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ABSTRACT Considering the knowledge-intensity and error-prone of developing scientific workflows
from scratch, reusing and repurposing current workflows are the effective and efficient solution to support
scientists for conducting novel experiments, and this strategy is deemed as important to achieve the objective
of smart campus. An experiment may be relevant with one or multiple scientific workflows. This observation
drives us to propose a technique that can discover and recommend cross-workflow fragments with respect to
the requirement of novel experiments. Specifically, the functionally similar activities are clustered through
adopting a modularity-based community discovery clustering technique, and they are represented as abstract
activities. An abstract activity network model is constructed accordingly to reflect the invocation relations
among abstract activities. Structural and semantic similar workflow fragments are discovered from the
abstract activity network through the sub-graph matching algorithm. These fragments are instantiated
through replacing abstract activities by appropriate activities in certain activity clusters. These instantiated
workflow fragments are ranked and recommended for their reuse and repurposing purpose. Experimental
evaluation results demonstrate that our technique is accurate and efficient on discovering and recommending
appropriate cross-workflow fragments.

INDEX TERMS Scientific workflow, community discovery clustering, abstract activity, cross-workflow
fragment recommendation.

I. INTRODUCTION
The explosive growth of scientific knowledge makes the
inside-school education a challenge, especially for disciplines
like life sciences where students are required to conduct
complex scientific experiments often. Intuitively, the princi-
ples and wisdom of scientific experiments are encoded into
and implicitly represented as scientific workflows. In this
setting, reusing and repurposing scientific workflows can
be regarded as an efficient and effective learning mecha-
nism for research scientists when novel scientific experi-
ments are to be designed and conducted. We argue that this
is an indispensable ingredient for achieving the objective

of smart campus [1], [2]. Generally, scientific work-
flows correspond to processes which should be executed
recurrently by scientists to implement certain functional-
ities, where activities are specified upon recurring data
and computational resources in terms of Web/REST ser-
vices or mashup APIs, in order to promote the sharing
of these recourses [3]. Along with the wide-adoption of
Web 2.0 technology, nowadays scientific workflows can be
publicly available on online repositories like myExperiment,
crowdLabs, and BioCatalogue. As an example, myExperi-
ment contains over 2,700 scientific workflows provided by
systems like Taverna 1/2, RapidMiner, Kepler, and so on.
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Considering the fact that developing a scientific workflow
from scratch is definitely a knowledge-intensive and error-
prone mission, when a scientist would like to conduct a
novel scientific experiment, developing this requirement-
oriented scientific workflow through reusing or repurposing
best-practices evidenced by current scientific workflows
should be a cost-effective and error-avoiding strategy [4].
When this requirement can be completely, or at least par-
tially, satisfied by a single scientific workflow archived
in a repository, the mechanism that can discover the
most appropriate candidates is appropriate by adopt-
ing workflow similarity computation techniques [5]–[8].
It it worth emphasizing that a novel experiment may be
relevant with multiple experiments that have been conducted
by others in most application scenarios, and thus, whose
workflow should be constructed through assembling
carefully-discovered fragments contained in various scien-
tific workflows in the repository. Consequently, discovering
appropriate fragments from multiple scientific workflows,
and facilitating the reuse and repurposing of these assembled
fragments, is a promising research challenge.

As an example as shown by Fig. 1, a scientific work-
flow is typically represented as a directed graph, where
vertices correspond to activities and edges reflect depen-
dency relations specified upon contiguous activities [9]. This
graph is mostly not large in size, but may be relatively
complex in structure. Intuitively, developers may discover
functionally-similar activities that have been developed by
other scientific workflows from the repository, and try
to reuse or repurpose these activities, when construct-
ing new workflows, although some developers may prefer
to create new, but functionally-similar, activities from
scratch. This activity discovery procedure could be achieved
through adopting techniques like service or resource dis-
covery [10], [11]. However, this is usually a domain-expert
oriented and laborious task, and the result may be inac-
curate somehow, especially when a relatively large num-
ber of activities, as well as scientific workflows, have been
achieved in the repository. In this setting, clusters of activities
with diverse names and text descriptions should be identi-
fied, and they may be created by different developers, but
are indeed functionality-equivalent or similar. For instance,
there are totally 3,032 activities in myExperiment, and we
observe that the activity ‘‘common_pathway_describe’’ in
workflow ‘‘Bio2RDF: Bind search, rdfise and load demo’’
is actually similar to the activity ‘‘common_pathway_link’’
in workflow ‘‘Bio2RDF: CPath search, rdfise and load
demo’’. If activities belonging to certain clusters are assumed
as irrelevant completely, this strategy should negatively
impact the reuse or repurposing of these activities in var-
ious workflow fragments. We argue that activities with
same or similar functionalities should be considered as rel-
evant when fragments crossing scientific workflows are to be
reused or repurposed.

Workflow reuse and repurposing is a pressing research
topic [12], and techniques have been proposed for

FIGURE 1. A sample scientific workflow from Taverna 2 of myExperiment
repository with the title ‘‘NCBI BLAST (SOAP)’’.

the exploration. Authors have developed a workflow sim-
ilarity computation technique to promote the reuse and
repurposing of certain workflows in myExperiment, where
workflows are transferred into layer hierarchies, where a
layer hierarchy reflects hierarchical relations between this
workflow, its sub-workflows, and activities [5]. Similar
approaches have been developed, which can be categorized
into annotation-based [13], [14], structure-based [15], and
data-driven [16]–[18] mechanisms. Besides, typical frag-
ments can be retrieved from workflows to improve their
sharing and reuse when possible [19], [20], and an efficient
indexing mechanism has been developed in [21] to promote
the search and reuse of service process fragments with various
granularities. Generally, current techniques aim to study
the reuse and repurposing of complete workflows or their
fragments. As far as we know, composing fragments, which
are contained in various workflows, has not been explored
extensively. These techniques seldomly consider the func-
tional relevance of activities in different workflows. In fact,
this relevance has demonstrated its performance in [22],
where abstract activities are discovered and represented
as subprocesses, and thus, hierarchical process models,
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rather than flat ones, can be elicited from event logs. In this
setting, reusing and repurposing fragments that cross various
workflows, while considering the activity relevance in vari-
ous workflows, is a promising topic to be further explored.

To address this challenge, this article proposes a crossing
workflows fragments discovery mechanism, where the activ-
ity relevance in workflows is considered. Our contributions
are summarized as follows:

• The relevance of activities is quantified by the degree
of semantic similarity between activities, which is cal-
culated leveraging their names in string and descrip-
tions in plain-text. Activities are clustered by adopting
modularity-based community discovery clustering algo-
rithm, and activities contained in a certain cluster are
assumed to be functionality-relevant and thus can be rep-
resented by an abstract activity.Workflows are rewritten
into their abstract format through replacing activities by
their abstract counterparts.

• An abstract activity network model is constructed
upon abstract workflows, where vertices correspond to
abstract activities, and directed edges reflect invoca-
tion relations specified upon contiguous abstract activ-
ities. Given a novel requirement represented in terms
of a directed graph, a sub-graph matching algorithm is
adopted to generate candidate fragments composed by
abstract activities, where these abstract activities may be
contained in a single workflow, or may be located in var-
ious workflows. Candidate abstract activity fragments
are instantiated by replacing abstract activities by suit-
able activities in a certain cluster, and these instantiated
fragments are ranked according to their semantic and
structural similarities with respect to the requirement
specification.

Extensive experiments are conducted to evaluate the effec-
tiveness and accuracy of this technique. The results show
that this technique is efficient and accurate on ranking and
recommending appropriate workflow fragments.

The rest of this article is organized as follows. Section II
introduces relevant concepts. Section III presents the pro-
cedure for generating functionally-similar abstract activities.
Section IV discovers and recommends fragments crossing
scientific workflows. Section V presents experimental envi-
ronment settings, and Section VI evaluates this technique
with respect to the rivals. Section VII reviews and discusses
related techniques, and finally, Section VIII concludes this
article.

II. PRELIMINARIES
A. CONCEPT DEFINITION
Definition 1 (Scientific Workflow): A scientific workflow

is a tuple swf = (tl, dsc, ACT , LNK ), where tl and dsc are the
title and text description of swf , respectively. ACT refers to a
set of activities in swf , and LNK represents a set of links that
specifies data input and output relations between activities
in ACT .

