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ABSTRACT Remote-automated cognitive impairment (CI) monitoring has the potential to facilitate care
for the elderly with mobility restrictions. In particular, CI detection based on speech features from audio
data collected for remote cognitive testing holds significant promise to improve remote cognitive health
monitoring. This requires no additional testing for speech analysis and, combined with cognitive test scores,
can improve CI detection over using cognitive test scores alone. This paper builds on previous work with
an expanded set of speech features extracted from a larger suite of remotely administered cognitive tests.
The speech features tested include measures of phoneme characteristics, pitch, and articulation. The relative
merits of using speech features, a common cognitive test score, and both combined for CI prediction are also
explored. The best performing system uses a combination of speech features and the cognitive test score,
obtaining a performance outcome of area under the ROC curve (AUC) = 0.77. This outcome is better at the
5% significance level than that obtained using the speech features alone (AUC = 0.74) or the cognitive test
alone (AUC = 0.54). Additionally, the influence of validation methodology on performance estimation is
addressed in detail. Learning statistical models for speech-based CI diagnosis is challenging due to limited
availability of audio data from subjects with clinical CI diagnoses. Rigorous validation methods for model
learning are important in this context. The stringent validation methodology developed in this paper produces
more conservative, and likely, more generalizable performance estimates compared with methodologies used
in prior art.

INDEX TERMS Mild cognitive impairment, motor coordination, vocal biomarkers, formant frequencies,
phoneme durations, cross-validation, feature selection, remote health care monitoring.

I. INTRODUCTION
Constraints on elderlymobility and human resources for elder
care have spawned an active area of research in technol-
ogy to enable remote, automated monitoring as part of an
assisted senior living system. Several tests to assess cogni-
tive functioning in the elderly can be administered remotely
over a telephone or the internet. Such tests involve the col-
lection of audio responses from a participant to be either
manually or automatically scored. In general, cognitive tests
for mild cognitive impairment (MCI) and dementia of the

Alzheimer’s type (DAT) include tests of episodic memory,
executive functioning, language, spatial skills, and atten-
tion [1]. Clinicians typically administer several different
tests to facilitate MCI/DAT diagnosis. In category fluency
tests, a subject is asked to name as many examples from
a category (animals, vegetables, items in a grocery store,
etc.) as possible within a short time period, often 30 sec-
onds or one minute [1]. Category fluency tests have been
used with some success to detect DAT [2]–[7] and MCI
[8]–[12]. In another example test, the East Boston memory
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test (EB), participants are told a story and asked to sum-
marize the content of the story immediately after hearing
it and again after a specific delay. Category fluency tests
and the East Boston memory test are well suited for remote
administration.

While the linguistic content of cognitive test audio samples
is primarily leveraged for cognitive assessment, there is also
active research in extracting information from the acoustic
speech signal itself to detect DAT and MCI. The coupling
of speech and language with dementia [13], [14] entails
correlations between vocal features reflecting prosody, voice
quality, and linguistic complexity and various degrees of
cognitive impairment [12], [15], [16], [21], [22]. This idea is
not unique to the DAT and MCI research community. There
is a growing consensus that non-linguistic vocal features are
powerful indicators of multiple dimensions of mental condi-
tion and emotional state. These features, which include char-
acterizations of prosody (e.g., fundamental frequency and
speaking rate), spectral representations (e.g., mel cepstra),
articulation (e.g., formant frequency correlation structure)
and glottal excitation (e.g., timing jitter, amplitude shimmer,
and aspiration) have been applied to detect neurocognitive
and neuromotor changes from a variety of causes such as age-
related cognitive impairment, major depressive disorder, mild
traumatic brain injury, Parkinson’s disease, and cognitive
workload [15]–[23].

In the particular domain of speech-based CI detection,
several results have been published in the past decade.
Satt et al. [21], [22] achieved an 18% ± 6% equal error
rate (EER) for MCI/dementia prediction using speech fea-
tures from Greek speech and a 20% ± 6% EER for MCI
prediction using a different dataset in French. In both cases,
their audio data was collected in person and consisted of at
least three different speech tasks designed for the purpose
of extracting non-linguistic speech features to detect MCI
and DAT. Roark et al. [17] explored combining semantic and
speech features from cognitive test audio collected in person
for CI detection. They used various combinations of English
speech features, natural language processing features and
nine different cognitive test scores for classification of MCI
and obtained an AUC of 0.86 with their best set of 17 fea-
tures. Two of our earlier works used vocal features from
English speech remotely collected in the Alzheimer’s Disease
Cooperative Study (ADCS) to predict cognitive impairment
as measured by clinical evaluation [15] and the animal flu-
ency cognitive test score as a metric [16]. In [16], the best
performing regression model was a second-order model that
combined speaking rate and formant features, resulting in a
correlation (R) of 0.61 and a root mean squared error (RMSE)
of 5.07 with respect to a 9-34 score range. Vocal features
provided a reduction by about 30% in RMSE from a baseline
(mean score) in predicting cognitive performance derived
from the animal fluency assessment. In [15], a small set of
six vocal features showed promise for cognitive impairment
classification. A SVM classifier with 10-fold cross validation
obtained an EER of 13.5%.

