to the
user u is defined by B. The required backhaul throughput
BHn is computed on the basis of the over-the-air throughput
achieved by the associated users of cell n and is given by (7).

BHn =
|Un|∑
u=1

Tu,n,k × Gn (7)

where the factorGn represents the signalling overhead that
varies based on the RAN architecture, backhaul topology and,
technology of the cell n. Since the bottleneck has shifted from
radio to the backhaul, the effective throughput achieved by the
user u now depends on the constrained backhaul capacity δn
of the serving cell n. We propose that all users associated with
a cell n suffer a uniform reduction in their effective through-
put, according to (9), if the required backhaul throughput
becomes larger than the available backhaul capacity thus
resulting in congested backhaul links.

S = δn − BHn (8)

T ′n,u,k =

{
Tn,u,k , if S ≥ 0
Tn,u,k − S

|Un|
, otherwise

(9)

III. PROBLEM FORMULATION
The centralized optimization techniques aim to maximize the
system-level objective function based on a given set of con-
straints and hence may become intractable with an increase
in the number of CREOs, the number of intelligent cells
per cluster or the number of available last-mile backhaul
links. To this end, we propose the distributed optimization
that enables cells to individually maximize their throughput
while respecting the identified constraints. In other words,
the objective is to maximize the network capacity while
exploiting the predictability in users’ mobility patterns to
keep QoE shortage experienced by users to the minimum
possible under backhaul constraints. Distributed optimization
has the following benefits over centralized optimization.
Firstly, distributed optimization reduces complexity from

O(V .O.N ) to O(V .O), where V defines the range of bias
values, a CREO can be assigned, O is the total number of
CREOs, and N represents the number of small cells included
in the cluster and aiming to achieve optimization objective.
Secondly and more importantly, the complexity of dis-

tributed optimization does not depend on the number of
intelligent small cells available in the network. This point
is critical, since practical deployments of the 5G network
would likely deploy ultra dense small cells, for the following
reasons. 1) Unlike centralized optimization, which requires to
collect data on a network level through a lengthy and some-
times cumbersome process, distributed optimization does
not need a network-wide view or data collection and hence
converges at a faster rate than the centralized optimization.
2) Distributed optimization dynamically adapts to network
changes such as addition of nodes, modification of topology,
introduction of radio features etc.

We articulate the distributed optimization problem in the
following equations

max
sn

Tn(sn), ∀n ∈ N (10)

Tn =
|Un|∑
u=1

T ′n,u,k (11)

subject to the following identified constraints:

δn − BHn ≥ 0 n ∈ N (12)

UQ′n,q =
Un∑
u=1

wu,q
Q′u,q − Qu,q

Qu,q

≤ φq Qq ∈ Qu, n ∈ (N ∪ C) (13)

ami = 1 ∀mi ∈ Mn, n ∈ (N ∪ C) (14)

vn,q,mi × ami = v∗n,q,mi n ∈ (N ∪ C), q ∈ Q (15)

where Tn represents the capacity of the cell n and is com-
puted through sum of effective throughput achieved by the
associated users of cell n, please refer to (11) for its expres-
sion. sn = [Vn,1,Vn,2, . . . ,Vn,o, . . . ,Vn,O] represents the
possible combinations of bias values for cell n. Cells consider
the backhaul constraint, defined by (12), while aiming tomeet
the minimum QoE requirements of the users. Furthermore,
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cumulative QoE gap (the difference between perceived and
target QoE) of all users, UQ′n,q, is required to be kept below
theminimumpreset QoE thresholdφq, as represented by (13).
Q′u,q is the measured QoE, whereas QoE Qu,q is the target
QoE of a user u for an attribute q. A users’ mobility pattern
encountered more than once by the cell n should be stored in
its memory with associated parameter ami having value as 1.
Moreover, the bias values kept against the stored mobility
patterns should be the optimal ones v∗n,q,mi , as mentioned
in (15).