A sample scientific workflow is shown in Fig. 1, whose
title is ‘‘NCBI BLAST (SOAP)’’. This workflow contains
11 activities which are implemented by Web/REST services.
Definition 2 (Activity): An activity is a tuple act =

(nm, dsc, tp), where nm is the name, dsc is the text description,
and tp is the type, of act .
A sample activity is act ‘‘getResult’’ as shown in Fig. 1,

whose tp is ‘‘dataflow’’. Generally, tp can be (i) ‘‘wsdl’’ and
‘‘dataflow’’, which correspond to domain (or Web/REST)
services, or (ii) ‘‘beanshell’’ and ‘‘stringconstant’’, which
correspond to shim services representing data transformation
procedures between inputs and outputs of contiguous domain
services.

B. SEMANTIC SIMILARITY COMPUTATION FOR ACTIVITIES
This section briefly introduces the semantic similarity com-
putation for two activities act1 = (nm1, dsc1, tp1) and act2 =
(nm2, dsc2, tp2), and this procedure has been developed in our
previous work [23].

1) SEMANTIC SIMILARITY FOR ACTIVITY NAMES
An activity name can be decomposed into a sequence of
words using word segmentation method [24], while reg-
arding ‘‘_’’, space, and uppercase characters as divisional
marks. For instance, act1.nm1 = ‘‘common_pathway_des
cribe’’ is decomposed into a set WDaN1 = {‘‘common’’,
‘‘pathway’’, ‘‘describe’’}, and act2.nm2 = ‘‘common_path-
way_link’’ derives WDaN2 = {‘‘common’’, ‘‘pathway’’,
‘‘link’’}. The minimum cost and maximum flow alg-
orithm [25] is used to compute the distance (denoted cost)
between WDaN1 and WDaN2, and WordNet aims to calcu-
late the semantic similarity for words. Therefore, semantic
similarity simaN () for act1.nm1 and act2.nm2 is computed as
follows:

simaN (act1.nm1, act2.nm2)

= 1−
cost

max(SizOf (WDaN1), SizOf (WDaN2))
(1)

where the function SizOf (WDaN1 (or WDaN2)) returns
the size of WDaN1 (or WDaN2). Generally, simaN () returns
a value between 0 and 1, where 0 means totally different
while 1 means the equivalent. For instance, the semantic
similarity for act1.nm1 and act2.nm2 is computed as the value
of 0.683.

2) SEMANTIC SIMILARITY FOR TEXT
DESCRIPTION OF ACTIVITIES
Leveraging the word segmentation technique, the text
description can be decomposed into a sequence of words,
and the minimum cost and maximum flow algorithm and
WordNet are adopted for computing the degree of similarity
for a pair of text descriptions simaD() accordingly. Generally,
simaD() returns a value between 0 and 1, where 0 means
totally different while 1 means the equivalent. For instance,
the semantic similarity for act1.dsc1 and act2.dsc2 is com-
puted as the value of 0.808.
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3) SEMANTIC SIMILARITY COMPUTATION
FOR TWO ACTIVITIES
Leveraging the degrees of similarity for the name and text
description of two activities act1 and act2, the semantic
similarity for act1 and act2 is calculated as follows:

simact (act1, act2) = α × simaN (act1.nm1, act2.nm2)

(1− α)× simaD(act1.dsc1, act2.dsc2)

(2)

where the factor α ∈ [0, 1] reflects the importance of
simaN () with respect to simaD(). As explained in our previous
work [23], the text description usually contains richer infor-
mation than the name, and thus, can contribute more to the
similarity computation of activities. Based on this observation
we set α as 0.3 in our experiments. Note that α can be
set to any value of appropriate when necessary. Generally,
simact (act1, act2) returns a value between 0 and 1. The larger
the simact () is, the more similar and relevant the activities act1
and act2 are. For instance, simact (act1, act2) is approximately
equal to 0.771.

Leveraging the semantic similarity between activities,
a network can be constructed where vertices correspond to
activities, and the weight upon edges specifies the distance
between a certain pair of activities. Given the sample work-
flow as shown in Fig. 1 where the semantic similarity of
act ‘‘getResult’’ and act ‘‘getResult_output’’ is 0.77, their
distance is calculated as the value of 0.23 (i.e., 1 - 0.77).
Activities with slight semantic correlations are far away from
each other in the activity network. Thus, the edge between
activities whose distance exceeds a threshold thrddis should
be pruned. The average path length (L) and clustering coeffi-
cient (C) of the network are employed as the factors to deter-
mine an appropriate value of thrddis, where (i) L is the average
distance of all pairs of activities and reflects the degree of
separation among activities, and (ii) C describes the degree
of aggregation and noteworthy, such that a larger value of C
specifies amore obvious community structure of the network.
Since the semantic similarity ranges from 0 to 1, thrddis starts
at 1 and decreases at the gradient of 0.02 until reaches 0.
This procedure ensures that an optimal thrddis is not missed.
L and C of each thrddis are calculated respectively. In our
case, thrddis = 0.58 corresponds to the optimal L = 5.211
and C = 0.727. There are 2798 valid activities in the
Taverna 2 repository of myExperiment. After removing
(i) edges between activities whose distance exceed thrddis,
and (ii) 258 isolated activities after removing edges,
the network containing the remaining 2540 activities is
constructed with an obvious community structure. Note
that these 258 isolated activities should be post-processed
in Section III-B.

III. ABSTRACT ACTIVITY GENERATION
This section aims to cluster activities in the activity net-
work, and adopt abstract activities to represent clusters of
functionality-similar activities.

A. MODULARITY-BASED ACTIVITY
CLUSTERING MECHANISM
The edges between functionality-similar activities are rel-
atively large in value, and they construct a community.
In this setting, Louvain [26], [27], which is a modularity-
based clustering algorithm, is applied to generate abstract
activities. The density of links within communities as com-
pared to links between communities can be measured lever-
aging modularity optimization, which is a scalar value
between −1 and 1. The activity clustering procedure is pre-
sented as follows:
• Step 1: Assign each activity to an independent cluster
initially.

• Step 2: Consider a neighboring activity j of a certain
activity i and evaluate the gain of modularity 1Q that
would take place by removing i from its cluster and by
placing it in the cluster of j. Note that 1Q obtained by
moving another activity i into a cluster CL can easily be
computed by:

1Q =
[∑in+ki,in

2m
−
(∑tot +ki

2m

)2]
−
[∑in

2m
−
(∑tot

2m

)2
−
( ki
2m

)2] (3)

where
∑

in is the sum of the distance inside CL,
∑

tot is
the sum of the distance incident to activities in CL, ki is
the sum of the distance incident to activity i, ki,in is the
sum of the distance from i to activities in CL, and m is
the sum of all distance in the network.

• Step 3: Record the neighbor with the largest 1Q. If the
maximum 1Q is greater than 0, activity i is assigned to
the cluster where the neighbor with the largest 1Q is
located.

• Step 4: Repeat step 2 & 3 until all activities assigned to
clusters do not change any longer.

• Step 5: Compress the network and abstract all the activi-
ties in the same cluster into a new activity. The distances
between the activities in the cluster are transformed into
the distances of the rings of the new activity, and the
distances between the clusters are transformed into the
distances of the new activities;

• Step 6: Repeat step 1 until there are no more changes
in the entire network and the maximum modularity Q is
calculated as follows:

Q =
1
2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci, cj), (4)

where Aij represents the distance between i and j,
ki =

∑
j Aij is the sum of the distances attached to

vertex i, ci is the cluster to which vertex i is assigned,
δ-function δ(u, v) is 1 if u = v, and is 0 otherwise. m is
set to 1

2

∑
i,j Aij.