In this paper, new combinations of articulatory and
phoneme-dependent rate features from the ADCS database
of remotely collected speech are explored for CI detection.
These feature combinations are computed across several dif-
ferent cognitive testing protocols within ADCS, including
the East Boston Immediate testing protocol. This protocol
was not used in [15] or [16] and the best-performing system
tested in this work is derived from the East Bostion Immedi-
ate (EBi) testing protocol.With a rigorous, repeatable, out-of-
sample feature selection and cross-validation approach, this
model achieves prediction accuracy, characterized by the area
under the receiver operating characteristic curve (AUC) [24]
of AUC = 0.74, using all feature types from EBi audio.
When these features are combined with animal fluency cog-
nitive test scores, also a component of the ADCS, the model
yields a result of AUC = 0.77. Because multiple, different
approaches to validation are used in the prior art described
above, it is difficult to compare results on an equal footing.
A general analysis of the validation methods used in this and
other speech-based CI research is developed here to provide
context for interpreting performance estimates. Each of these
methods is applied to the dataset from this work to show a
specific instance of how a validation approach can signifi-
cantly change performance estimates, as a consequence of
over-fitting.

The rest of the paper is organized as follows. Section II
details data collection procedures and participant demograph-
ics in the ADCS, the source of the speech and clinical data
used in this work. In Section III, signal-processing method-
ologies for obtaining speech features from phoneme-based
and pseudo-syllable-based speaking rates, pitch variability,
and formant frequency correlation structure are described.
In Section IV, the evaluated feature sets are described along
with the supervised learning and CI detection methods
used in this work. In section V, the performance evaluation
approach and results are presented. Section VI compares
different cross-validation methodologies for feature selection
and supervised learning. Finally, Section VII closes with
conclusions and projections toward future work.

II. DATA DESCRIPTION
The Alzheimer’s Disease Cooperative Study (ADCS) coordi-
nated a 4-year longitudinal data collection, entitled ‘‘Multi-
Center Trial to Evaluate Home-Based Assessment (HBA)
Methods for Alzheimer’s Disease Prevention Research in
People over 75 Years Old.’’ The purpose of the data col-
lection was to enable evaluation of different technology
platforms for administering home-based assessments outside
of clinic visits. All participants completed comprehensive
in-person medical and neurological diagnostic evaluations
at study baseline. Eligible participants were randomized to
three different study arms, one of which was a speech-
enabled, computer-automated telephone system using inter-
active voice response (IVR) technology [25]. From this study
arm, a 214-subject audio database of audio was compiled.
The sample comprises 72 male and 142 female participants.
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Speech recordings (sampled at 8 kHz) were collected over
standard home telephones either quarterly (50% of subjects)
or annually (50% of subjects).

No personally identifying information is available through
the ADCS Data Core. All information is linked through
anonymous participant ID numbers. Individually identifiable
information is stored at the investigative sites and secured to
protect participant identities in accordance with the oversight
of the institutional IRBs. The research here does not apply
to U.S. Department of Health and Human Services 45 Code
of Federal Regulations part 46 and is not considered human
research. All data used was stored and handled accordingly.

A. CLINICAL AND REMOTE DATA COLLECTION
PROCEDURES
Clinical evaluation consisted of amedical examination, a neu-
rological examination with specific questions about memory
complaint, and a neuropsychological battery taken from the
Uniform Data Set of the National Alzheimer Coordinating
Center. The tests included: Logical Memory, Immediate and
Delayed; Digit Span: Forward and Backward; Category Flu-
ency: Animal and Vegetable; Trail Making Test: Parts A
and B; Digit Symbol Substitution; and Boston Naming Test.
In addition, the clinician administered a 24-item ADCS-MCI
Activities of Daily Living and used this assessment battery
to 1) exclude participants with dementia at the beginning
of the study, and 2) categorize eligible participants as nor-
mal or MCI based on evidence of memory impairment from
the interview and neuropsychological evaluation. A similar
process occurred at the end of the study for those still par-
ticipating. CI assessment occurred additionally during the
four-year study if a participant reported changes deemed
significant enough to warrant a follow-up exam.

Cognitive functioning in HBA participants was assessed
remotely using a variety of tasks including the animal fluency
test and the East Boston memory test. In the animal fluency
memory task (abbreviated as AF), participants list as many
animals as possible during a one-minute interval. In the East
Boston memory test, participants are told a story and asked to
summarize the content of the story immediately (East Boston
Immediate or EBi) after hearing it and again after a specific
delay (East Boston Delayed or EBd) (Table 1). All speech
data used in this study to predict on-site, clinical cognitive
impairment diagnosis is derived from audio recordings of
these tasks. The subset of observations used was selected
based on two criteria: 1) temporal proximity of the audio col-
lection to a clinical cognitive assessment, and 2) no evidence
of confounding factors such as alcoholism or depression in
the participant.

B. PARTICIPANT DEMOGRAPHICS AND DATA
PREPROCESSING
Participants lacking audio recordings in sufficient temporal
proximity to the clinical evaluation were not included in
this work. 285 audio samples from 168 participants were
collected within three months of a clinical evaluation. Several

TABLE 1. Cognitive test audio names and descriptions.