IV. PROPOSED MEMORY-BASED USER-CENTRIC
BACKHAUL-AWARE UA SCHEME
It has been shown that users, though having significantly
diverse service requirements, exhibit high predictability in
their mobility patterns. In 5G era, where user satisfac-
tion would be one of the crucial parameters, the regular-
ity in users’ mobility patterns may be exploited by small
cells to deliver content-aware services. The main challenge
in this regard, however, stems from considerable diversity
that exists in 5G in terms of heterogeneous backhaul solu-
tions, transmit power disparity radio access cells, disparate
devices and applications, in addition to the new backhaul
bottleneck. Hence, it becomes inevitable for small cells to
have intelligence in order to guarantee mobility-aware user-
centric services keeping in view the capabilities and con-
straints of the backhaul network. ML Q-learning-based UCB
scheme, when compared against cell-centric backhaul-aware
schemes, improves users’ QoE significantly while falling
fractionally short (0.064%) in terms of network capacity [13].
However, it suffers with impractical increase in iteration time
with an increase in the number of small cells per cluster
and thus becomes computationally limiting [3]. ML fuzzy
Q-learning-based UCB [3] scheme not only overcomes this
limitation through a well-devised exploration-exploitation
strategy but also improves users QoE significantly (12%),
while lagging behind negligibly (1.96%) in terms of over-
all system capacity as compared to Q-learning-based UCB
scheme.

Our proposed scheme, exploiting regularity in users’
mobility patterns, is a two-phase scheme—memory-less
UCB and memory-aware UCB—that captures the benefits
of both ML fuzzy Q-learning-based (substantial gains in
users’ QoE and computational efficiency) and Q-learning-
based schemes (comparable network capacity). Memory-less
UCB enables cells to learn bias values using fuzzy Q-learning
for any new users’ mobility pattern, whereas memory-aware
UCB exploits Q-learning to optimize already learnt bias val-
ues for any mobility pattern. Both memory-less UCB and
memory-aware UCB phases of our proposed scheme have
been expounded upon in the subsequent paragraphs.

Memory-less UCB deals with learning of CREOs when-
ever a mobility pattern is encountered for the very first time.
We exploit the following strengths of fuzzy Q-learning to
address the problem of memory-less UCB. Firstly, fuzzy
Q-learning is suitable to the problems where state (input and

action) space are continuous in nature. It associates fuzzy
sets to the real-valued state space variables thus, sometimes,
resulting in reduced state-action pairs. Secondly, the adja-
cent linguistic variables of a fuzzified input overlap par-
tially to render more flexibility to fuzzy Q-learning besides
smoothness and robustness [20]. Thirdly and more signif-
icantly, employing fuzzy Q-learning in memory-less UCB
leads to convincing improvements in users’ KPIs than that of
Q-learning [3]. The optimized CREO values learnt in this step
are stored in the memory against respective mobility patterns
for subsequent use.

In this phase, a cell acting as fuzzy Q-learning agent
learns to map CREOs values (actions) against articulated
fuzzy rules through repeated interaction with its environment,
which includes dynamic nature of radio conditions, back-
haul throughput variations, and users’ traffic patterns. To this
end, we fuzzify the two inputs namely required backhaul
throughput (BHn, req_bh_tput) and cumulative users’
QoE gap (UQ′n,q, cum_users’_qoe _shortage). Based upon
the first two constraints of the identified optimization prob-
lem, we assign two linguistic variables with trapezoidal mem-
bership functions to each of the fuzzified inputs. We keep
the number of linguistic variables to two for each fuzzified
input due to the following reasons. Firstly, based on linguistic
variables, fuzzy Q-learning builds fuzzy control rules and
stores a quality matrix in memory for depicting appropri-
ateness of each fuzzy rule with respect to each conclusion
[21], [22]. Hence, less number of linguistic variables means
less number of fuzzy rules that ultimately leads to reduced
memory requirements. Secondly, to keep computation time
that increases exponentially with increase in the number of
fuzzy rules within reasonable bounds. Furthermore, a trial
and error approach is applied to reach the selected core width
and boundary regions of the membership functions; too much
overlapping of adjacent linguistic variables lead to frequent
activation of multiple fuzzy rules at a time thus increasing
computation time drastically without having a significant
effect on performance, while too less overlapping of adjacent
linguistic variables compromises smoothness and flexibility.
The salient details regarding memory-less UCB are presented
in Table 1.

