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ABSTRACT In recent years, 5G cellular networks utilization has rapidly increased and is expected to grow
even more in the near future. This will put the current cellular networks operators in a challenge to overcome
the network’s limits to satisfy the increasing mobile data traffic and the proliferation of user demands
in deploying mobile applications. The deployment of cache-enabled small base stations (Femtocells) is a
promising solution to reduce the backhaul traffic loading and the file-access latency and therefore decrease
the cellular network operational costs. Due to the limited cache capacity when compared with the number
of files that can be requested by users, in this paper, we formulate the problem of minimizing the cost paid
by the cellular network while satisfying the cache capacity as an integer linear program (ILP). Due to the
NP-completeness of the ILP formulation and the difficulty of obtaining the file request sequence apriori in
real-life scenarios, we propose an online algorithm that decides which file to remove from cache in order
to allocate capacity to the newly-requested file. The algorithm works on a per-request basis and does not
require the knowledge of the file request sequence in advance. We prove that for a cache that can store up to
k files, the algorithm achieves a competitive ratio of O(log(k)), which is the best competitive ratio achieved
by any online algorithm as shown in the literature. The simulations conducted considering a single cache
show that while the proposed algorithm achieves a similar hit ratio compared with widely-used replacement
schemes, it can reduce the cost of the cellular network by 25%.

INDEX TERMS 5G, cache replacement, competitive ratio, femtocells, integer linear program, online
algorithms.

I. INTRODUCTION
Recently, file retrieval applications such as Video on Demand
andmedia sharing are dominating the Internet traffic. Content
Delivery Networks (CDN), which are the primary source of
servicing such applications, are responsible for 52% of Inter-
net traffic in 2016, and the share is expected to rise to 70%
in 2021 [1]. According to [2], Akamai company presents itself
as a leading CDN service provider which handles around 30%
of global web traffic. Moreover, with the wide-spread of
smartphones and the proliferation of social media appli-
cations such as Facebook and WhatsApp, the mobile data
traffic is expected to increase sevenfold between 2016 and
2021 [1].

This expected increase in mobile data traffic motivated
adapting the operations of cellular networks, as the current
cellular networks resources, such as link capacity and radio
access bandwidth, cannot handle the tremendous traffic of
mobile devices. To this end, cellular operators are currently
deploying smaller base stations within the macrocell in order

to serve the mobile users. These Small Base Stations (SBSs)
or Femtocells1 are connected to the main base station via
backhaul links. However, Deploying SBSs does not entirely
alleviate the challenges faced by the cellular operators. There-
fore, complementary techniques are required.

New approaches based on file caching and delivery are
proposed to satisfy users’ demands without retransmitting the
files from remote servers. This could be done by caching
the files locally in storage devices located at the SBS.
Caching at SBS is a fundamental aspect of 5G [3]–[5],
where caching can reduce the mobile traffic on the back-
haul links [6], eliminate its effects on the divergence of
response time latency [7], [8], help in smoothing the traffic
during peak hours [9], and improve the network’s energy
efficiency [10]. Thus, reliable caching techniques is of great
importance.

1We will use the terms SBS and Femtocells interchangeably
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In general, caching has been extensively studied for various
network types. For example, the work in [11] study caching
in Data Center networks, while Khreishah et al. [12] and
Gharaibeh et al. [13] study caching for the current Internet
infrastructure. In [14]–[16], caching in Content Centric Net-
works [17] is studied. It is pertinent to mention that the above
mentioned networks have different settings than the cellular
networks considered in this paper.

Due to the rapid growth of data communication over Cellu-
lar Networks(CNs), caching in CNs attracted a lot of attention
and has been studied for different objectives under different
settings. Caching files generated frommobile traffic is a chal-
lenge for the existing Internet infrastructures and finding the
optimal caching strategy is considered NP-Hard [18], [19].
Generally, the proposed caching techniques in CNs can be
broadly divided into two frameworks: (i) offline caching, and
(ii) online caching. In offline caching, files’ popularities are
required to obtain the optimal file placement strategy.