TABLE 2. Distribution of participant clinically determined cognitive status
in the data. The cognitive impairment class (CI) includes all participants
with dementia and amnestic MCI. Single domain (SD) means only
memory is impaired in amnestic MCI while multiple domain (MD) means
memory and at least one other cognitive ability is affected.

audio samples were not suitable for analysis. For example,
in one AF audio sample a woman stops in the middle to
answer her door and never finishes the task. 284 observations
remain from 167 participants after removing those of poor
quality. 21 observations are from study participants diag-
nosed with some form of cognitive impairment: dementia
(2 observations), Amnestic MCI single domain (14 observa-
tions), and Amnestic MCI multiple domain (5 observations)
(Table 2). Dementia criteria for this study are for Alzheimer’s
Disease-based dementia. In amnestic MCI, memory is sig-
nificantly impaired. In single domain (SD) amnestic MCI
only memory is impaired, whereas in multiple domain (MD)
amnestic MCI, memory and at least one other cognitive
ability is affected (e.g., visual-spatial skills and/or executive
functioning). 263 observations are from participants diag-
nosed with normal cognitive functioning status. In this work,
observations were binned into two diagnostic classes. The
normal class consists of participants with neither an MCI nor
a dementia diagnosis. The cognitive impairment (CI) class
consists of participants diagnosed with either some form of
amnestic MCI or with dementia (Table 2).

ADCS data was collected in a longitudinal study with
multiple observations of many participants. There are five
observations of one participant, four observations of seven
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participants, three observations of seventeen participants,
two observations of 58 participants, and one observation
of 84 participants. 12 of the 83 participants with multiple
observations transition from normal to MCI within the study,
with one participant transitioning further to dementia. Cross-
observational (i.e., cross-session) averaging is one way to
address the complex missing-data profile of this study and
transform it into data resembling a cross-sectional study with
independent data for inductive learning. Longitudinal data
collected from individuals can also have additional structure
relative to cross-sectional data due to within person corre-
lations, such as baseline cognitive ability and non-random
changes that occur in an individual over time due to clini-
cal progression of disease and aging. Such correlations, in
addition to providing feature information, can influence clas-
sifier performance. Under these conditions it is challenging
to isolate the predictive power of a feature set [26]. Fac-
tors such as short time-scale changes in stress or fatigue,
which can occur independently of long-term cognitive status
changes, contribute to intersession speech variability in a
participant [27]. These factors are a source of noise that can
degrade CI classification accuracy.

Cross-observation averaging of speech features obtained
from multiple observations with an unchanging CI diagnosis
also mitigates these effects. For example, for a participant
with four normal clinical assessments, averages of speech
features obtained from the four audio collections are used
in the feature vector for that participant. Features across
sessions where a transition from normal to MCI or from
MCI to dementia takes place are not averaged, under the
assumption that these speech samples were generated from
different cognitive states. This results in 12 participants in
the dataset with multiple observations across different CI
diagnoses (constituting 25 total observations in the data). The
remaining 155 participants have either one observation or one
averaged observation. The resultant dataset includes 20 CI
observations and 160 normal observations for model testing
and training.

Age, education level and sex are potential confounding fac-
tor in this study. CI and dementia are known to increase with
age in the elderly [28], and speech features could also change
with these covariates. To be of clinical use, speech features
need to provide additional predictive capability for CI beyond
that predicted with these demographic variables. Age and
education level histograms of the participants in this dataset
demonstrate their influences on CI diagnosis. Figure 1 shows
frequencies of the age and education demographic variables
for normal (tan) and CI (green) participants in split bean plots.
For the ADCS data, the histograms do not appear drastically
different in shape and there is no strong bias toward higher
ages or lower education levels in the CI population.

The effect size of these demographic variables on CI is
quantified in Table 3 with Cohen’s d [30] for the age and
education variables and the log odds ratio, appropriate for
binary variables, for the gender variable. Given the sample
sizes of CI = 20 and normal = 160, age and education

FIGURE 1. Split bean plots showing z-scored feature value frequencies of
age and education (ed) covariates for CI (green) and Normal (tan)
observations in the averaged ADCS data set. The solid black lines are
mean values for each covariate for CI and Normal observations while the
dotted line represents an overall average for all covariates for both
Normal and CI observations. Thin cyan and white lines indicate feature
values with observations. Green and tan envelopes depict the shape of
the frequency distribution over all observed feature values.

TABLE 3. Effect size metrics quantifying how much age, gender, and
education differ for the normal vs. CI class. Corresponding 95%
confidence intervals and p-values are shown as well. As suggested in the
split bean plots in Figure 1, there is negligible information in these
covariates from this dataset for CI detection.

exhibit negligible effect sizes that are not significant at the
5% or 10% level. Gender has a slightly larger effect size that
is also not significant at the 5% or 10% significance level.
In light of these weak, insignificant associations with CI,
these covariates were not accounted for in subsequent models
including other features.

III. VOCAL FEATURE EXTRACTION
The speech features used in this study are based primarily
on phonemic, pseudo-syllable, and articulatory measures.
A motivation behind investigating this particular suite of
features is that neurophysiological changes associated with
dementia affect motor timing and coordination and therefore
involve the disruption of articulatory control and kinemat-
ics [9], [10]. More specifically, the approach explored here
is based on the hypothesis that general psychomotor slow-
ing due to dementia affects speaking rate and articulatory
coordination. Two recent methods investigate these disrup-
tions in articulation and speaking rate: a phoneme-based
rate measure (including pause information) [18] and articula-
tory coordination using formant-track cross correlations [29].
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These types of feature sets have also been found effective
in detecting depression and Parkinsons disease, which can
be characterized by psychomotor retardation [20], [31], and
thus potentially represent a common feature basis for certain
neurological impairments. Before averaging over longitudi-
nal observations (i.e. audio collection sessions), the 87 speech
features obtained from the AF test, the Ebi test, and the EBd
test, are extracted for each observation, for a total of 261
features per observation. These are then averaged over lon-
gitudinal observations as described above.

