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ABSTRACT Currently, distribution network is facedwithmany problems, e.g., low automation coverage and
less data acquisition. There are also lots of challenges in state estimation, such as imprecise approximation
of network parameters and measurement devices as well as integration of distributed generations. In order
to deal with these problems of uncertainties in distribution network, an interval state estimation with power
flow constraint is proposed in this paper, which is based on the quantitative description of the uncertain
parameters, distributed generations, and system measurements with interval numbers. Given the hybrid
measurement data, an interval linear state estimation model is established. In order to estimate state values
precisely, an iterative Krawczyk algorithm is proposed to optimize this model. Furthermore, power flow
constraint is introduced into the original equations of the interval state estimation model to improve the
computation speed and accuracy. Modified IEEE 57-bus system is used to verify the effectiveness of the
proposed method. Taking the results of Monte Carlo simulation as actual values, the proposed method
performs better both in convergence and estimation accuracy compared with the existing unconstrained
interval solving method.

INDEX TERMS Interval estimation, power flow constraint, network uncertainties, Krawczyk algorithm.

I. INTRODUCTION
With the distributed generations(DG), electric vehicles(EV),
other active loads and a large number of measurement
devices connected to the network, the penetration of renew-
able energy in the distribution network is getting higher and
higher, resulting in that the traditional radial distribution net-
work is gradually transforming to the active distribution net-
work [1]. The traditional state estimation becomes difficult
to meet the current development needs either in calculation
speed or estimation accuracy [2]. Therefore, it is very impor-
tant to build a new state estimation model to provide reliable
data for the active distribution network [3], [4].

Recently, many achievements have been made on the state
estimation of distribution network [5]–[9]. The transmission
grid state estimation model was proposed and introduced
into the distribution network in [5]–[6]. The application of
branch current as state variable and its correction algorithm
in distribution network state estimation was studied in [7]
and [8]. A state estimation method using the square of

branch current amplitude and the branch injection power
as state variables was proposed in [9], which was capa-
ble of resisting bad data by using the exponential objective
function.

However, the changes in the field environment and opera-
tion conditions, equipment aging and other reasons can bring
the error of the network parameters, which results in the
inaccuracy of the state estimation. In addition, large-scale
EV random charging and high-permeability DG intermittent
connected further increase the randomness of the distribution
network and the difficulty of estimating the uncertain vari-
ables. The aforementioned factors make it non-trivial in prac-
tice, so state estimation of distribution network needs to have
the ability of handling uncertainties [10]–[15]. Therefore,
it is necessary to propose reasonable mathematical model for
the uncertainties of distribution network and find a suitable
solution algorithm.

The uncertainties of distribution network have always been
a difficult part in state estimation. There are three main
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modeling methods for the uncertain variables in the distri-
bution network:

(1) Stochastic state estimation method, which uses
the probabilistic model to deal with the random
information [16], [17];

(2) Fuzzy mathematics method, which establishes the dis-
tribution network state estimation model with fuzzy numbers,
and handles the uncertain information with the fuzzy mem-
bership functions [18], [19];

(3) Interval analysis method, which uses the interval math-
ematics to solve the problem. Although the exact values of
network parameters and measurements cannot be obtained,
in most cases the upper and lower limits are available. Thus,
after describing and modeling the uncertain variables in
the form of interval numbers, the results obtained by state
estimation are also interval forms, which can provide more
intuitive information as upper and lower bounds of system
state [20]–[22].

The interval analysis method was first proposed by Moore
in 1966, which has been becoming a very important branch of
computational mathematics [20]. Compared with the stochas-
tic state estimation method, the interval analysis method has
less computational cost. Meanwhile, there is no predefined
fuzzy membership function compared to the fuzzy mathe-
matics method. Therefore, the results are not affected by any
hand-craft factors. Interval analysis method as a possibility
method describing the uncertainties of distribution network
with the interval numbers, has established a complete set of
interval operation methods and rules [20]. Considering the
advantages of this method, it has been widely applied in the
state estimation of distribution network [21]. Based on the
upper and lower limits of hybrid measurement data, a linear
state estimation model was proposed and solved by interval
Gaussian elimination(IGE) method in [22]. Although the IGE
solving method certainly contains all the feasible solutions,
the results are always the extended intervals, which are larger
than the intervals of feasible values. This is called the conser-
vatism of interval solving method. The conservative problem
is the key factor that restricts the accuracy of interval state
estimation, so it is necessary to find out a proper method to
cope with this problem.