Memory-aware UCB phase gets activated whenever a
mobility pattern, for which a cell already keeps optimal
values learnt through the memory-less phase in its memory,
is observed again. In this part, we employ Q-learning to
verify the optimality of stored CREOs values. The motivation
behind using Q-learning for this step is its simplicity and
efficient handling of problems having discrete input and/or
action space. In the context of this phase, cells equipped with
Q-learning capability tend to reach optimal CREOs values
(actions) for various states of its dynamic radio environment.
For the current step, we modify action space by appending
an additional action XM , named as memory check, to it
that represents that a cell would straightaway look for the
CREOs values in its memory instead of indulging itself in
exploitation and exploration phase. We present the salient
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TABLE 1. Salient details of the memory-less UCB phase of our proposed
scheme.

details of memory-aware UCB in Table 2. Employing fuzzy
Q-learning and Q-learning for memory-less and memory-
aware phases respectively enables our proposed scheme to
exploit the strengths of both these techniques and makes our
proposed scheme a hybrid one on the whole.

The optimal policy in Q-learning and fuzzy Q-learning
is governed by choosing the action that maximizes cumula-
tive reward over a time. However, applying optimal policy
too early in the learning phase may lead to local minima
since Q or FQ values are not significant in the beginning.
Hence, it becomes necessary that all possible actions against
every state must be evaluated before sticking to optimal pol-
icy; these phases are called as exploration and exploitation
respectively. Nonetheless, in multi-agent environment (small
cells) with a large set of actions (CREO values) complete
exploration may consume ample amount of time, whereas

TABLE 2. Salient details of the memory-aware UCB phase of our
proposed scheme.

TABLE 3. List of simulation parameters.

on the other hand, implementing optimal policy too early
may yield undesirable results. Though statistical methods
like epsilon greedy and Boltzmann selection address this
issue [23], we implement a simple reward-based exploration
and exploitation strategy in our proposed scheme, for both
the phases, without compromising on its optimality. Our pro-
posed scheme frequently alternates between exploration and
exploitation. In other words, the proposed scheme sequen-
tially explores and immediately shifts to exploitation if the
last exploration had yielded negative reward. Besides this,
we also ensure that cells in memory-less phase get enough
number of iterations to complete exploration phase and reach
optimal strategy before moving to the next phase.

Based upon the discussions in the above-mentioned para-
graphs, we present basic working of our proposed scheme for
a single cell in Table 4.

A. SIMULATION RESULTS
To provide a proof of concept, we implement the pro-
posed memory-based UCB on a simulated downlink HetNet,
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TABLE 4. Basic working of memory-based UCB scheme.

consisting of 9 small cells deployed alongside 1 macro cell,
usingMATLAB 8.2. A set of 50 resource blocks is distributed
equally amongst small cells and macro cells, whereas each
resource block contains 12 subcarriers. Each subcarrier has
a bandwidth of 180 KHz. We map users’ QoE to two per-
formance attributes namely throughput and reliability. Small

cells employ hybridmemory-based scheme to learn and cache
optimal CREOs values against different users’ mobility pat-
terns in their memory. Heterogeneous backhaul technologies
such as G.fast, microwave, and optical fiber are considered
for backhauling small cells, however, every small cell is
provided with only one last-mile backhaul link. We assume
that macro cell is leveraged with an ideal backhaul that carries
aggregated traffic from small cells to the core network. Our
aim is to push the traffic to lower layers when possible, in line
with HetNets functionality. To this end, the CREO of the
macrocell is always set to zero as it acts as a fall-back plan
in the absence of a suitable small cell. The list of simulation
parameters is summarized in Table 3.