A. AVERAGE SPEECH-RATE FEATURES
Measures of speech rate are derived from the counts and dura-
tions of individual phonemes. These are derived from a phone
recognition algorithm based on a Hidden Markov Model
(HMM) approach, reported with a phoneme-recognition
accuracy of about 80% [32]. This model was trained with
English speech but not elderly speech in particular. Accu-
rate phoneme classification, however, is not as important as
consistency in the phoneme labeling and accuracy in the
phoneme boundary demarcations. It is interesting to note
that the same phoneme recognition algorithm was used suc-
cessfully as a basis for estimating major depressive disorder
in German speech [19] and Parkinson’s disease severity in
Spanish speech [20], despite the fact that the algorithm is
intended for phoneme recognition in English speech.

The number of phonemic speech units per second over
the entire duration of a single participant’s session is used
to compute two features.Speaking rate refers to the average
phoneme rate with pauses included, whereas articulation
raterefers to average phoneme rate with pauses excluded.
Speaking rate and articulation rate measures are also based on
pseudo-syllables [33] and are computed using an automatic
phoneme recognition system that, as above, first detects indi-
vidual speech sounds. These phonemes are then combined
such that each vowel forms the nucleus of its own segment,
with all of the preceding consonants grouped with it. For
example, ‘‘V,’’ ‘‘CV,’’ and ‘‘CCV’’ are all valid pseudo-
syllables.

B. PHONEME-SPECIFIC FEATURES
These include the average duration and the total count
of 40 individual phonemes. The phoneme dictionary includes
’sil’, the so-called silence phoneme, which is used to estimate
pauses between speech segments. The large amount of unob-
served phoneme data in the ADCS audio was approached dif-
ferently here compared to [15]. In [15], analysis was restricted
to the subset observations containing a positive number or a
zero for the average duration of 20 phonemes. All phonemes
that lacked one or more observations in at least one audio
sample, depicted by ‘NaN’, were discluded from the study.
To use the entire set of 40 phonemes in the feature selection
process in the current work, an average duration of zero
is attributed to a phoneme if it is unobserved in an audio
sample.

C. FORMANT FREQUENCY CORRELATION
STRUCTURE (Xcorr)
To assess coordination of speech articulators, the dynam-
ics of vocal resonances (formant frequencies) are measured
based on the structure of correlations of formant tracks. This
feature extraction approach has been successfully applied to
vocal signals to predict symptom severity in major depressive
disorder [19]. A detailed description of this feature analysis
approach, in the context of epileptic seizure prediction from
multichannel EEG, is provided in [29]. In summary, the
approach computes channel-delay correlation matrices from
the first three formant tracks. Each matrix contains correla-
tion coefficients, computed at multiple relative time delays,
between formant tracks obtained from the audio samples.
The formant correlation structure is characterized using the
rank-ordered matrix eigenspectra. Changes in the coupling
strengths among the formant tracks cause changes in the
eigenvalue spectra of the channel-delay matrices. For this
work, matrices are computed with four different sub-frame
intervals of 1, 3, 7, 15 for the four scales, with 10 time-
delays used per scale. The first principal component of the
concatenated eigenvalue spectra from themultiple time scales
is used as the feature.

D. PITCH VARIABILITY
Pitch estimation is performed in voiced regions using a
sinusoidal-based algorithm [33]. For each speech sample in
the database, the pitch variance is estimated as the mean-
squared pitch deviation from the mean.

IV. FEATURE SELECTION AND CLASSIFICATION
The feature selection process in [15] involved some manual
tuning and was performed using information from the entire
dataset. The implications of using information from the entire
dataset in feature selection is addressed in section VI. This
work uses a more automated, generalizable pipeline, from
feature selection to performance evaluation, enabling repro-
ducibility. For each of the three speech tasks, EBd, EBi and
AF, the following feature selection protocol is used. First,
features are grouped into five categories based on the type
of feature in the group (Table 4). This grouping was done to
enable a global perspective on the effect of feature type on
CI detection performance for exploratory insights. Cohen’s
d effect size measure is used to rank order the effect-sizes
of features within a feature type if it includes more than one
feature (e.g. the forty average phoneme durations, the forty
phoneme counts and a global feature set including six of
the average features described above). For feature selection,
the most discriminative feature out of a given feature type that
has more than one feature is chosen.

The total number of features per session sums to 87. This
step is done on training data only. Selected features from the
training data are then used to learn a support vector machine
(SVM) and a Gaussian classifier (GC), also using training
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TABLE 4. Feature groups used in the feature selection process. The
feature with the largest effect size, as measured by Cohen’s d, from fset3,
4 and 5 is selected. fset1 is a fixed scalar that is not selected and fset2 is
the first principal component of the formant-based, cross-correlation
features, where PCA is done on training data only. The total number of
features per session sums to 87.

data only. This classifier is then applied to unseen data to
produce predictions.