Several offline algorithms have been proposed. For exam-
ple, in order to minimize the average delay of file deliv-
ery, Golrezaei et al. [20] propose to utilize caching helpers
and prior knowledge of files’ popularities, while [21]
presents a file popularity estimation-based caching algorithm.
An information-theoretic framework for hierarchical caching
is presented in [22] and [9], while the authors of [23]–[25]
study the hierarchical caching in cellular backhaul networks.
File placement in SBSs for medical applications is tackled
in the optimization framework in [26]. A cooperative cell
caching framework that aims at minimizing the overall users
delay and the 5G network traffic load is investigated in [27].
A collaborative-based caching approach for a single macro-
cell with multiple small base station is proposed in [28].
In particular, the in-network caching management is han-
dled through an offline algorithm combined with the Least
Frequency Used (LFU) replacement policy. However, this
proposed algorithm does not take into consideration the cost
of file eviction.

While offline caching can characterize the optimal strat-
egy, it presents several drawbacks. Firstly, solving the opti-
mization problem presented by offline caching is generally
NP-hard. Secondly, it is required to know the files’ popular-
ities in advance. All the above-mentioned works assume the
prior knowledge of files’ popularities, which can be hard to
get in real-life scenarios.

To address the challenges mentioned above, we propose
an online caching algorithm that aims to minimize the cellu-
lar network operational costs, given the cache size at each
SBS. Online settings mean that files’ popularities are not
known, and decisions need to be made on a per-request basis
(i.e., a decision for a request has to be made before consider-
ing future requests). For example, the work in [29] proposes
an online algorithm for caching at the main base stations in a
multi-cell coordinated systems.

Since the collective size of the files that can be requested
by the users is much larger than the capacity of the storage
devices used to cache the requested files, cache replacement

is inevitable. We assume that fetching a file from its provider
incurs some cost. The definition of the cost is up to the file
provider, the cellular operator, or both. The cost can be based
on the amount of bandwidth or resources used to fetch the
file, the monetary costs paid by the cellular operator, or the
delay to deliver the file to the users. Therefore, when a request
is made for a file and it is already cached, the file is served
and the mobile operator does not incur any cost. On the other
hand, if the file is not cached, the file has to be fetched from
its provider, and thus paying additional costs. Moreover, if the
cache is full, some files need to be evicted from the cache in
order to allocate cache capacity for the new file. Note that a
bad selection of evicted files may result in an increased total
cost in the long run, especially when the evicted file is to be
requested again in the future.

Most of the proposed algorithms in the literature works
by deciding from where to fetch the requested content, then
serving it to the user. Depending on the complexity and the
speed of the proposed algorithm, this approach introduces
additional delays when fetching the content, which may be
unacceptable depending on the service requested by the user.
In this paper, we look at the problem from a different view.
When a content is requested and it is not available in the
cache, the content is fetched and served immediately to the
user. After that, our proposed algorithm decides which con-
tent to evict from the cache in order to cache the newly-
requested file. Thus, content delivey is not affected by the
complexity or the speed of the algorithm.

Our OCR algorithm, decides which file(s) to remove from
the cache when a file that is currently not in the cache is
being requested in order to minimize the total cost.We use the
concept of competitive ratio in order to measure the perfor-
mance of the OCR algorithm. We first formulate the problem
of minimizing the total cost incurred by fetching files into
the cache, while satisfying the cache capacity constraints as
an optimization problem, which is presented in Section III.
We then show through theoretical analysis that the cost of the
solution of the OCR algorithm can be upper bounded by a fac-
tor ofO(log(k)) times the cost of the optimal solution, where
k is the cache capacity. For any online algorithm, it has been
shown in [30] that the optimal competitive ratio is�(log(k)).
Therefore, OCR is optimal in the asymptotic sense.

The contributions of this work can be summarized as
follow:
• The file caching in a single-cell with multiple small
base stations is formulated as an Integer Linear Pro-
gram (ILP), aiming to minimize the total cost paid by
the mobile operators while satisfying the cache capacity
constraints.

• An online algorithm (called OCR) for cache replace-
ment, that does not require any prior knowledge about
the files’ popularities, is proposed.We prove analytically
that our OCR algorithm achieves the optimal competi-
tive ration performance among online algorithms.

• Through extensive simulations, we show that OCR algo-
rithm can reduce the cost when compared widely-used
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FIGURE 1. System model.

cache replacement schemes, such as Least Recently
Used (LRU) and First In First Out (FIFO), by 25%.

The rest of the paper is organized as follows: In Section II
we specify our settings. In Section III we present the ILP
problem formulation. The online algorithm followed by proof
of it competitive ration are described in Sections IV and V,
respectively. Section VI presents our simulation results.
We finally conclude the paper in Section VII.