Generally, themore significant community structure can be
constructed with the increasing ofQ, the community structure
is reasonable when Q exceeds 0.3 [26], and optimal clusters
can be constructed accordingly. For instance, 119 clusters
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Algorithm 1 Isolated Activity Clustering
Require:

- CLS: a set of clusters generated by Section III-A
- Simtl : the values of similarity between activities
- NL1: a list of activities in the activity network
- NL2: a list of activities exit in the myExperiment,
Taverna 2 repository

Ensure:
- ACTabs: a set of clusters covering all activities

1: OutNd ← NL2 - NL1
2: for otn ∈ OutNd do
3: thrdtmp← 0, cluotnmax ← 0, sumtmp← 0, cnt ← 0
4: for each atn ∈ NL1 do
5: sumtmp← sumtmp + Sim(otn,atn)
6: cnt ← cnt + 1
7: end for
8: thrdtmp← sumtmp ÷ cnt
9: CLStmp = ∅
10: for each atn ∈ NL1 do
11: if Sim(otn,atn) > thrdtmp then
12: CLStmp← CLStmp ∪ {cluatn, Sim(otn,atn)}
13: end if
14: end for
15: cluotnmax ← AvgMax (CLStmp)
16: ACTabs← ACTabs ∪ cluotnmax
17: end for
18: ACTabs ← a set with clusters covering all activities in

dataset

with the maximum Q 0.73 are generated as the most appro-
priate community structure.

B. ISOLATED ACTIVITY CLUSTERING
After Louvain is applied in the activity network, the type and
quantity of clusters are determined, where CLS denotes the
set of generated clusters. In particular, each cluster contains
a set of functionality-similar activities. However, original
activities not contained by the network (i.e., 258 isolated
activities) are not assigned to corresponding clusters. There-
fore, the isolated activity clustering procedure is presented by
Algorithm 1, where the NL1 is the activity set of the activity
network while the NL2 indicates all original activities in the
repository. Similarity values between activities are stored in
the Simtl .

Leveraging NL1 and NL2, make sure what the isolated
activities (denotedOutNd) are (line 1). Given an otn from the
OutNd (line 2), the clustering procedure about this otn is car-
ried out (lines 2-17). Note that otn have similarity values with
any activities of the activity network. If otn directly selects
the cluster with the largest similarity as its cluster, the size
of clusters will affect the similarity calculation, resulting in
an unreasonable selection strategy. In this setting, we set a
similarity range (denoted thrdtmp) for this otn to overcome
the above problem (lines 4-7). thrdtmp is determined as the
average similarity value, which is obtained by calculating the

similarity sum (denoted sumtmp) and count (denoted cnt) of
otn and activities in the network (line 8). If the similarity
value between an activity atn from NL1 and otn is large in
comparison with the thrdtmp (line 11), this value and cluster
of atn are saved as a whole to a collection (denoted CLStmp)
(line 12). By the function AvgMax(), CLStmp is analyzed
comprehensively and the average similarity for each cluster is
obtained within thrdtmp (line 15). Finally, the otn is assigned
to the cluster with the largest average similarity. Each isolated
activity is addressed in the same way until they all match
similar categories (line 18).

C. ABSTRACT ACTIVITY SPECIFICATION
A cluster contains a set of functionally-similar activities,
which can be represented as an abstract activity from the
functional perspective.
Definition 3 (Abstract Activity): An abstract activity is a

tuple aactabs = (INFOabs, ACTabs), where INFOabs is the
keyword information of the aactabs, and ACTabs is a set of
activities in the aactabs.
INFOabs expresses the representative semantic informa-

tion to promote the fragment mining afterwards. Generally,
it should be defined as a sequence of one or more words.
In our context, the information of each abstract activity
can be obtained in condensed form the essential content.
Therefore, the keyword extraction technology, called A Rapid
Automatic Keyword Extraction (RAKE) algorithm [28],
is adopted. Specifically, RAKE is an unsupervised, domain-
and language-independent method for extracting keywords
from individual documents. All the names of activities
pertaining to each aactabs are integrated into a document
AasInfo, where commas are selected as the delimiter between
names. For instance, AasInfo114 = ‘‘datum cluster protocol
file transfer to transport secure, result metadata protocol file
transfer and to transport local, result metadata protocol file
transfer and to transport secure local’’ is a document content
of the aact114abs , whose ACT

114
abs consists of act2837, act2840 and

act2869.
Based on our observation, keywords about abstract activ-

ities should rarely contain standard punctuation, stop words
(i.e., and and or) or other words with minimal lexical mean-
ing, where such words are too frequent and broadly used
to aid users in their analyses. Therefore, the procedure of
extracting keywords is illustrated considering the above prob-
lem as follows:
• Candidate keywords: The input parameters consist of
a list of stop words (denoted stpList), a set of phrase
delimiters, and a set of word delimiters. First of all,
the document text is split into an array of words by the
specified word delimiters, such as space character. For
instance, AasInfo114 is divided into the array Array114 =
(‘‘datum - cluster - protocol-file-to-transport - secure -, -
result - metadata - protocol - file - transfer - and - to - tra-
nsport - local -, - result - medatata - protocol - file -
transfer-and-to - transport - secure - local’’), where ‘‘ - ’’
character is the symbol for dividing words in Array114.
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TABLE 1. The word co-occurrence table for content words in the NodeInfo114.

TABLE 2. Word scores calculated from the word co-occurrence table.

Therefore, AasInfo114 is split into sequences of contigu-
ous words at phrase delimiters and stop word positions.
According to the AasInfo114, commas are naturally iden-
tified as phrase delimiters. In this paper, the stpList
from [29] is applied, which contains common words like
and, to and so on in our text.Wordswithin a sequence are
assigned the same position in the text and together are
considered a candidate keyword. For instance, the array
Array114 becomes CanKey114 = (‘‘datum cluster pro-
tocol file - transport secure - result metadata protocol
file transfer - transport local - result medatata protocol
file transfer - transport secure local’’). The candidate
keyword ‘‘transport secure’’ begins after the stop word
to and ends with a comma. The following word ‘‘result’’
begins the next candidate keyword ‘‘result metadata
protocol file transfor’’.

• Keyword scores: It makes sense to consider
co-occurrences of words within candidate keywords,
which are not identified by the application of an arbi-
trarily sized sliding window. For instance, the ‘‘local’’
word exists in ‘‘transport local’’ and ‘‘transport secure
local’’ respectively, therefore, (local, transport)= 2 and
(local, secure)= 1.Meanwhile, we also need to consider
the number of word itself that appear, thus, (local,
local) = 2. After every candidate keyword is iden-
tified and the table of word co-occurrences (shown
in Table 1) is complete, a score is calculated for
each candidate keyword. Leveraging three metrics:
(i) word frequency (freq(w)), (ii) word degree (deg(w)),
(iii) the ratio of degree to frequency (deg(w)/freq(w)),
word scores are evaluated and calculated in Table 2.
deg(w) favors words that occur often and in longer
candidate keywords. Words that occur frequently
are favored by freq(w) regardless of the number of
words with which they co-occur. Words that pre-
dominantly occur in longer candidate keywords are
favored by deg(w)/freq(w). The score for each candi-
date keyword is computed in the sum of its member

word scores (deg(w)/freq(w)). As a result, scores of
candidate keywords in CanKey114 are ((‘‘datum clus-
ter protocol file transfer’’, 25.0), (‘‘result meta-
data protocol file transfer’’, 25.0), (‘‘transport secure
local’’, 7.334), (‘‘transport local’’, 4.833)).

• Extracted keywords: The top T scoring candidates are
selected as the keyword information after candidate
keywords are scored. Mihalcea and Tarau [30] argues
that T is one-third the number of candidate keywords
is appropriate. Therefore, ‘‘datum cluster protocol file
transfer’’ becomes the INFO114

abs of the aact114abs when
the CanKey114 of the sample text contains 4 candidate
keywords.

Because a few candidate keywords may acquire the same
score, the selection of keywords is important. For instance,
‘‘datum cluster protocol file transfer’’ and ‘‘result metadata
protocol file transfer’’ scores are 25. Through comparing the
similarities between these candidate keywords, it is found
that the content and semantics of them are similar, Therefore,
no matter which one is chosen will be reasonable when only
top one-third can be taken. After RAKE algorithm has been
adopted, INFOabs of each aactabs is available, which lays the
foundation for further fragment mining. Besides, the struc-
tural information contributes to reflecting the relationship of
(abstract) activities. Scientific workflows are rewritten into
their abstract format leveraging abstract activities and an
abstract activity network model is generated to accommodate
collaboration patterns.
Definition 4 (Abstract Activity Network Model): An abs-

tract activity networkmodelAbsN is a tuple (AACTabs, LNK ),
where:

• AACTabs is a set of abstract activities.
• LNK is a set of links that connect abstract activities
contained in AACTabs.