V. RESULTS AND DISCUSSION
Using the above vocal features, the primary goal is to
produce accurate performance estimates while also gaining
exploratory insights that can be used in a follow-up con-
firmatory analysis with new data. Therefore, CI detection
accuracy is measured as a function of three dimensions:
audio type (EBd, EBi and AF), feature set type (fsets1-5)
and classifier type (GC vs. SVM). The leave-pair-out cross-
validation (LPOCV) design is conservative in that a sample
from the smaller CI class (20 observations) is always held out
in the test data. This avoids optimistically biased performance
estimates resulting from selecting only the larger normal class
(160 observations) in most of the test samples [37].

While optimistic biases are unlikely in this analysis, a neg-
ative bias, indicated by AUC values below 0.50, was present.
This is very likely due the small size of the ADCS dataset and
the fact that the Normal/CI class distribution is imbalanced.
Parker et al. (2007), show that AUC estimates from small,
imbalanced, low-signal datasets, such as the ADCS dataset,
suffer from negative bias due to stratification. Therefore, our
AUC estimates are likely smaller on average than if derived
from a larger, balanced dataset sampled from the same pop-
ulation. While other performance metrics are not as sensitive
to stratification bias, we use AUC in this study to compare our
results with those in [17]. Performance results from prior art
derived from small datasets potentially suffer from a similar

bias, given that speech-based CI detection appears to be a
generally low-signal regime.

Significance of differences between AUC values were
determined using a t-test for differences between sample
means computed with standard errors (SE) defined in [24].
Results are summarized in Table 5a for the Gaussian classifier
and in Table 5b for the SVM. Gray boxes correspond to AUC
significantly better than random, at the 5% level.

A. RESULTS FROM THE PERFORMANCE EVALUATION
Two feature set/audio combinations stand out for both the
GC and SVM. fset3 from AF audio achieves an AUC
of 0.73-0.75 for both classifiers. The selected feature from
fset3 that produced this high classification performance in the
leave-pair-out cross validation was phone rate for all phones.
The performance improvement obtained by adding the AF
score is not significant at the 5% level. This feature also had
a strong effect size computed over the entire dataset (testing
and training data): Cohen’s d = −0.79, 95% confidence
interval = [−1.3, −0.3].
fset2+fset3+fset4+fset5 for the EBi audio achieve an

average AUC of 0.74-0.75 for both the SVM and GC in
the leave-pair-out cross validation. AUC value increases to
0.77 if the animal fluency score (fset1) is combined with
the speech features for the GC but decreases to 0.72 for
the SVM. The first principal component of the EBi cross-
correlation feature (fset2), determined from training data and
computed for test data in the LPOCV, as well as the animal
fluency cognitive test score (fset1), are not selected using
the Cohen’s d metric in the cross-validation trials. However
Cohen’s d values for them are computed here over the entire
dataset (testing and training data) to quantify their effect size
for future confirmatory models built from this dataset. They
demonstrate a moderate effect size not significant at the 5%
level using the Bonferroni correction for the 261 independent
feature comparisons in our feature selection process (Cohen’s
d = 0.49), 95% confidence interval = [0.02, 0.96] and
Cohen’s d = −0.41, 95% confidence interval = [−0.9,
0.1]), respectively. Features from fsest3, fset4 and fset5 are
selected using Cohen’s d in the LPOCV trials. Unlike the
AF audio, in EBi audio, the selected feature from fset3,
pitch variance, does not have a strong, significant effect size
(Cohen’s d = −0.24, 95% confidence interval = [−0.7,
0.2]) when computed using the entire dataset. However, using
the entire EBi audio dataset, the average duration of the
<th> phoneme and the count of the <eh> phoneme were
selected in the feature selection process from fset5 and fset4,
respectively, and have strong, significant effect sizes, Cohen’s
d = 0.86, 95% confidence interval = [0.4, 1.3], and 0.785,
95% confidence interval = [0.3, 1.3], respectively.

Figure 2 shows CI (green) and Normal (tan) z-scored
distributions of these features, taken from the entire dataset,
as split bean plots. Cyan and white lines indicate observed
feature values, green and tan contours indicate the general
shape of the frequency distribution of the feature observa-
tions, black, solid lines indicate mean feature values for CI

VOLUME 6, 2018 40499



B. Yu et al.: Speech-Based Automated CI Detection From Remotely Collected Cognitive Test Audio

FIGURE 2. Split bean plots of z-scored feature distributions over all data
for features from the two best performing audio/feature sets: AF
fset3 and EBi fset1+fset2+fset3+fset4+fset5. Black, solid lines are mean
values of each feature distribution while the dotted line is the mean value
of all features. From the AF audio, the average phoneme-based speaking
rate from all phonemes (phnRtSpchAF) was selected from fset3 as the
feature with the strongest effect size for CI detection. From the EBi audio,
the average duration of the <th> phoneme (avgPhnDur<th>) and the
count of the <eh> phoneme (phnCt<eh>EBi) were selected as having
the strongest effect size from fset4 and fset5, respectively. Generally,
Cohens’ d above |0.7| is considered a strong effect size. The Cohen’s d for
these features is strong and statistically significant at the 5% level.
In contrast, in EBi audio, the Cohen’s d for the pitch variance is weak and
not significant, indicating that fset3 from EBi could be removed in future
CI prediction models. Although the animal fluency score (AFscore), from
fset1, and the formant-based cross correlation feature (xcorr1EBi from),
from fset2, are not subjected to feature selection, the feature histograms
for these features are also shown. They each demonstrate a statistically
insignificant, moderate effect size (Cohen’s d = 0.48, 95% confidence
interval = [0.0, 1.0] and Cohen’s d = −0.41, 95% confidence
interval = [−0.9, 0.1] for xcorr1 and AFscore, respectively).