II. SYSTEM MODEL
We consider a single cell consisting of a set N =

{1, 2, . . . , n, . . . ,N } of cache-capable SBSs connected to a
main base station via backhaul links as shown in Figure 1.
Each SBS is equipped with a cache that can store up to k
files. Let f j denote the j−thfile, andF = {f j|j = 1, 2, . . . , J}
represents the set of all files that can be requested by the users
in the cell. If the requested file is already cached, the file
is served immediately and a cache-hit occurs. Otherwise,
a cache-miss occurs and the file is retrieved from the Internet
and a copy is cached. If the cache is full, an already-cached
file is selected for eviction. When file f j is evicted, it incurs
a cost of cj.
Suppose that the requested files are organized into a request

sequence R = {f jt }
M
t=1, where f jt denotes the file that is

requested at time t , and variable M represents the length of
the request sequence. Therefore, a request f jt is served from
the SBS if file f j exists in the cache of the SBS at time t . The
objective is to minimize the total eviction cost.

III. PROBLEM FORMULATION
In this section, we present the formulation of minimizing the
total eviction cost. The goal of the online algorithm presented

in the next section is to select which file(s) to evict if the cache
is full.

Let t̂(f j, q) denote the q-th time file f j is requested,
r(f j, t) represent the number of times file f j is requested up to
and including time t , and F(t) be the set of files requested so
far up to and including time t (i.e., F(t) = {f j|r(f j, t) ≥ 1}).

To illustrate these notions, consider the file request
sequence shown in Figure 2. The request sequence is
R = {f 41 , f

8
2 , f

3
3 , f

2
4 , f

8
5 , f

1
6 , f

8
7 , f

9
8 , f

4
9 , f

15
10 }. Note that file 8

(i.e., f 8) is requested three times at t = 2, t = 5, and
t = 7). Therefore, r(f 8, 5) = 2 since file f 8 is requested twice
up to and including time t = 5. Similarly, r(f 8, 10) = 3.
Additionally, t̂(f 8, 1) = 2 since the first request of file
f 8 happened at time t = 2. Similarly, t̂(f 8, 2) = 5 and
t̂(f 8, 3) = 7. The set of requested files up to t = 10 is given
by F(10) = {f 4, f 8, f 3, f 2, f 1, f 9, f 15}.
Now, let

x(f j, q) =


1 if file f j is evicted between the

q-th request and the (q+ 1)-th request.
0 otherwise.

Note that if x(f j, q) = 1, then a cache miss will occur
when file f j is requested for the (q + 1)-th time. The cache
replacement problem is represented by the following Integer
Linear Program (ILP):

min
J∑
j=1

r(f j,T )∑
q=1

x(f j, q)cj (1)

s.t.
∑

f j∈F(t)\{f jt }

x(f j, r(f j, t)) ≥ |F(t)| − k, ∀t (2)

x(f j, q) ∈ {0, 1}, ∀t, ∀f j (3)

where the objective function is to minimize the total evic-
tion costs. At any time t , the capacity constraints of the cache
need to be satisfied. This means that from the set of files
requested so far (i.e., F(t)), at most k files can reside in the
cache. Since at time t , the currently requested file f jt will be
brought to the cache (assuming that a cache miss occurs),
at most k − 1 files from the set F(t) \ {f jt } can be available
at the cache. This also means that at least |F(t) \ {f jt }| −
(k − 1) = |F(t)| − k files must be missing from the cache.
Constraint (2) indicates that some files need to be evicted
from the cache since the last time theywere requested (i.e., set
x(f j, r(f j, t)) = 1) in order to satisfy the capacity constraints.

IV. ONLINE ALGORITHM
In order to solve the ILP optimization problem shown in
the previous section, two challenges need to be addressed.

FIGURE 2. Example of a file request sequence.
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First, the problem is known to be NP-Complete [31], [32].
Therefore, it is unknown if an algorithm that solves the
ILP problem with polynomial-time complexity exists or not.
Second, to find the optimal file caching strategy, one requires
to know in advance the sequence in which the files are
requested. However, obtaining such knowledge is difficult
in real-life situations. Therefore, we turn our attention to
developing an Online Cache Replacement (OCR) algorithm
that works on a per-request basis to decide which file (or files)
to remove from the cache.

In the online version of the problem, which file to be
requested at time t is only known at time t . Based on the
information available at time t (i.e., what files are currently
in the cache, the set of files requested so far, . . .), the online
algorithm needs to decide which file to evict at time t in
order to cache the newly requested file. The algorithm’s
decisions cannot be revoked in the future, and the decision
must be made before the next request is revealed. In contrary
to offline caching-based techniques, the operation of online
algorithms does not require the prior knowledge of files’
popularities.