We simulate the proposed scheme using Monte Carlo
technique comprising 50 simulation runs. We consider two
users’ mobility patterns in which users’ follow RWPmobility
model. For simplicity, we make an assumption that patterns
neither overlap with each other nor do they repeat frequently
in order to reduce memory requirements at small cells; small
cells able to reach and subsequently cache optimal values
for a pattern before a new pattern is generated and hence
obviates the need to keep separate Q and fuzzy Q-learning
tables for each pattern. After every 14 runs, the existing
pattern is replaced by the other pattern, whereas in each run
users having diverse QoE requirements move to a randomly
chosen destination waypoint. Each user keeps a record of
its average normalized QoE perceived during last 3 visits
to all waypoints. Moreover, to capture the realistic dynami-
cally changing radio characteristics over time, users’ mobility
along with rapidly varying shadowing effects is generated
on a random basis in each run. In addition to this, backhaul
capacities are also randomly varied in order to imitate the
throughput variations normally observed in the realistic trans-
port network.

To analyze the impact of cognizant capabilities of cells
and users on network and users’ KPIs, we compare the effi-
cacy of the proposed scheme with memory-less (ML) basic
Q-learning-based scheme [13] and ML fuzzy Q-learning-
based scheme [3] under identical circumstances in terms of
users and network. We present the results for different net-
work and users’ KPIs in the form of cumulative distribution
function (cdf) compiled over the total number of runs in the
subsequent paragraphs.

The two KPIs, presented in left and right part of
Figure 2, indicate the aggregate gap between measured and
target QoE of users putting high weight to throughput and
reliability respectively and are computed using (13). Our
proposed memory-based scheme, capitalizing on users’ pre-
dictable whereabouts with known QoE requirements, signifi-
cantly addresses the throughput shortage for users preferring
high throughput services and outperforms ML Q-learning
and fuzzy Q-learning-based schemes by a distinct margin
of 63.26% and 51.48% respectively. Also, our proposed
scheme successfully bridges the gap between the target and
perceived QoE for users demanding high reliability as is
evident by a remarkable improvement of 87.5% and 82.13%
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FIGURE 2. (Left) Cumulative shortage of throughput experienced by users
associating high weight with throughput. Average throughput shortage
attained with memory-based hybrid scheme, ML basic Q-learning-based
scheme, and ML fuzzy Q-learning-based scheme is 1.58, 4.30, and
3.19 % respectively. (Right) Cumulative lack of reliability experienced by
users associating high weight with reliability. Average lack of reliability
with memory-based hybrid scheme, ML basic Q-learning-based
scheme, and ML fuzzy Q-learning-based scheme is 1.0, 8.0, and 5.58 %
respectively.

FIGURE 3. (Left) Cumulative shortage of throughput experienced by
users associating low weight with throughput. Average throughput
shortage attained with memory-based hybrid scheme, ML basic
Q-learning-based scheme, and ML fuzzy Q-learning-based scheme is
3.99, 4.30, and 3.29 % respectively. (Right) Cumulative lack of reliability
experienced by users associating low weight with reliability. Average lack
of reliability with memory-based hybrid scheme, ML basic
Q-learning-based scheme, and ML fuzzy Q-learning-based scheme is
6.0, 6.96, and 6.58 % respectively.

when compared to ML Q-learning and fuzzy Q-learning-
based schemes respectively.

We now present the results that would reflect the cumula-
tive shortage of measured QoE corresponding to target QoE
of users putting low weight on the two performance attributes
taken into consideration. The cumulative shortage of through-
put is depicted in the left part of Figure 3, whereas the right
part of Figure 3 highlights cumulative lack of reliability for
users associating low weight with throughput and reliabil-
ity respectively. It can be seen that our proposed scheme
also improves QoE for users, who do not value throughput,
by 7.21% over ML Q-learning-based scheme. Our proposed
scheme, though, falls behind ML fuzzy Q-learning-based
scheme in terms of throughput shortage by 17.55%. Similarly,
improvements in QoE for low-reliability users are observed
with the proposed scheme as it leads other ML schemes
by 13.8% and 9.82% respectively. The proposed scheme,

hence, successfully maps quality-rich backhaul resources to
users valuing high-quality services regarding any perfor-
mance attribute and indeed, successfully manages to improve
efficient utilization of the realistic backhaul links.