and Normal observations and the black dotted line indicates
a grand mean over all feature values plotted. The count of
<eh> and average duration of <th> in the EBi audio is
larger on average for CI relative to normal observations.
In contrast, the phone rate over all phonemes from the AF
audio is on average lower for the CI relative to normal
observations. Also of note is the bimodality of the average
duration of <th> for the CI observations. One cluster of CI
participants resembles normal participants in average <th>
duration. The other cluster demonstrates <th> durations
much longer on average than normal participants.

B. DISCUSSION
Interestingly, at the 5% significance level, the AF score
improves AUC using the GC but decreases AUC with the
SVM with all feature types from EBi. In fact, with the GC,
all speech feature sets perform better when paired with the
AF score, at the 5% confidence level, except the set of global
speech features from the AF audio in fset3. The feature
selected from this set in all of the LPOCV trials and when
all data is used is the phoneme-based speaking rate. The
difference between AUC values from the model using this
speech feature with and without the AF score is not statisti-
cally significant for GC or SVM.

This finding is consistent with observations in [16],
in which strong correlations between phoneme-based and
pseudo syllable-based rates and animal fluency scores were

discovered at the 5% significance level, 0.57 and 0.58, respec-
tively. Such correlations entail mutual information between
the AF score and the phoneme-based speaking rate from the
AF audio. However, the effect size for CI detection of the
phoneme-based speaking rate from the AF audio is large
but still not significant the 5% level, with the Bonferroni
correction, Cohen’s d = −0.79, 95%, confidence interval =
[−1.3, −0.3], while that of the AF score is medium and
not significant at the 10% level, Cohen’s d = −0.41, 95%,
confidence interval = [−0.9, 0.1], cf. feature histograms
in Figure 2. Future confirmatory models for CI detection may
benefit from using the phoneme-based speaking rate fromAF
audio instead of the AF score. Such models could be entirely
speech-based, eliminate the need to manually or automati-
cally score the AF test and potentially have better discrim-
ination power.

Some of the speech features sets under the SVM actu-
ally perform worse at the 5% confidence level when paired
with the AF score. This variability is possibly because
the SVM using a radial basis kernel is a more compli-
cated classifier than the Gaussian Classifier and may be
less robust with small datasets commonly found in speech-
based MCI/AD detection. A simple, linear kernel may be
a better choice for the SVM in limited data regimes. It is
also noteworthy in these results that features from the East
Boston Immediate (EBi) audio strongly outperform those
from the East Boston Delayed (EBd) audio, which was used
in [15] and [16]. Therefore, in this dataset, speech from very
short-term/working memory tasks carries a stronger signal in
the feature dimensions we tested than that collected in the
delayed task measured approximately ten minutes after the
story was heard. There may be implications in this finding
for what modes of psychomotor functioning, as manifested in
speech about contents of working memory, are most strongly
implicated in MCI and DAT and worthy of further study.

The general impact of averaging across longitudinal data
is difficult to assess for this study because the majority of
participants (96) had only one observation or two independent
observations that were not averaged if they transitioned to CI
during the study. Additionally, 58 participants had only two
observations- one at the beginning and one at the end of the
study. Conducting a rigorous analysis on the effects of cross-
observation averaging on classification results would require
uniform, repeated sampling profiles for each subject so that
large differences in missing data per subject would not be a
hidden, confounding factor in the analysis.

For the same reason, learning personalized models for CI
prediction from repeated data, though a compelling approach,
would be very difficult with this data. Most participants have
only 1 or 2 observations and participants with multiple obser-
vations often do not transition to CI during the study, leaving
no training samples for the CI class. Only one participant
has five and seven have four observations. Of these, all but
one participant, who transitioned from MCI to dementia,
had only one or no observations taken in the CI condition.
Learning meaningful, individualized models with no or so
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TABLE 5. (a). Performance results for the Gaussian classifier on the various audio/feature-set permutations. Pairing speech features with the AF test
score improves performance for all combinations at the 5% significance level, with the exception of fset3 from the AF test. Gray boxes are feature sets
that perform better than random at a 5% significance level. AUC values below 0.50 are common when using small, imbalanced datasets for classification
because stratification bias in such data causes AUC estimates to be lower than expected (see Parker et al. (2007)). AUC values presented here are
therefore likely conservative estimates of the true AUC that would result from a balanced and larger dataset sampled from the same population.
(b). Performance results for the SVM classifier on the various audio/feature-set permutations. Pairing speech features with the animal fluency test score
impacts performance in unpredictable ways with the SVM. Both the GC and SVM show best performance with EBi audio and the full feature set and AF
audio and fset3. Gray boxes are feature sets that perform better than random at a 5% significance level. Note, compared to the GC, fewer feature sets
perform significantly better than random at the 5% significance level.

few examples of CI and such little data would not be pos-
sible. In follow-up confirmatory studies with larger datasets
collected under more controlled conditions, these important
issues should be studied in more detail.