A popular metric for evaluating the performance of online
algorithms is the competitive ratio. For example, it has been
employed to assess online routing [33] and energy effi-
ciency [34] algorithms. In particular, the competitive ration is
defined as theworst case ratio between the performance of the
online algorithm and the performance of the optimal offline
algorithm. Formally, let Woff stands for the optimal offline
performance, and Won denotes the performance achieved by
the online algorithm, then, the competitive ration is defined
as:

sup
all input
sequences

Won

Woff
.

It is desirable to have a low competitive ratio, since this will
mean that the worst case performance of the online algorithm
is not far from the optimal offline algorithm. We show in
Section V that the proposed OCR algorithm achieves the best
competitive ratio achievable by any online algorithm.

A. THE ONLINE CACHE REPLACEMENT (OCR)
ALGORITHM
In this section, we start with a high-level description of OCR
algorithm, followed by the algorithm.

The OCR algorithm has two stages: In the first stage,
we produce a fractional solution to the ILP formulation pre-
sented in Section III (where we relax the second constraint,
allowing x(f j, q) to take any value between 0 and 1) that is
within O(ln(k)) factor of the optimal solution. In the second
stage, the OCR algorithm rounds the fractional solution to
an integral solution (using randomized rounding techniques)
that is within O(log(M )) factor of the fractional solution.
Therefore, the overall competitive ratio of the OCR algorithm
is O(ln(k) log(M )).

TABLE 1. List of symbols.

To obtain the fractional solution, we use a primal-dual
approach. The primal-dual approach is based onweak duality,
where any feasible dual solution is a lower bound on the
optimal primal solution [35]. Specifically, let D∗ denote the
optimal solution to the dual problem,Dfeas denote the value of
a feasible solution to the dual problem, P∗ denote the optimal
primal solution, andPfeas denote the value of a feasible primal
solution. It follows that:

Dfeas ≤ D∗ ≤ P∗ ≤ Pfeas (4)

The OCR algorithm produces a feasible primal solution
Pfeas and a feasible dual solution Dfeas. We show through
the proof of the competitive ratio presented in Section V that
Pfeas ≤ 2(1 + ln(k))Dfeas. Therefore, using Equation (4),
it follows that Pfeas ≤ 2(1+ ln(k))P∗.

To obtain the dual program, a dual variable is associated
with every primal constraint. Therefore, a variable λ(t) the
corresponds to Constraint (2) is introduced for each time t
and a variable µ(f j, q) the corresponds to Constraint (3) is
introduced for each file f j and the q-th time it is requested.
Hence, the dual program of primal problem (1) is formulated
as:

max
∑
t

(|F(t)| − k)λ(t)−
J∑
j=1

r(f j,t)∑
q=1

µ(f j, q) (5)

such that for each file f j and the q-th request:( t=t̂(f j,q+1)−1∑
t=t̂(f j,q)+1

λ(t)
)
− µ(f j, q) ≤ cj,

for all f j and q:

µ(f j, q) ≥ 0

and for all t:

λ(t) ≥ 0

The symbols used throughout the paper and their defini-
tions are listed in Table 1.

After a feasible fractional solution is obtained, randomized
rounding is used to obtain an integral solution. We show
in Section V that the integral solution is within O(log(M ))
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Algorithm 1 Online Cache Replacement (OCR) Algorithm

1: Initialization: m = 0, λ(t) = 0∀t, µ(f j, q) =

0∀f j, q, ctotal = 0
2: At time t when file f j is requested
3: m← m+ 1
4: ∀f j, keep d2 log(m + 1)e independent random variables
0(f j, e), 1 ≤ e ≤ d2 log(m+1)e, uniformly distributed in
the interval [0, 1]. Define a threshold γf j = mine 0(f j, e)

5: For file f j, set x(f j, r(f j, t))← 0.
6: if f j is already in the cache, then
7: satisfy the request.
8: else
9: if f j is not in the cache AND there is enough capacity

to cache f j then
10: cache file f j.
11: else
12: Select a file for eviction as follows:

13: Increase λ(t) at a rate 1.
14: while

∑
f j∈F(t)\{f jt }

x(f j, r(f j, t)) < |F(t)| − k do

15: if x(f j, q) = 1 then
16: Increase µ(f j, q) at the same rate as λ(t).