Such an AbsN is constructed, where the vertices corre-
spond to abstract activities while the directed link reflects
the invocation relations specified upon contiguous abstract
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activities. For instance, there is a link between aact50abs and
aact53abs, which means that they can collaborate on certain
function. Specifically, the procedure of constructing the
AbsN is illustrated as follows:

• Step 1:Edgeweights between abstract activities inAbsN
is set to 0 by default.

• Step 2: Each workflow is expressed as swf , whose all
invoking relations are mapped to edges between abstract
activities and set to 1. In particular, a query function is
required to achieve the corresponding abstract activity
by an original activity.

• Step 3: Iterate over the edges between abstract activi-
ties. If its value is 1, the edge information is entered
into the AbsN . Until internal structures of all scientific
workflows are processed.

It is noteworthy that keeping the self-connection of abstract
activities is essential in AbsN . In real life, a requirement
may be accomplished by one or more functions, and services
with similar semantics generally collaborate to complete the
whole or part of a function. The self-cooperative pattern
is formed, which is in line with practical situation. Corre-
spondingly, AbsN is provided with abundant abstract activity
fragments, which is flexibly to deal with various requirements
of users.

IV. WORKFLOW FRAGMENT RECOMMENDATION
Given an user’s requirement, fragments can be generated
and ranked according to our recommended strategy. Firstly,
abstract activity fragments are mined from AbsN considering
structural and semantic discovery, which effectively reduce
the scope of the fragment search. Next, leveraging the can-
didate abstract activity fragments, the instantiated fragments
crossing workflows are restored to recommend with respect
to the requirement specification.

A. ABSTRACT ACTIVITY FRAGMENT RECOMMENDATION
This section aims to generate abstract activity fragments
in an abstract level. We propose the abstract activity frag-
ment discovery procedure from two aspects of structure and
semantics.

1) STRUCTURALLY SIMILAR ABSTRACT ACTIVITY
FRAGMENT DISCOVERY
Assuming the user is an expert in this domain, whose require-
ment (denoted User) is considered to be professional and
accurate. In order to discover optimal or suboptimal abstract
activity fragments from the AbsN for the User , its abstract
structure (denoted Userabs) needs to be transformed. Con-
sequently, the above question can be understood as the
graph or sub-graph matching. In this setting, the most rep-
resentative graph isomorphism algorithm, called VF2 [31],
is applied in our technique.

To put it simply, the Userabs and AbsN are regarded as
two graphs G1 = (N1,B1) and G2 = (N2,B2), where N1 and
N2 are abstract activity sets and B1 and B2 are edge sets.

In addition, G1 and G2 are called target graph and query
graph respectively. A matching process consists in the deter-
mination of a mappingM which associates abstract activities
of G1 with G2. A mapping M ⊂ N1 × N2 is said to be
an isomorphism iff M is a bijective function that preserves
the branch structure of the two graphs. The solutions of
VF2 algorithm are obtained by computing some the possible
partial solutions or exact matching. In this case, some abstract
activity fragments that are structurally similar to Userabs can
be excavated from AbsN . For instance, the User is

(
(act26,

act27, act28), (act27 → act28, act28 → act26)
)
, whose

Userabs =
(
(aact14abs, aact

17
abs), (aact

17
abs→ aact14abs, aact

14
abs→

aact14abs)
)
is a target graph considering replacing activi-

ties with abstract activities. Generally, the mapping M is
expressed as the set of pairs (n − m) (with n ∈ Userabs.N1
and m ∈ AbsN .N2) representing the mapping of an abstract
activity n in the Userabs with an abstract activity m in the
AbsN . Thus, after VF2 algorithm is applied, some solutions,
such as (N1.aact14abs−N2.aact14abs,N1.aact17abs−N2.aact17abs),

(N1.aact14abs − N2.aact14abs, N1.aact17abs − N2.aact70abs),
(N1.aact14abs − N2.aact29abs, N1.aact17abs − N2.aact17abs), (N1.
aact14abs − N2.aact14abs, N1.aact17abs − N2.aact16abs) and so on,
are found to response the Userabs.

Specifically, the semantic matching about each abstract
activity isn’t considered in the application of VF2. If the
semantic matching is added, only fragments of the seman-
tic perfect matching rather than approximate matching are
found. It is a fact that abstract activity fragments with the
same structure and similar semantics are also thought to be
what the User expects. Therefore, the semantic discovery is
executed in the next procedure.

2) SEMANTICALLY SIMILAR ABSTRACT ACTIVITY
FRAGMENT DISCOVERY
Leveraging the discovered solutions, this section aims to
select semantically-similar abstract activity fragments from
them. Since the INFOabs for each abstract activity has been
generated, the average semantic similarity value for each
solution is calculated by Algorithm 2.

Given a solution (denoted sol) from SOLs whose pair is
expressed as (n − m) (lines 1-3), n is the abstract activ-
ity (denoted aactuser ) in the User while m is the match-
ing abstract activity (denoted aactAbsN ) from the AbsN
(lines 4-5). In particular, the function FindAas() is imple-
mented to query the semantic information for aactuser and
aactAbsN (lines 6-7). Through Formula 1, their semantic infor-
mation is obtained and denoted as sim (line 8). Each pair
about sol will be processed in the same way and achieved
similarities sum up to the variable SIMsum (line 9). Specially,
some solutions may be the partial structural fragments, whose
number of abstract activities is nomore thanUserabs (denoted
NumusrN ). Such solutions are suboptimal compared to exact
matching, which can partially meet the user’s needs. There-
fore, the average semantic similarity should be acquired by
SIMsum and NumusrN (line 11), and added to results (line 12).
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Algorithm 2 Average Semantic Similarity of Solutions
Require:

- AAS: a set of semantic information of abstract activities
- SOLs: a set of structurally-similar solutions discovered
in the AbsN

Ensure:
- SIMsols: a set of average semantic similarity values of
solutions

1: for each sol ∈ SOLs do
2: SIMsum← 0, SIMavg← 0
3: for each (n− m) ∈ sol do
4: aactusr ← n
5: aactAbsN ← m
6: infousr ← FindAas (AAS, aactusr )
7: infoAbsN ← FindAas (AAS, aactAbsN )
8: sim← SIM (infousr , infoAbsN ) through Formula 1
9: SIMsum← SIMsum + sim
10: end for
11: SIMavg← SIMsum ÷ NumusrN
12: SIMsols← SIMsols ∪ SIMavg
13: end for
14: SIMsols ← a set of similarity values of solutions,

which represent the average semantic similarity between
Userabs and SOLs

Consequently, similarity values of candidate solutions are
calculated through Algorithm 2 accordingly. For instance,
SIMsols is (1, 0.62601, 0.60925, 0.61410, 0.608485, . . . )
and these values are sorted as S = (1, 0.62601, 0.61410,
0.60925, 0.608485, . . . ) in descending order. Therefore,
the solutions, whose similarity values are within the top
k% (e.g., 10%), are selected as the set of appropriate candi-
date abstract activity fragments. Note that the above work has
ensured that selected candidate abstract activity fragments are
structurally and semantically similar or superior to Userabs.

B. INSTANTIATED FRAGMENT RECOMMENDATION
In order to identify candidate abstract activity fragments,
we intend to restore the appropriate instantiated fragments.
In this phase, instantiations are obtained and recommended to
scientists afterwards. This procedure is presented as follows:

• Step 1: Keep structures of candidate abstract activ-
ity fragments unchanged. For instance, its structure is
(aact17abs→ aact14abs, aact

14
abs→ aact14abs)

)
, where aact17abs

points to aact14abs and aact14abs has the self-connecting
structure, and remains unchanged.

• Step 2: Abstract activities are replaced to the corre-
sponding appropriate activities in clusters. Note that
instantiated fragments are made up of original activi-
ties. For instance, aact17abs contains of act27, act34, act47,
act49, act50 and so on while aact14abs is made up of
act11, act25, act26, act28, act35 and so on. Therefore,
instantiations, which refer to {(act27 → act25, act25 →
act25), (act27→ act28, act28→ act26), (act27→ act28,
act28→ act28), . . . }, are restored.