We compute the network achievable throughput, which is
equivalent to the aggregate throughput achieved by all the
users served by the system, to analyze the performance of the
proposed scheme from the perspective of a network’s KPI.
Figure 4 illustrates that ML basic Q-learning-based success-
fully maximizes the network throughput and clearly outper-
forms the proposed scheme by an evident margin of 4.76%.
Our proposed scheme also lags behind ML fuzzy Q-learning-
based scheme in terms of network throughput by 2.22%.
However, since our proposed scheme achieves remarkable
gains in regard to users’ KPIs, the loss of system capacity
may be seen as a negligible degradation.

FIGURE 4. Cumulative throughput perceived by all users served by the
system. Average cumulative throughput achieved with ML basic
Q-learning-based scheme, ML fuzzy Q-learning-based scheme and
memory-based hybrid scheme is 3041.7, 3194.6, and 3110.2 Mbps
respectively.

Since 5G is expected to rely heavily on small cells
deployed in overwhelming numbers, the time acquired by
small cells to learn optimal bias values, known as optimiza-
tion time, plays a crucial role when it comes to gauging via-
bility of a UA scheme. Unlike ML Q-learning-based scheme
that evaluates all unexplored actions in the incumbent state
before applying optimal policy, our proposed scheme exploits
predictable mobility patterns in addition to the simplistic
exploration-exploitation strategy implemented in our previ-
ous work [3] to deliver optimal performance in less than
one-third (precisely 30.65%) of the optimization time of ML
Q-learning-based scheme; please refer to Figure 5. Moreover,
our proposed scheme, due to memory awareness, is also
computationally efficient than ML fuzzy Q-learning-based
scheme as the optimization time of the former is 14.54% less
than the time taken by the latter.

Look up table is an essential component of both Q-learning
and fuzzy Q-learning required in order to learn optimal strat-
egy through mapping of best state-action pairs for every
state. Q-learning keeps state-action pairs, whereas fuzzy
Q-learning stores quality values to depict appropriateness
of each conclusion w.r.t. every fuzzy rule. Our proposed
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TABLE 5. Tabulated summary of the simulation results.

FIGURE 5. Iteration Time. Average iteration time of memory-based
hybrid scheme, ML basic Q-learning-based scheme, and ML fuzzy
Q-learning-based scheme is 2.94, 9.59 and 3.44 minutes respectively.

scheme, besides managing a look up table each for Q-
learning and fuzzy Q-learning, introduces the concept of
memory-awareness both from a small cell’s as well as a
user’s iperspective. Since memory is a critical resource,
it becomes necessary to compare the three UA schemes vis-
ã-vis their memory requirements. Considering all values in
look up tables of type double that occupies 8 bytes in memory
and ignoring any parity bits, memory space required for
Q-learning and fuzzy Q-learning look up tables is 168 bytes
(3 states, 7 actions) and 224 bytes (4 fuzzy rules, 7 conclu-
sions) respectively. According to the simulation parameters
given in Table 3, a user in our proposed scheme requires
1800 bytes (1.757 MB) of memory to maintain location-
based QoE history table. From small cells’ perspective,
we assume that the information about users’ mobility patterns
is kept at the proposed paging system and not at the small
cells, memory-based hybrid scheme utilizes 392 bytes that
is 133% and 75% additional to the memory requirements
of ML Q-learning-based scheme (168 bytes) and ML fuzzy
Q-learning-based (224 bytes) scheme respectively.