VI. CROSS-VALIDATION AND EVALUATION
PIPELINE COMPARISONS
The LPOCV results in Section V were obtained using an
automated, filter method of feature selection [34] within
each cross-validation fold based on the Cohen’s d measure
of effect size computed on training data only. One goal
of this work is to understand the degree to which feature
selection and cross-validation methodologies result in biased
estimates of CI detection performance, a topic considered
in some depth in [38]. Most prior work in speech-based
CI detection selects features outside the cross-validation
loop, using both training and testing data. Even though

cross-validation is subsequently done in the statistical model-
ing stage, the selected features still possibly engender an opti-
mistic bias in the resulting performance estimates because
the selection was already done using test data. In addition,
in many cases, results from cross-validation studies were
used to further refine and select the sets of features and the
statistical modeling parameters that optimize performance.
In [21], the features computed using the entire dataset are
selected by filtering on single tailed p-values.

In [22], the Mann-Whitney test is used for filter-based fea-
ture selection using features computed from all data [35]. Fea-
ture selection was further tuned using classification accuracy
estimates from cross-validation tests in [22]. Roark et al. [17]
selected features based on t-values computed from the full
dataset. In [15], we use a wrapper-based feature selec-
tion method that selects feature by maximizing AUC over
CV trials in our SVM model [36]. This approach uses
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FIGURE 3. Schematic of three possible pipelines including feature
selection (FS), supervised learning (SL) and cross-validation (CV). Pipeline
I is the recommended method in which both FS and SL occur on training
data only. No information from CV performance estimates, such as AUC,
are used in either FS or SL. In pipeline II, FS is done over all data and not
subjected to CV. Pipeline III also does FS over all data but additionally
uses CV performance to influence FS. Pipelines II and III are likely to
produce optimistically biased CV performance estimates due to
over-fitting that do not generalize well.

information from the entire dataset contained in the AUC per-
formance metric. In Figure 3, a schematic is shown of three
standard approaches for doing feature selection, statistical
modeling and performance evaluation using cross-validation.
Processing pipelines based on these different approaches are
described in the next section.

A. GENERAL PIPELINE COMPARISONS
In Figure 3., pipeline I is depicted as the approach yield-
ing the most accurate assessment of performance gen-
eralizability. This pipeline uses no information from the
performance metric, e.g. area under the ROC curve (AUC),
or from out-of-sample data in the feature selection step.
To get amore realistic assessment of the discrimination power
of fset3 from AF audio and fset1+fset2+fset3+fset4+fset5
from EBi audio and how they will generalize, the feature-
selection/classification/cross-validation approach generating
the results in Table 5 was based on pipeline I. This process
is repeated multiple times for different testing and training
partitions of the data using exhaustive leave-pair-out cross
validation, to derive an estimate of CI detection accuracy
on unseen test data. To our knowledge, no previous work in
speech-based CI detection adheres to this rigorous method-
ology. Pipeline II, on the other hand, removes the feature
selection process entirely from the cross-validation loop. Fea-
ture selection in this scenario is done on the entire data set
(including test data) and only the model parameter-learning
step is subjected to cross-validation. Pipeline II has the poten-
tial to produce optimistically biased performance estimates

FIGURE 4. ROC curves for various cross-validation methodologies on the
EBi audio using all features in the feature selection process. Clear
performance decreases result from progressively removing in-sample
information from the feature selection process. Pipeline II includes all
data in the feature selection process. Pipeline III includes all data in
feature selection and additionally tunes feature selection using the AUC
performance metric. All known prior art in speech-based CI detection
uses pipelines II and III, indicating decreased generalizability of
performance estimates therein relative to results derived from
pipeline I.

because feature selection is not subjected to cross-validation.
Pipeline III further compounds this risk by using the cross-
validation performance estimates to further influence feature
selection in a spiral development cycle. All known prior art
in speech-based CI prediction uses pipeline II or III to some
extent. In the next section, experimental results are shown that
quantify the biasing of performance estimates based on using
pipeline II and III.

B. PIPELINE COMPARISONS ON ADCS DATA
To place the speech-based CI detection results in [15], [17],
[21], and [22] in a broader context, this section explores
the hypothesis that using a version of pipeline I, in which
feature selection is done inside the cross-validation loop,
would affect performance relative to pipeline II, in which
feature selection is done outside of the cross-validation using
all data, and pipeline III, in which all data as well as CV
performance estimates inform feature selection, is tested. The
results of this test done on the data used in this study are
shown in Figure 4. For both classifiers, performance quanti-
fied by AUC, decreased for pipeline I compared to pipelines
II and III at a 5% significance level. These results highlight
the importance of placing feature selection fully in the cross-
validation loop to obtain accurate performance estimates that
generalize. Furthermore, using CV performance estimates,
such as AUC or accuracy, to tune feature selection inflates
performance estimates further, as would be expected.