• Step 3: Instantiated fragment sets are ranked and
recommended. For comprehensive consideration of
requirement-related fragments, two evaluation param-
eters about structure and semantics are adopted: the
path length ratio (PL) and the average semantic similar-
ity (AS) (refer to Algorithm 2).PL is the path length ratio
to complete the fragment of user’s requirement, which
is the percentage of path lengths that instantiations has
completed in User . For example, in an instantiated frag-
ment there are 4 edges that are paths in the user’s require-
ment (assuming the requirement has a total of 6 path
lengths), PL is equal to 4

6 . In addition, AS represents the
average semantic similarity between an instantiation and
User , which is analogously calculated by Algorithm 2.
The difference is that the semantic similarity calculation
between abstract activities is replaced to the calculation
between names of activities.

Generally speaking, similarity results SIMins of instanti-
ated fragments are calculated by PL and AS as shown in
Formula 5.

SIMins = (1− ξ )× PL + ξ × AS (5)

where ξ ∈ [0, 1] reflects the importance of AS. Gen-
erally, instantiations of high semantic similarity should be
more suitable to be recommended. Therefore, AS is assigned
a higher weight than PL. For instance, assuming ξ is set
to 0.6, similarity values of instantiations {(act27 → act25,
act25 → act25), (act27 → act28, act28 → act26), (act27 →
act28, act28 → act28), . . . } are calculated as {0.9250, 1,
0.9625, . . . }. When all similarity values have been calcu-
lated, suitable instantiations (or workflow fragments) should
be ranked. Consequently, the top tp% of instantiations are
selected and the scientist will examine and determine which
is the most appropriate with respect to his requirement.

V. EXPERIMENTAL SETTING
The prototype has been implemented in Java and C++
programs. Scientific workflows in the category of Taverna
2 of the myExperiment online repository are collected for the
experimental evaluation. There are 1571 scientific workflows
in this category till to February 2, 2018. Since there are
795 workflows whose title or description is empty, which
are assumed to be invalid, 776 workflows are remaining
as valid. The distributions of the number of activities, and
the number of edges, for these valid workflows are shown
in Fig. 2. Generally, the majority of workflows is relatively
small in size (containing less than 17 activities), and relatively
complex in structure (containing less than 17 edges). Experi-
ments are conducted on a desktop with an Intel(R) Core(TM)
i5-6500 processor, a 6.00GB memory, and a 64-bit
Windows 7 system.

A. DATA CLEANING AND EXPERIMENTAL SETUP
Since scientific workflows and activities may lack speci-
fications, which may lead to an inaccuracy of similarity
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FIGURE 2. Histogram distributions for the number of activities and edges
contained in scientific workflows. The symbol ‘‘* Activities (or Edges) of
Scientific Workflows’’ represents the numbers of activities (or edges).

computation, and thus, give rise to improper activity clus-
tering and fragment mining, the dataset have been cleaned
before experiments are conducted. Specifically,

• The title or description of 795 scientific workflows are
empty, which are assumed as ones of incomplete infor-
mation, and thus, are removed from the experimental
dataset. Besides, activities, whose name or text descrip-
tion is empty, are removed from scientific workflows.
In the removal of activities, we need to reconnect the
graphs of workflows. The precursor activity and subse-
quent activity of the removed activity connect together in
order to become a new graph for the purpose of retaining
the partial functional fragment structure.

• Activities belonging to the shim service are uninterested
for exploring the functionality of a workflow. Certainly,
we should filter out activities of the shim service type.
As aforementioned, the semantic similarity between
words is computed by WordNet. However, improper
words which are not recognized by WordNet are con-
tained in the name or text description. We have handled
them case-by-case as follows:
1) There are 353 abbreviations which are used in the
bioinformatics domain, but cannot be recognized by
WordNet. An example is kegg, which means ‘‘Kyoto
Encyclopedia of Genes and Genomes’’ after searching
on the web. A conversion table is manually established,
which aims to transform these abbreviations and their
full descriptions. If a full description can’t be found
through browsing the web, such an abbreviation, like
‘‘gsmda’’, it is assumed to be dissimilar to any other
word, and such abbreviations is removed.
2) Regarding the abbreviation which is just a part of a
word, we can convert it to the word of full by a table.
An example is occ, which corresponds to occurrence.
3) Words, whose meaning is not clear and information is
incomplete, are complemented according to context and
web network. An example is btit, which means ‘‘gene
database’’ about the conversion of gene serial number
in the bioinformatics domain.

4) Pronoun is not recognized by WordNet, like your,
and my. They are removed from their name or text
description.
5) Also, adjective and adverb words, like chemical, are
not well recognized by WordNet. They are changed to
the noun form chemistry which is suitable to be used for
the similarity computation.
6) When two or several words are joint without delim-
iters, they are separated manually. An example is web-
service, which is divided into two words web and
service.

Without loss of generality, scientists are assumed to have
basic knowledge about the workflows published in the repos-
itory. When the requirement for a novel experiment is speci-
fied, a workflow is given for implementing this requirement.
These requirements can be completely, or at least partially,
satisfied by a single or multiple scientific workflows. There-
fore, in order to ensure the rationality of the workflow as
a requirement, we select workflow samples from the repos-
itory and modify them with certain principles to achieve
the purpose of cross-workflow requirements. For facilitating
the universality of this technique, the selection of work-
flow samples need to cover various complexity requirements,
which also further verifies that some requirements may be
satisfied by one workflow as a whole. According to distri-
butions for the number of activities and edges of scientific
workflows in Fig. 2, we analyze comprehensively and divide
three groups {(1, 6), (7, 17), (18, 313)} in terms of the num-
ber of activities. The proportions of the number of workflows
that fall into these intervals are calculated as 65.8%, 24.4%
and 9.8%. Suppose we select 20 samples from the repository,
then numbers of samples respectively taken from these three
intervals are calculated as 13, 5, and 2 by proportional dis-
tribution. Meanwhile, sample workflows are chosen evenly
from datatset in our experiment.

B. FRAGMENT RECOMMENDATION WHEN
A REQUIREMENT IS COMPLETELY SATISFIED
BY A SINGLE SCIENTIFIC WORKFLOW
We first perform experiments when requirements can be is
completely accomplished by a single scientific workflow.
In this setting, sample workflows are selected and remained
as they are from dataset. For a scientist’s requirement, his
most expected result obtained from this inquiry is an exact
matched workflow fragment compared with his requirement.
In fact, it is of core importance to identify appropriate work-
flow fragments, which are the most similar to the sample
workflow of the requirement. Experiments have conducted
for 20 sample workflows. As the result, 20 experiments return
the right recommendation that contains sample workflows,
which are ranked in the first place in terms of similar-
ity SIMins. This means that our technique is appropriate
when requirements are completely satisfied by a single sci-
entific workflow. For instance, given the target graph of
a sample workflow swfuser96 =

(
(act184, act185, act186),
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(act184→ act185, act186→ act184, act186→ act185)
)
, work-

flow fragments are diagnosed and recommended as follows:

• instantiation 1 =
(
(act184, act185, act186), (act184 →

act185, act186 → act184, act186 → act185)
)
(Simtotal =

1.0),
• instantiation 2 =

(
(act184, act185, act381), (act184 →

act185, act381 → act184, act381 → act185)
)
(Simtotal =

0.84043),
• instantiation 3 =

(
(act184, act185, act439), (act184 →

act185, act439 → act184, act439 → act185)
)
(Simtotal =

0.84043),
• instantiation 4 =

(
(act184, act185, act397), (act184 →

act185, act397 → act184, act397 → act185)
)
(Simtotal =

0.840069),
• instantiation 5 =

(
(act184, act185, act2679), (act184 →

act185, act2679→ act184, act2679→ act185)
)
(Simtotal =

0.839718).

C. FRAGMENT RECOMMENDATION WHEN
A REQUIREMENT IS PARTIALLY SATISFIED
BY MULTIPLE SCIENTIFIC WORKFLOWS
Workflows representing the requirement of scientists may be
hardly the same as sample workflows. Generally, activities in
multiple scientific workflows collaborate together to accom-
plish new requirements. However, there are some differ-
ence between multiple workflows, which can’t be combined
blindly. In this setting, our strategy is to modify the sample
workflow according to certain principles, so that the obtained
cross-workflow requirements are understandable and reason-
able. Sample workflows with minor or major changes are
instructed to conduct our experiment, when certain principles
of operations including insertion, deletion, and replacement
are applied:

• Insertion:Workflow fragments and activities that aren’t
included in a sample workflow swfsampl are inserted
as part of a testing workflow swftst . If some activi-
ties belong to abstract activities of swfsampl , so swftst
is usually more similar to swfsampl , which means the
kind of activities and connection structure in the swftst
are close to swfsampl . Thus, the swftst can be con-
sidered to be an upcoming cross-workflow require-
ment proposed by scientists. An example is the activity
acti1 = ‘‘runModel_input’’ in the workflow swf .tl =
‘‘Simple search’’ as shown in Fig. 4.