B. ANALYSIS & INSIGHTS
We summarize the above-presented results in Table 5.We rep-
resent average aggregate gap between users’ measured and

target QoE with regards to throughput and reliability by y and
z respectively, whereas the subscript high or low signify users
having high or low weight with these performance attributes
respectively. The proposed scheme remarkably outperforms
ML Q-learning-based scheme in all user-centric KPIs con-
sidered, yhigh (users with high throughput weight, 63.26%),
zhigh (users with high reliability weight, 87.5%), ylow (users
with low throughput weight, 7.21%), and zlow (users with
low reliability weight, 13.8%). Furthermore, memory-based
scheme also exhibits distinct improvements as compared to
ML fuzzy Q-learning-based scheme when KPIs for users
associating high weight with attributes are taken into account,
yhigh (51.48%) and zhigh (82.13%). The proposed scheme,
exploiting users’ geolocations as well as QoE profiles in
addition to capitalizing on flexible solution space of fuzzy Q-
learning, intelligently assigns quality-rich backhaul resources
to users with high quality requirements and hence yields
remarkable gains with regards to users’ KPIs. The pro-
posed scheme, however, falls short of the ML Q-learning
and fuzzy Q-learning-based schemes in terms of achievable
network capacity, T (lag of 4.76% and 2.22% in comparison
to ML Q-learning-based scheme and ML fuzzy Q-learning-
based scheme respectively). From an operator’s perspective,
the proposed memory-based UA is the best scheme for deliv-
ering user-centric KPIs since it improves users’ satisfaction
without incurring any additional infrastructure cost. To put
it another way, the proposed scheme is appropriate for the
situation where operators aim for building extra capacity
while retaining their users.

Our proposed memory-based hybrid scheme is compu-
tationally more efficient than the ML schemes. Exploit-
ing users’ foreseeable diurnal patterns in addition to the
well-devised exploration-exploitation strategy, our proposed
scheme takes less than one-third (30.65%) of the time taken
by ML Q-learning-based scheme to deliver optimal results.
Furthermore, cognizant capabilities of cells to optimize bias
values corresponding to users’ different mobility patterns
enable our proposed scheme to reach optimal policy com-
paratively quicker (14.54%) thanML fuzzy Q-learning-based
scheme. Hence, our proposed scheme would start delivering
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user-centric services comparatively quicker thanML schemes
thus leading to significant reduction in signalling overhead
caused by frequent handovers.

In the end, we compare the three schemes with regards to
their memory requirements. Our proposed scheme requires
133% and 75% extra memory at small cell, denoted by Xsc,
than that of ML Q-learning-based scheme and ML fuzzy
Q-learning-based scheme respectively. However, employing
appropriate function approximators [22] or Artificial Neural
Networks (ANNs) [24], [25] to interpolate Q values may
save useful memory space. From a user’s perspective, our
proposed scheme requires 1800 bytes of memory at user,
denoted by Xu, to store QoE history pertaining to the scenario
presented in this paper.

V. CONCLUSION
In this paper, we investigate memory-based content-aware
hybrid scheme that exploits users’ predictable mobility pat-
terns to optimize bias values corresponding to specific mobil-
ity patterns as well as QoE profiles of the users. The proposed
scheme achieves the best user-centric KPIs (improvement of
more than 50%) and converges faster than the state-of-the-
art. Employing well-devised exploration-exploitation policy
besides capitalizing on users’ repeated mobility patterns,
our proposed scheme renders optimal results in 69.35% and
14.54% less time taken by ML Q-learning-based scheme and
ML fuzzy Q-learning-based scheme respectively. Although
our proposed scheme utilizes more memory at small cells
than that of both ML schemes, employing ANNs or repre-
senting Q values through appropriate function approximators
may curtail memory usage at small cells to the minimum.
Furthermore, unlike ML schemes that do not require any
memory from users’ perspective, our proposed scheme uti-
lizes 1800 bytes of memory at user for the purpose of keeping
location-based perceived QoE history. Our future work will
focus on investigating the use of Deep Reinforcement Learn-
ing (Deep RL) for dynamic backhaul-aware cell selection
scheme, through which we aim to enhance the computational
efficiency and overcome exhaustive memory requirements.
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