Hastie et al. [34] demonstrate that the best way to do
cross-validation places the feature selection step in the
cross-validation loop and is done only using information
in the training data. The work presented here demonstrates
a particular instance of why this approach is important.
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Performance estimates are inflated when information from
the entire dataset is used in the feature selection step. Prior
work in [15], [17], [21], and [22] benchmarks performance
with different metrics, EER and AUC, and uses speech from
different databases, often from different languages. These
factors make comparisons among results on par impossible.
However, based on results in Figure 4 and because all known
publications in the area of CI detection use a version of
pipeline II or III, it is reasonable to wonder if performance
estimates quoted therein will generalize to unseen data.
Yu et al. [15] and Satt et al. [21], [22] clearly use pipeline III
to generate results. The approach in [17] uses pipeline II but
it is not clear whether presented performance estimates are
selected from a larger set based on AUC or whether they
constitute exhaustive, unfiltered results.

Sometimes, generalizable performance estimates are not
the goal in a particular study. For example, in exploratory
analyses, producing generalizable results is not the objec-
tive. In these cases, pipelines II and III are reasonable
approaches provided they are framed in their proper context,
e.g. as methods for exploring the data rather than produc-
ing accurate estimates of performance generalizability. This
would have helped the reader interpret results more clearly
in [15], [17], [21], and [22]. It also is noteworthy that the best
performing models from Tables 5a and 5b are not only char-
acterized using a rigorous cross-validation methodology but
that they are also parsimonious. The EBi audio model, using
all feature types, has five features and the AF audio model,
using the feature from fset 3 with the largest effect size, has
just one feature. All best performing models from [15], [17],
and [21] include more features (eighteen in [17], twenty
in [21] and six in [15]), which is an additional indication of
over-fitting.

VII. CONCLUSION
This paper details several results on CI detection from
remotely collected audio recordings. In the first, on an
expanded dataset with more candidate features relative
to [15], speech features from audio remotely collected for
cognitive testing are demonstrated to provide information for
CI detection. The best feature set achieves an AUC of 0.77,
which is different from random at the 5% significance level.
Furthermore, the detection pipeline, a version of pipeline I
(strict cross-validation), is automated, reproducible and does
feature selection within CV. The second is that cognitive
test scores can be combined with speech features from the
cognitive testing audio to provide improved CI detection
over either one in isolation at a 5% significance level with
a Gaussian classifier. The performance animal fluency score
alone is significantly better than random with both classifiers
but does not have a strong effect size (Cohen’s d = 0.38).
In this dataset, the animal fluency score does not pro-

vide as much detection power as the best speech features,
however. This finding is noteworthy because DAT and MCI
diagnosis protocols commonly leverage fluency tests. Future,
completely speech-based approaches to CI detection using

the phoneme rate, including pauses, from AF cognitive test
audio rather than theAF score, appear promising. This feature
demonstrates a stronger effect size for CI detection than
the AF score and also shares information with the score,
quantified by correlation in [16].

The final narrative is a proscriptive one. Performance
estimates from CV need to be framed clearly and properly
in terms of 1) what pipeline was used to generate them
and 2) size and stratification characteristics of the dataset,
in order to ensure proper interpretation. If estimates derive
from pipelines II or III, this should be clearly stated along
with caveats on the expected generalizability of performance
estimates derived from these pipelines. Although it is natural
to tune performance to some extent using AUC or EER,
the potential effect this has on generalizability must be rec-
ognized and stated clearly, allowing results to be interpreted
in their proper context. If performance estimates derive from
small, imbalanced and low-signal datasets, it is possible they
are negatively biased and would be more favorable if larger,
balanced datasets sampled from the same population were
used.

Future work will include vetting this system on unseen data
to determine performance generalization. In particular, larger,
balanced data sets with more CI examples will be needed to
fully understand the robustness of the method and features
explored in this work. If rigorous, randomized experimental
design techniques are used to guide further data collection,
insights into causal relationships between CI and speech char-
acteristics will be possible, in addition to the associational
relationships determined in the predictivemodeling described
in this work. We leveraged simple classifiers to avoid over-
fitting limited training data in this study. With larger data
sets in future studies, more sophisticated classifiers, such as
deep neural networks, could be used and would likely pro-
vide improvements in predictive performance. Further work
investigating other cognitive tests with stronger effect sizes
than the animal fluency scores is also of interest because the
influence of the AF scores on CI detection was small in this
study.

ACKNOWLEDGMENT
DISTRIBUTION STATEMENT A. Approved for public
release: distribution unlimited.

REFERENCES

[1] M. S. Albert et al., ‘‘The diagnosis of mild cognitive impairment due
to Alzheimer’s disease: Recommendations from the National Institute on
Aging-Alzheimer’s Association workgroups on diagnostic guidelines for
Alzheimer’s disease,’’ Alzheimer’s Dementia, vol. 7, no. 3, pp. 270–279,
2011.

[2] Z. Shao, E. Janse, K. Visser, and A. S. Meyer, ‘‘What do verbal fluency
tasks measure? Predictors of verbal fluency performance in older adults,’’
Frontiers Psychol., vol. 5, p. 772, Jul. 2014.

[3] A. U. Monsch, M. W. Bondi, N. Butters, D. P. Salmon, R. Katzman,
and L. J. Thal, ‘‘Comparisons of verbal fluency tasks in the detection
of dementia of the Alzheimer type,’’ Arch. Neurol., vol. 49, no. 12,
pp. 1253–1258, 1992.

VOLUME 6, 2018 40503



B. Yu et al.: Speech-Based Automated CI Detection From Remotely Collected Cognitive Test Audio
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