• Deletion: Fragments and activities are deleted from a
sample workflow swfsampl , which can largely guide the
development of novel experiments. An example is the
activity act2, act5 and act11 as shown in Fig. 4.

• Replacement: Fragments and activities in a sample
workflow swfsampl are replaced by the others which are
not specified in swfsampl . Similar to the case of insertion,
if the activities to be replaced are represented by activ-
ities in the same clusters, testing workflow is usually
more similar to swfsampl . An example is the activity
act8 = ‘‘getResult_output’’ which is to be replaced by

FIGURE 3. A testing workflow swftst3 representing the user’s
requirement, which is developed from Fig. 1. Minor change is made by
replacing act8, i.e., actr8, which belongs to the activity in
aact14

abs that is the cluster that act8 is in.

actr8 = ‘‘getJobState_output’’ from another workflow,
as shown in Fig. 3.

Experiments are conducted for the case of minor or major
changes applied upon sample workflows.

1) MINOR CHANGES UPON SAMPLE WORKFLOWS
In this case, no more than 10% of fragments and activities
are changed through the operation of insertion, deletion and
replacement in a sample workflow swfsampl . An example of a
testing workflow graph is shown in Fig. 3, where a activity
act8 is replaced by the activity actr8 from the workflow
swf .tl = ‘‘Job_query’’. Because act8 named ‘‘getRe-
sult_output’’ and actr8 named ‘‘getJobState_output’’ are
in the same category, demands for two workflow frag-
ments are considered to be similar. Therefore, we can better
use existing workflows to make cross-workflow fragment
recommendations.

Regarding the 20 testing workflows devived from sample
workflows, the results of workflow fragments recommenda-
tion for all 20 testing workflows are correct and the optimal
solution, which is the same as the user’s requirement, is rec-
ommended in the first place. An example is for swfsmpl15 =(
(act26, act27, act28), (act27→ act28, act28→ act26)

)
, which

the activity act27 is replaced by the activity act47 that belongs
to the cluster where act27 is located, the most appropriate
fragment is examined as the target solution, and fragments
are diagnosed and recommended are ranked as follows:
• instantiation 1 =

(
(act26, act47, act28), (act47→ act28,

act28→ act26)
)
(Simtotal = 1.0),

• instantiation 2 =
(
(act25, act47, act28), (act47→ act28,

act28→ act25)
)
(Simtotal = 1.0),

• instantiation 3 =
(
(act47, act28), (act47 → act28,

act28→ act28)
)
(Simtotal = 0.9375),

• instantiation 4 =
(
(act26, act49, act28), (act49→ act28,

act28→ act26)
)
(Simtotal = 0.9370),

• instantiation 5 =
(
(act25, act49, act28), (act49→ act28,

act28→ act25)
)
(Simtotal = 0.9370).

The results show that our technology is appropriate and
can return correct and reasonable results when minor changes
upon sample workflows. what’s more, accurate results are
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FIGURE 4. A testing workflow swftst6 representing the user’s
requirement, which is developed from Fig. 1. Major change is made by
inserting 2 activities, deleting 3 activities and replacing 2 activities.

recommended for minor modifications in complex cross-
workflow requirements.

2) MAJOR CHANGES UPON SAMPLE WORKFLOWS
In this case, over 60% of fragments and activities are changed
through the operation of insertion, deletion and replacement
in a sample workflow swfsampl . Consequently, testing work-
flows are actually novel fragments that are composed by
multiple different scientific workflows. An example of test
workflow is shown in Fig. 4. acti1 in the aact25abs from the
swf475 and acti2 in the aact4abs from the swf562 are inserted
into Fig. 4, and act2, act5 and act11 are deleted while act7
and act8 are replaced as actr7 and actr8, respectively. Note
that actr7 in the aact43abs from the swf34 isn’t the activity in
cluster of act7 while actr8 is the activity in same cluster
of act8.

Regarding the 20 testing workflows derived from sam-
ple workflows when major changes are applied, the results
of recommendation for 19 testing workflows are correct.
That shows that our technology is also applicable for large
modified cross-workflow requirements. Even if there are no
absolutely accurate instantiations, the most similar set will
also be recommended to the user by our technique.

Note that 1 experiment returns similar results including
not the exact instantiation as his requirement. This testing
workflow swftst19 is made up of workflows swf70.tl =
‘‘G-language GenomeAnalysisEnvironment’’ and swf664.tl=
‘‘Get Gene Ids for Human’’. Consequently, 21 edges are
included in swftst19, are changed through the operation of
insertion, deletion and replacement. Similarity values of the
recommended workflow fragments are listed as follows:

• instantiation 1 = ( Simtotal = 0.9825 ),
• instantiation 2 = ( Simtotal = 0.9801 ),
• instantiation 3 = ( Simtotal = 0.9766 ),
• instantiation 4 = ( Simtotal = 0.9735 ),
• instantiation 5 = ( Simtotal = 0.9688 ).

Note that the size of instantiations is relatively large,
so the specific graph structure isn’t provided when enumer-
ating the examples. We analyze the matching process and
find that the self-connecting structure of aact15abs, which is

contained in the abstract structure of the user requirement,
was not included in candidate abstract activity fragments
in Sec. IV-A. Through our analysis, this kind of structure isn’t
provided in AbsN . In other words, activities in aact15abs don’t
exist any invoking relationship. However, relatively similar
abstract activity fragments and instantiations have been rec-
ommended to the user for selection, and their functions per-
formed are closer to the user’s request. In particular, as data-
intensive scientific processes increases, structures between
abstract activities in AbsN will become more abundant and
comprehensive to response to any novel scientists’ requests.

VI. EXPERIMENTAL EVALUATION
The model assessment strategy is taken when experiments
are conducted, and the performance metrics and results are
presented as follows.

A. PERFORMANCE METRICS
We adopt commonly used metrics, namely Mean Abso-
lute Error (MAE) and Root Mean Squared Error (RMSE),
to measure the recommendation performance of our tech-
nique. A smaller value ofMAE (and RMSE) indicate a better
performance.

MAE =
1
N

∑
i

|Sswftrue − Sswfreci | (6)

RMSE =

√∑N
i=1(Sswftrue − Sswfreci )2

N
(7)

where the symbol Sswftrue represents the similarity value
(denoted 1) of the exact fragment with respect to a certain
requirement. The symbol Sswfreci indicates the similarity
value about the recommended ith fragment according to our
technique, where i is no more than the number of candidate
fragments N .
To further evaluate the quality of the proposed method,

we also use two other metrics, precision and recall, on the
testing experiments. Generally, given a testing workflow
swftst , a workflow swfept is assumed to be included in the
expected list of recommendation (denoted SWFept ). In our
research, swfept retains the whole or part of the structure
of swftst , whose activities are replaced by activities in the
database. When similarity between swftst and swfept is no less
than a pre-specified threshold thrdept , swfept is considered
a fragment that user expects. We use the notation SWFrec
to denote the set of workflow fragments, which are actually
recommended by our technique presented in this paper. The
precision and recall are computed as follows:

precision =
(|SWFept ∩ SWFrec|)

|SWFrec|
(8)

recall =
(|SWFept ∩ SWFrec|)

|SWFept |
(9)

where the symbol |SWFrec| refers to the number of frag-
ments in the set SWFrec while the symbol |SWFept | specifies
the number of elements in the set SWFept . And the symbol
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|SWFept ∩ SWFrec| refers to the number of fragments in the
SWFept contained in the SWFrec.

B. EVALUATING RESULT
We present the evaluating results of our technique as follows:
• Whether the modularity-based activity clustering can
improve the recommended performance.

• What the impact of key parameters is upon the proposed
model.

The results of our experiments in (i) Section V-B where
a requirement is completely satisfied by a single scientific
workflow, and (ii) Section V-C where the minor and major
changes are applied to sample workflows when a requirement
is partially satisfied by multiple scientific workflows, are
adopted for the computation of MAE , RMSE , precision and
recall.