17: if x(f j, q) = 0 and
(∑t=t̂(f j,q+1)−1

t=t̂(f j,q)+1
λ(t)

)
−

µ(f j, q) = cj then
18: x(f j, q)← 1

k

19: if 1
k ≤ x(f

j, q) < 1 then
20: x(f j, q) ←

1
k exp

(
1
cj

[(∑t=t̂(f j,q+1)−1
t=t̂(f j,q)+1

λ(t)
)
−

µ(f j, q)− cj

])
21: if x(f j, q) ≥ γf j then
22: x(f j, q) = 1
23: ∀f j where x(f j, q) changed from 0 to 1, evict file f j,

ctotal = ctotal + cj

factor of the fractional solution. The algorithm is shown in
Algorithm 1.

The Algorithm works as follows: when a new request
for file f j is made at time t , the variable x(f j, r(f j, t))
is set to 0. This means that if file f j was evicted previ-
ously, it needs to be brought in the cache. The summa-
tion

∑
f j∈F(t)\{f jt }

x(f j, r(f j, t)) in Constraint (2) will decrease

by 1 since the variable for f jt is excluded from the summation.
If the constraint at time t is still satisfied, then there is
enough space for the newly-requested file without the need
to evict any file, and the algorithm will simply cache the file.
Otherwise, a space must be created for the newly-requested
file f jt by evicting another file (or files) from the cache.
This is done by increasing some of the variables x(f j, q)
whose value is strictly less than 1 until the constraint is
satisfied.

To do this, the algorithm starts increasing the new dual
variable λ(t). The variables x(f j, q) that appear in the primal
constraint and whose value is 1 corresponds to files that are
already evicted from the cache. For these variables, the corre-
sponding dual variable µ(f j, q) is increased at the same rate
as λ(t) in order to keep the corresponding dual constraint
satisfied and to maintain the feasibility of the dual solution
(lines 15 and 16 in Algorithm 1). The variables x(f j, q) that
are equal to 0 are increased to 1

k whenever the corresponding

dual constraint becomes tight (i.e.,
(∑t=t̂(f j,q+1)−1

t=t̂(f j,q)+1
λ(t)

)
−

µ(f j, q) = cj). All other x(f j, q) variables have a value
between 1

k and 1. These variables are increased accord-
ing to the exponential function presented in line 20 of
Algorithm 1.

After the fractional solution is obtained, the algorithm
rounds the solution to an integral solution which is within
a O(log(M )) factor of the fractional solution. This is done
by comparing the primal variable x(f j, q) to a threshold γf j
(as computed in line 4 of Algorithm 1) assigned to that
variable. If the value of the variable is greater than the
value of the threshold (line 21 of Algorithm 1), the vari-
able x(f j, q) is set to 1. This randomized rounding pro-
cess introduces a O(log(M )) factor to the competitive ratio.
Therefore, the competitive ratio of the OCR algorithm is
O(ln(k) log(M )).

V. PERFORMANCE ANALYSIS
In this section, we prove that the competitive ratio of the
OCR algorithm is O(ln(k) log(M )). We start by showing that
the fractional solution obtained by the OCR algorithm is
O(ln(k))-competitive, followed by the proof that the inte-
gral solution is within O(log(M )) factor of the fractional
solution.

To show that the fractional solution is O(ln(k))-
competitive, we upper bound the increment of the total cost
due to increasing the variables x(f j, q) from 0 to 1

k , and the
increment of the total cost due to increasing the variables
x(f j, q) from 1

k to (at most) 1, separately. We then show that
the sum of the two upper bounds is O(ln(k))-competitive,
which implies that the total cost of the OCR algorithm is
withinO(ln(k)) factor of the total cost obtained by the optimal
solution.
Theorem 1: The competitive ratio of the fractional solu-

tion of the OCR algorithm is 2(1+ ln(k)).
Proof: From the algorithm, we see that due to the

increment of the variables x(f j, q) until the constraint at
time t (i.e., Constraint 2) is satisfied (line 14 in Algorithm 1),
and the fact that the variables x(f j, q) are never increased
beyond 1 (i.e., Constraint 2 is satisfied), since whenever a
variable x(f j, q) is equal to 1, its corresponding dual variable
µ(f j, q) is increased at the same rate as λ(t), and the value
of the exponential function for that variable x(f j, q) will
remain fixed. Due to these reasons, the primal solution is
feasible.
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Now we turn our attention to the dual solution. From
line 20 of Algorithm 1 and the fact that x(f j, q) ≤ 1, we get
that:

1
k
exp

(
1
cj

[( t=t̂(f j,q+1)−1∑
t=t̂(f j,q)+1

λ(t)
)
− µ(f j, q)− cj

])
≤ 1

1
cj

[( t=t̂(f j,q+1)−1∑
t=t̂(f j,q)+1

λ(t)
)
− µ(f j, q)− cj

]
≤ ln(k)

( t=t̂(f j,q+1)−1∑
t=t̂(f j,q)+1

λ(t)
)
− µ(f j, q) ≤ cj(1+ ln(k))

Note that the last inequality represents the dual constraint
multiplied by (1 + ln(k)). Therefore, by scaling the dual
solution by (1+ ln(k)), the dual solution becomes feasible.
It remains to show that the primal solution is at most twice

the dual solution. Therefore, the overall competitive ratio is
2(1+ ln(k)).

To bound the primal solution by the dual solution, let C1
denote the total cost due to increasing some of the vari-
ables x(f j, q) from 0 to 1

k (lines 17 and 18 in Algorithm 1).
Define x̃(f j, q) = min{x(f j, q), 1k }. We bound the term∑J

j=1
∑r(f j,t)

q=1 x̃(f j, q)cj.
It follows from Algorithm 1 that:
1) If x(f j, q) is strictly greater than 0, which implies that

x̃(f j, q) > 0, then:( t=t̂(f j,q+1)−1∑
t=t̂(f j,q)+1

λ(t)
)
− µ(f j, q) = cj (6)

This comes from lines 17 and 18 in Algorithm 1. More-
over, x(f j, q) is strictly equal to 1

k .
2) If µ(f j, q) > 0, then:

x(f j, q) = 1 (7)

This follows from lines 15 and 16 in Algorithm 1.
3) At time t , let F ′(t) be the set of files f j ∈ F(t)

that are already evicted from the cache since the last
time they were requested (i.e., x(f j, r(f j, t)) = 1).
These variables are not increased any further. There-
fore, the number of variables in Constraint (2) at time t
is |F(t)|−1−|F ′(t)|, where the value 1 subtracted cor-
responds to the newly-requested file f jt . By definition,
for each f j, x̃(f j, r(f j, t)) ≤ 1

k . Therefore:∑
f j∈F(t)\(F ′(t)∪{f jt })

x̃(f j, r(f j, t))

≤

∑
f j∈F(t)\(F ′(t)∪{f jt })

1
k

≤
1
k

[
|F(t)| − 1− |F ′(t)|

]
≤ |F(t)| − k − |F ′(t)| (8)

where the last inequality follows since Constraint (2) is
still not satisfied and therefore |F(t)|− |F ′(t)| ≥ k+1.

Equations (6), (7), and (8) imply the following:

J∑
j=1

r(f j,t)∑
q=1

x̃(f j, q)cj

≤

J∑
j=1

r(f j,t)∑
q=1

(( t=t̂(f j,q+1)−1∑
t=t̂(f j,q)+1

λ(t)
)
− µ(f j, q)

)
x̃(f j, q)

=

∑
t

( ∑
f j∈F(t)\{jt }

x̃(f j, r(f j, t))
)
λ(t)

−

J∑
j=1

r(f j,t)∑
q=1

µ(f j, q)x̃(f j, q)

≤

∑
t

(|F(t)| − k)λ(t)−
J∑
j=1

r(f j,t)∑
q=1

µ(f j, q)

The first inequality follows from Equation (8), and the second
inequality follows by changing the order of summation. The
last inequality holds by taking the derivative of both sides
with respect to t . The derivative of the left hand side is∑

f j∈F(t)\{f jt }
x̃(f j, r(f j, t)), which by Equation (8), is at most

|F(t)| − k − |F ′(t)|. The derivative of the right hand side is
equal to |F(t)| − k − |F ′(t)|, since λ(t) is increased at a rate
of 1, and µ(f j, q) belonging to files f j ∈ F ′(t) is increased at
a rate of 1. Therefore, C1 is (1+ ln(k))-competitive.
Now let C2 represent the total cost due to increasing

the variables x(f j, q) from 1
k up to at most 1 according to

the exponential function (lines 19 and 20 in Algorithm 1).
Therefore:

C2 =
∑

f j∈F(t)\{f jt },
1
k≤x(f

j,q)≤1

x(f j, r(f j, t))cj

We first note that the sum of the variables x(f j, q) whose
values are strictly between 1

k and 1 and the variables x(f j, q)
whose values are strictly 1 is less than |F(t)| − k , since
Constraint (2) is still not satisfied, i.e.,:∑

f j∈F(t)\{f jt },
1
k≤x(f

j,q)<1

x(f j, r(f j, t))

+

∑
f j∈F(t)\{f jt },x(f j,q)=1

x(f j, r(f j, t))

< (|F(t)| − k) (9)

We also note that since λ(t) is increased continuously and
µ(f j, q) is increased at the same rate as λ(t) (whenever the
corresponding variable x(f j, q) is equal to 1), the rate of
change of λ(t) and µ(f j, q) with respect to t is 1, i.e.,:

dλ(t)
dt
= 1,

dµ(f j, q)
dt

= 1 (10)

To bound C2, we bound the increment of the primal
cost (due to increasing the variables x(f j, q) from 1

k up to
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at most 1) in any iteration by the increment of the dual cost in
the same iteration. By taking the derivative of C2 with respect
to t and comparing it to the derivative of the objective function
of the dual program with respect to t , we get that:

dC2

dt
=

∑
f j∈F(t)\{f jt },

1
k≤x(f

j,q)<1

cj
dx(f j, r(f j, t))

dλ(t)
dλ(t)
dt

=

∑
f j∈F(t)\{f jt },

1
k≤x(f

j,q)<1

x(f j, r(f j, t))

≤ (|F(t)| − k)−
∑

f j∈F(t)\{f jt },x(f j,q)=1

1

= (|F(t)| − k)
dλ(t)
dt
−

∑
f j∈F(t)\{f jt },x(f j,q)=1

dµ(f j, q)
dt

where the second equality follows from Equation (10) and
dx(f j,r(f j,t))

dλ(t) =
1
cj
x(f j, q) for each x(f j, q) such that 1

k ≤

x(f j, q) < 1. The last inequality follows from Equation (9).
The last term is the derivative of the objective function of
the dual program. Therefore, the dual cost increases more
than C2. Therefore, C2 is upper bounded by the cost of a
feasible dual solution multiplied by (1+ ln(k)).
It follows thatC1+C2 is at most twice the cost of a feasible

dual solution multiplied by (1 + ln(k)), which, from weak
duality, is less than the optimal primal solution multiplied by
(1+ ln(k)). �
The proof that the integral solution of the OCR algorithm

is withinO(log(M )) of the fractional solution is shown in the
following theorem:
Theorem 2: The integral solution of OCR is within

O(log(M )) factor of the fractional solution.
Proof: We start by analyzing the random variables

0(f j, e) obtained in line 4 in Algorithm 1. For each e, 1 ≤
e ≤ 2 log(M + 1), the probability that 0(f j, e) ≤ x(f j, q)
is exactly x(f j, q). Let Z denote the set of variables x(f j, q)
whose values are set to 1 after the rounding process. Note that
the probability that variable x(f j, q) ∈ Z is the probability that
there exists an e such that 0(f j, e) ≤ x(f j, q). Let Y (f j, e)
denote the indicator of the event that 0(f j, e) ≤ x(f j, q)
(i.e., Y (f j, e) = 1 if 0(f j, e) ≤ x(f j, q), and 0 other-
wise). Since 0(f j, e) is chosen uniformly at random in the
range [0, 1], the probability and the expectation of the indica-
tor Y (f j, e) is at most x(f j, q). Therefore, the expected value
of the integral solution is:

E
[ ∑
x(f j,q)∈Z

x(f j, q)cj
]
≤

J∑
j=1

r(f j,T )∑
q=1

2 log(M+1)∑
e=1

x(f j,q)cjE[Y (f j,e)]

≤

J∑
j=1

r(f j,T )∑
q=1

2 log(M+1)∑
e=1

x(f j, q)cj

= 2 log(M + 1)
J∑
j=1

r(f j,T )∑
q=1

x(f j, q)cj

Therefore, the expected value of the integral solution is
at most 2 log(M + 1) times the value of the fractional
solution. �

VI. EXPERIMENTAL PERFORMANCE ANALYSIS
In this section, we compare four cache replacement schemes:
the OCR algorithm described in Section 3, Least Recently
Used (LRU), First In First Out (FIFO), and Forgetting History
and Predicting Future (FHPF) [36]. In [36], the replacement
decision is based on the value of a parameter denoted by Test ,
where the file with the largest value of Test is removed from
the cache to make space for the newly requested file. The
value of Test depends on the last time the file was accessed,
in addition to the average interval of accessing the file.