1) IMPACT OF COMMUNITY CLUSTERING
To evaluate the impact of community clustering based on
modularity, Louvain, we compare this clustering method with
the K -Means clustering algorithm.

The performance of these two approaches is evaluated
by comparing MAE , RMSE , precision and recall when key
parameters, the number of instantiation tp%and pre-specified
threshold thrdept , are set to 10% and 0.86, respectively. Fig. 5
shows that the clustering algorithm Louvain outperforms
K -Means that transforms activities into functionality-relevant
activities. Note that K -Means requires to manually set the
parameter K . In order to maintain consistency with the num-
ber of Louvain clusters, we also set K to 119 to reduce
the number of variable parameters on the exploration of
clustering functionality. Specifically, Louvain obtains the
smaller values of MAE (0.118347) and RMSE (0.033339)
and the higher values of precision (0.887) and recall (0.838).
The reason lies in that we prune the links between the
distant activities according to the average path length (L)
and clustering coefficient (C), which obtains the superior
clustering network contributing to community discovery.
Furthermore, Louvain clustering considers the semantic sim-
ilarity between activities, and also synthesizes the overall

FIGURE 5. Impact of Louvain comparison MAE, RMSE, precision and
recall.

structural relevance within the formative abstract activity,
thus balancing the entire situation of the clustering network.
Such implicit information cannot be easily discovered by
K -Means, which will affect the discovery and recognition of
fragments in subsequent processes.

2) IMPACT OF KEY PARAMETERS
As presented in the Section. IV-B, SWFrec and SWFept are
impacted by key parameters: tp% of instantiation recommen-
dation and a pre-specified threshold thrdept . In this section,
we study the impact of tp% and thrdept to the precision,
recall, MAE and RMSE in the following.

In our experiments, we firstly set thrdept as 0.86, and tp%
as 2%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 20%, 22%,
24%, respectively. Precision and recall are compared when
(i) Louvain is adopted, or (ii) K -Means is applied instead.
As shown in Fig. 6, due to the similar reason as presented
in Fig. 5, the values of precision and recall for Louvain are
larger than those for K -Means. This figure shows that when
tp% is set to relatively large values, the precision drops to a
large extent (from 0.982 to 0.453). This is due to the fact that
more workflow fragment instantiations are recommended
by our technique, which are actually not that relevant and
not existing in SWFept . The recall is relatively more stable
than the precision when tp% becomes large, since the set
of SWFept is mainly determined by thrdept , which is a fixed
value. Besides, when tp% is large than 16%, the recall is very
high. This is due to the fact that the majority of the expected
instantiations, which can be recommended by our technique,
have been discovered and included in SWFrec.

Fig. 7 shows the values of precision and recall where tp%
is set to 20% and thrdept is set to 0.78, 0.80, 0.82, 0.84, 0.86,
0.88, 0.90, 0.92, respectively. And the values of precision and
recall for Louvain are also larger than those for K -Means.
It is noteworthy that SWFrec doesn’t change when tp% is
remained as a fixed value. However, the workflow fragments
in SWFept decrease to an extent when thrdept is set to a rela-
tively large value. Therefore, the difference between the sets
of SWFspt ∩ SWFrec and SWFept is decreased, which makes

FIGURE 6. Comparison of precision and recall for Louvain and K-Means,
when thrdept is set to 0.86 and tp% is set to 2%, 4%, 6%, 8%, 10%, 12%,
14%, 16%, 18%, 20%, 22%, 24%, respectively.
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FIGURE 7. Comparison of precision and recall for Louvain and K-Means,
when tp% is set to 20% and thrdept is set to 0.78, 0.80, 0.82, 0.84, 0.86,
0.88, 0.90, 0.92, respectively.

the increase of the recall. This figure shows that the recall
is relatively stable when thrdept changes from 0.78 to 0.82,
and from 0.88 to 0.92, since there are quite few expected
instantiations whose workflow fragment belongs to expected
sets of workflow fragments within these two ranges. The
recall increases to a large extent when thrdept changes from
0.82 to 0.86, since the number of expected workflow frag-
ments is large. Moreover, the number of workflow fragments
in SWFept decreases when thrdept is set to a relatively large
value, which makes |SWFept ∩ SWFrec| decrease as well.
Therefore, the precision drops (from 0.924 to 0.463) along
with the increase of thrdept .

Fig. 8 shows the comparison of MAE and RMSE for
Louvain and K -Means, when thrdept is set to 0.86 and tp%
is set to 2%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 20%,
22%, 24%, respectively. Results indicate that our technique
achieve the small error and the best performance compared
with K -Means. When tp% is set to relatively large values,
MAE and RMSE increase to a large extent. This is due to the
fact that more low similarity instantiations are recommended
by our technique. Although MAE and RMSE increase with
the value of tp%, their values are maintained in an acceptable
error range. Note thatMAE andRMSE can only be influenced
by the similarity value of the recommended instantiations,
and the more the number of instantiations, the greater values
of MAE and RMSE . However, when the tp% value is fixed,
no matter how the thrdept changes, the situation of recom-
mended instantiations will not change, which only affect the
change of precision, recall. Therefore, we do not need to
discuss the effect of thrdept on MAE and RMSE .
Generally speaking, the precision and recall should be

balanced somehow for facilitating the recommendation of
workflow fragments, such that a more number of appropriate
and relevant workflow fragments should be recommended.
The results of our experiments have shown that the precision
drops and the recall increases when tp% and thrdexp increase.
Therefore, we suggest that tp% and thrdept should not be set
to relatively large values for supporting real-world applica-
tions. Meanwhile, experiment shows that our technique is

FIGURE 8. Comparison of MAE and RMSE for Louvain and K-Means,
when thrdept is set to 0.86 and tp% is set to 2%, 4%, 6%, 8%, 10%, 12%,
14%, 16%, 18%, 20%, 22%, 24%, respectively.

accurate on ranking and recommending appropriate frag-
ments crossing multiple workflows, which is suitable for
practical applications.

VII. RELATED WORK
Abundant scientific knowledge contributes to inside-school
education, which is more significant for disciplines like sci-
ences when complex scientific experiments are required.
Thus, when novel scientific experiments are to be designed
and conducted, reusing and repurposing scientific work-
flows can be regarded as an efficient learning mechanism
for research scientists, which is an indispensable ingre-
dient for achieving the objective of smart campus and
others [1], [2], [32]. Scientific workflows play an impor-
tant role in the reproducibility and replicability of scientific
experiments. In the scientific experiments, a large variety
of scientific workflow systems (e.g., Wings, Taverna, Galaxy,
Vistrails) have been created to support scientists. When a
scientist would like to conduct a novel scientific exper-
iment, it is cost-effective to reuse and repurpose cur-
rent workflows. Workflow reuse and repurposing is a
promising research topic, and data on-line workflows built
in e-Science have been the result of collaborative team
efforts [12]. The authors have developed a workflow sim-
ilarity computation technique to promote the reuse and
repurposing of certain workflows in myExperiment, where
workflows are transferred into layer hierarchies, and a
layer hierarchy reflects hierarchical relations between this
workflow, its sub-workflows, and activities [5]. Similar
approaches have been developed, which can be categorized
into annotation-based [13], [14], structure-based [15] and
data-driven [16], [17] mechanisms. In general, these tech-
nologies explore similarity assessment issues from different
perspectives, thereby suggesting techniques for adaptability
between scientific workflows. There are techniques taking
annotations into account for measuring the similarity of sci-
entific workflows. In [13], a similar workflow search algo-
rithm based on semantic type comparison has been proposed,
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and the expanded experiment shows that semantics and ontol-
ogy play significant role in service and workflow representa-
tion. The bag of tags and words are considered for assessing
the similarity of scientific workflows [14]. Recommendation
strategies are proposed to augment an in-progress workflow,
leveraging the knowledge about workflows in the reposi-
tory. Authors have adopted the similar principle to compute
the similarity between scientific workflows [23]. The cur-
rent state-of-the art in supporting the discovery of scientific
workflows relies on annotations to be provided for these
workflows by their authors, and for the potential re-users
of these workflows to use the right keywords when search-
ing for them. To improve this situation, in [15] the authors
proposed an approach for measuring the structural similarity
of scientific workflows. Note that a scientific workflow is
assumed to be reduced to a directed acyclic graph in [15].
This assumption may not hold, since some workflows in the
myExperiment repository is to be reduced to a directed cyclic
graph. This is interesting, and it has inspired us to think
of scientific workflows as cyclic graphs. Generally, these
approaches are beneficial and complemental to structural-
based approaches, when rich annotations are provided for
specifying workflows. Although measuring the similarity of
workflows based on annotations and structures can be effec-
tive, defining inexact and incomplete labels and the existence
of multiple labels for similar activities cause challenges for
determining similar processes. Recent attempts to consider
data in business process management and the support of
data modelling in business process standards have led to the
creation ofmultiple businessmodels with data access. In [16],
a method considering data for measuring business process
similarity is presented in which first the similarity of activities
is measured according to their structures and behaviours in a
process and also their data access. Then based on the simi-
larity of activities, the similarity of processes is determined
using the proposed algorithm. Starlinger [17] demonstrate
the both approaches, which a hierarchical browsable view of
the repository in which categories are derived using frequent
itemset mining or latend Dirichlet allocation, may be used
for effective data exploration. In addition, the question about
data mechanism is researched by Zhu et al. [18] and Zhu et al.
[33].