In the simulations, we consider a single SBS that serves
30 users (i.e., users at a coffee shop). The number of files is
set to 3000. The popularity of each file is chosen according
to a uniform distribution. Using the files’ popularities and the
number of users, a request sequence is generated and used as
an input to all schemes. Then, each scheme remove one file
from cache before the next request appears. The parameters
for FHPF are directly taken from [36].

We compare the four schemes as the capacity of the cache
(in terms of themaximum number of files the cache can store)
is increased. The results are averaged over a 100 runs and are
shown in Figure 3. It can be inferred from Figure 3(a) that,
as the cache size increases, the total cost of the four schemes
decreases, since the number of evictions decreases.Moreover,
the performance of the OCR algorithm outperforms all other
schemes specially when the cache capacity is low. This is
because the OCR algorithm tries to select the file with the
lowest cost to evict, while all other schemes do not take the
cost into consideration when selecting a file for eviction.

In Figure 3(b), we compare the hit ratio of the four
schemes. The figure shows that as the cache capacity
increases, the hit ratio increases, since there is a higher chance
of finding the requested content in the cache. Although the
OCR algorithm achieves a similar lower hit ratio compared
to FIFO and LRU, OCR algorithm can reduce the total cost
by 25%.

In Figure 4, we measure the per demand cost savings per-
centage of the OCR algorithm, FHPF, and LRU with respect
to FIFO. Here, we measure the costs of the OCR algorithm,
FIFO, and LRU for 100 different request sequences while
the cache capacity is fixed at 800. For each demand, we nor-
malize the cost of the OCR algorithm, FIFO, and LRU with
respect to the cost of FHPF, and then subtract it from 1. If we
denote the costs of the OCR algorithm and FHPF for the g-th
request sequence as COCR(g) and CFHPF (g) respectively, then
the per demand cost savings is computed as ZOCR(g) = (1−
COCR(g)
CFHPF (g) ) × 100%. After that, the empirical CDF of the vec-
tor [ZOCR(1),ZOCR(2), . . . ,ZOCR(100)] is plotted. We do the
same process for FIFO and LRU. From the figure, we observe
that in 20% of the demands, the OCR algorithm achieves at
least 10% additional cost savings when compared to FIFO
and LRU. Moreover, compared to FHPF, our OCR algorithm
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FIGURE 3. Total cost and hit ratio vs. cache capacity.

FIGURE 4. The empirical CDF of the per demand cost savings percentage
with respect to FHPF.

achieves at least 10% additional cost savings in 95% of the
runs.

We emphasize that the simulations are done considering
only a single SBS, since the replacement decisions in the
cache of any SBS are independent from other SBSs. The
results show the cost savings achieved by the OCR algorithm
from a single cache only. Therefore, using the OCR algorithm
in multiple SBSs will result in huge savings for the cellular
operator.

VII. CONCLUSION AND FUTURE WORK
In this paper, we study the problem of cache replacement in a
small base station in a cellular network, with the objective
of minimizing the total costs paid by the cellular opera-
tor. We formulate the problem of cache replacement as an
optimization problem that knows the request sequence apri-
ori. Since knowing the file request sequence in advance is
hard in real-life scenarios, we provide an online algorithm
for the problem. The online algorithm does not require any
knowledge about the request sequence. Through simulations,

we show that the OCR algorithm outperforms widely-used
cache replacement schemes especially when the cache capac-
ity is low.We also conclude that using theOCR algorithmwill
be beneficial to the cellular operators.

Possible future work includes enhancing our replacement
algorithm such that the replacement decision made by a small
base station is taken while considering the cache contents
of the surrounding base stations (i.e., a collaborative frame-
work). Another direction for further investigation is to study
the effect of changing the eviction cost over time, which
might reflect how the files’ popularities are changing over
time.

It is worth to mention that our proposed replacement algo-
rithm is not limited to small base stations in 5G networks.
In fact, our replacement algorithm can reduce the operational
costs of any network that deploy caches in their intermediate
nodes, such as Content Centric Networks (CCN) [37], [38].
InAddition, our algorithm can also be adapted to be applied in
any application that requires replacement, not necessarily file
replacement. For example, our algorithm can be adapted to
decide which network function to shut down in order to make
resources available for a new function in Network Function
Virtualization (NFV) [39], [40].
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