Besides, many requirements can be partially satisfied by a
single scientific workflow, Therefore, typical fragments can
be retrieved from workflows to improve their sharing and
reuse when possible. Meanwhile, much of researches enter
on reuse and re-purpose of their workflow fragments, where
approaches to detection and recommendation are well devel-
oped. Lapeña et al. [19] proposed a novel approach, com-
puter assisted CAO for models, that uses a multi-objective
evolutionary algorithm with two objectives to rank relevant
model fragment for reuse, which are easier to understand
from the perspective of a software engineer. A keyword-based
search method [34] for identifying the fragments that can
be relevant for the needs of a given workflow designer is
presented, and workflow fragments can be re-utilized and

re-purposed by designers when specifying new workflows.
The FragFlow approach, which detects workflow fragments
automatically by analyzing existing workflow corpora with
graph mining algorithm, is presented in [35]. How to disin-
tegrate a workflow model and how to allocate its fragments
to each of the components are considered to configure the
underlying collaborative workflow system in [36] and [37].
In addition, how to detect most possible workflow frag-
ments for recommendation in a meaningful way is a hot
tendency. Sarno et al. [20] extract the common fragments
using dependency graph calculation in a reconfigurable busi-
ness process model. As presented in [38], for facilitating
the understanding about the reuse and execution of scientific
workflows, common workflow fragments from workflows
in the repository are detected. However, these fragments in
above approaches are obtained through each overall scientific
workflow, rather than across various workflows like in our
technique. It it worth emphasizing that a new experiment
may be relevant with multiple experiments that have been
conducted by others in most application scenarios, and thus,
whose workflow should be constructed through assembling
carefully-discovered fragments contained in various scien-
tific workflows in the repository. Consequently, discovering
appropriate fragments from multiple scientific workflows,
and facilitating the reuse and repurposing of these assembled
fragments, is a promising research challenge.

With a relatively large number of activities and scientific
workflows increase in the repository, the activity discover
procedure could be achieved by means of service discovery.
Meanwhile, activities with same or similar functionalities
should be considered as relevant. In fact, abstract activi-
ties in [22] has been discovered from event logs and rep-
resented as subprocesses contributing to the construction of
process models. As presented in [39], a clustering frequency
co-occurring activities mechanism is developed, where a
cluster of activities is considered as a high level activity.
However, if only frequency co-occurring activities are
considered, functional research about activities are not com-
prehensive.What is more, the name or additional text descrip-
tion about activities can help scientist understand their real
meanings compared with frequency more. Therefore, it is
essential that all activities in various scientific workflows
are involved to consider the functional clustering. In addi-
tion, for developing a new experiment that may be relevant
with multiple experiments, functionally-similar activities that
have been developed by other scientific workflows are more
meaningful and has not been considered extensively. There
are many traditional clustering algorithms, such as K -Means,
SNN , Graph-Skeleton and so on, which have been applied
in the service computing domain. When a complex network
is used to clustering, community discovery clustering algo-
rithms perform outstanding results and should also be worth
considering in our technique for facilitating the formative of
abstract activity.

Because of the existence of the name and text description
in activities, which is more indicative of what they actually
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mean, the semantic similarity is deemed to the connection
between activities. Our technique computes the semantic
similarity through WordNet between words [5], and does
not assume the existence of a domain ontology. Thereafter,
an activity network based similarity is generated through
pruning links about the distance whose value is no less
than a pre-specified threshold. Common data- and workflow-
oriented motifs [40] represent kinds of data-operation activ-
ities and structural manners of realizing these activities,
respectively, in scientific workflows. In fact, workflow design
represents the best practice, which can be reused or repur-
posed for supporting research. Some functions or behaviors
may be completed by semantically similar activities and
structurally identical fragments, so that abstract activity frag-
ments could be shared to use. Therefore, we accommodate
the invocation relation specified upon contiguous abstract
activities in the way of an abstract activity network, which
represent many possible executable fragment templates for
the fragment detection and recommendation. In the rec-
ommendation process, clusters formed by the WfN model
haven’t generated proper information for each cluster in [5].
However, in our experiments, it can speed up the fragment
recognition and recommendation process. Therefore, we pro-
pose a strategy for generating key information for abstract
activities. In [8], a novel empirical approach for mining ETL
(Extract, Transform and Load) structural patterns using the
VF2 graph matching algorithm is applied. Therefore, based
on the idea of graph isomorphism, we consider it for the struc-
tural fragment mining. Consequently, fragment discovery are
reasonably solved through semantic and structural matching
on an abstract level. Moreover, a social network has been
incorporated into sensor-cloud for sharing big data [41], and a
social-network ananlysis has been applied to assess the reuse
of scientific workflow fragments [9]. To summarize, these
thoughts have promoted the study of our technology, which
contributes to accurately detect and recommend workflow
fragments.

In the case-based reasoning, a case is to be found for
matching the user’s query exactly, but similar cases may be
found in some aspect which may be adapted for construct-
ing novel fragments. This observation drives us that it is
possible to find the exact solution to recommend without
losing right case. In addition, discovering the fragments that
are suitable for requirements have been explored in other
ways [8], [42], [43]. In Roy Chowdhury et al. [42] propose
to promote the reuse of mashup model patterns. A pattern
weaving approach is proposed for promoting the reuse of
composition knowledge. Meanwhile, [8] presented a pattern-
based analysis of ETL workflows and the most frequent ETL
patterns are discovered and identified. An efficient recom-
mendation method for improving business process modeling
is proposed in [44], where the patterns within processes
are extracted from the repository through a graph-mining
technique. Traditionally, pattern detection approaches based
on predefined measures [45] have some limitations. How to
set the values of predefined measures is a difficult question,

which leads to the pattern explosion or pattern shortage
issues. This means that these predefined measures should be
avoided, at the same time, it is possible to detect workflow
fragments across-the-board. In our experiments, an abstract
activity network model is constructed without considering
the setting of threshold according to our technique, in fact,
abstract activity fragments could also been seen as patterns.
Besides, experimental evaluation of our technique shows that
the detection and recommendation of cross-workflow frag-
ments is accurate and efficient.

VIII. CONCLUSION
This article proposes to a cross-workflow fragments dis-
covery mechanism to promote the reuse and repurposing
of these fragments which partially belong to various scien-
tific workflows. Specifically, the degree of semantic simi-
larity for pairs of activities in various scientific workflows
are calculated. Abstract activities, which represent cer-
tain groups of functionally-similar activities, are generated
through adopting the modularity-based activity clustering
technique. An abstract activity network is constructed, whose
vertices correspond to abstract activities, and directed edges
reflect the invocation relation specified upon contiguous
abstract activities. Given a scientist’s requirement that is
specified in terms of a workflow template, structural and
semantic similar workflow fragments are discovered from
the abstract activity network through the sub-graph matching
algorithm. These fragments are instantiated through replacing
abstract activities by appropriate activities in certain activity
clusters. These instantiated workflow fragments are ranked
and recommended for their reuse and repurposing purpose,
where the factors including the path length ratio and average
semantic similarity are adopted as the criteria. Evaluation
results demonstrate that our technique is accurate and effi-
cient on discovering and recommending appropriate cross-
workflow fragments.
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