Due to the connection of DG and EV, the uncertainties
of distribution network are increasing, which results in the
aggravation of the conservative problem in the interval state
estimation. Thus, partial results of interval state estimation
usually do not satisfy the constraint of the power flow equa-
tions in the solving process [23]–[25]. At the same time,
the accuracy and the calculation efficiency of the interval
state estimation are not high enough, which is not suitable for
practical application. In order to handle with these problems,
an interval state estimation algorithm based on the Krawczyk
operator and power flow constraint is employed to deal with
the above-mentioned challenges. The main contributions of
this paper can be summarized as follows:

(1) A linear interval state estimation model is proposed for
hybrid measurement data, which considers the uncertainties

of network parameters, distributed generations, electric vehi-
cles and measurement data.

(2) To relieve the conservative problem in the interval
state estimation, the Krawczyk algorithm is applied to solve
the interval state estimation model, which can reduce the
conservatism and obtain more accurate interval solution set.
Moreover, to reduce the required iteration number, the solu-
tion of IGE algorithm is taken as the initialization of the
Krawczyk algorithm.

(3) To mitigate the problem that partial results exceed the
interval of feasible values and to ensure convergence speed,
the power flow equations are used as the constraint condition
of the interval state estimation algorithm.

This paper is organized as follows: In Section II, the tradi-
tional state estimation model with hybrid measurement data
is demonstrated. In Section III, the state estimation model
with interval set is proposed. In Section IV, the interval
state estimation with Krawczyk algorithm and power flow
constraint is studied. In Section V, a precision evaluation
method is introduced. In Section VI, the case study of revised
IEEE 57-bus system and numerical results are presented. The
conclusions are noted in Section VII.

II. STATE ESTIMATION MODEL WITH HYBRID
MEASUREMENT DATA
A. SCADA AND PMU HYBRID MEASUREMENT
The current measurement data inmedium voltage distribution
network are mainly PMU and SCADA. SCADA measure-
ments are the bus voltage phasor, branch power and bus injec-
tion power, while PMU measurements are the bus voltage
phasor and branch current phasor [26].

Compared with the existing SCADA measurement, PMU
can realize the direct observation of bus with the charac-
teristic of high measurement precision, short update cycle
and small transmission delay, which can better monitor the
changes of system state. However, due to technical and
economic constraints, PMU is only configured in some
key buses, which cannot satisfy the requirements of com-
plete observation. Therefore, it is necessary to cooperate
SCADA data with PMU data to realize the observable in state
estimation [27], [28].

SCADA measurement types include the bus injection
active power measurement Pi and reactive power measure-
ment Qi, active power measurement Pij and reactive power
measurement Qij of branch i-j, and voltage amplitude mea-
surement |U i| of bus i. The conversion formulae of different
measurement types can be written as follows:

I ij =
Pijei + Qijfi
|U i|2

+ j
Pijfi − Qijei
|U i|2

(1)

Ii =
Piei + Qifi
|U i|2

+ j
Pifi + Qiei
|U i|2

(2)

where I ij is the current phasor of branch i-j; I i is the current
phasor of bus i; ei and fi are the real part and imaginary part
of U i respectively, meanwhile satisfying Ui = ei + jfi.
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PMU measurement types are the amplitude and phase
of bus voltages U i and the amplitude and phase of branch
current I ij , which can be expressed as:

I ij =
[
eigij − fi

(
bii + bij

)
− ejgij + fjbij

]
+ j

[
figij + ei

(
bii + bij

)
− ejbij − fjgij

]
(3)

U i = [0, · · · 0, 1, 0, · · · , 0]U (4)

where bii is the imaginary part of self admittance pha-
sor of bus i, gij and bij are the real part and imaginary
part of admittance phasor of branch i-j respectively. U =
[U1,U2, · · · ,Un]T is the node voltage vector and n is the
number of buses. [0, · · · 0, 1, 0, · · · , 0] is a vector whose
ith element is 1 and the remaining elements are 0.

For the actual network with SCADA and PMU
measurements, the SCADA measurement can be converted
into current phase measurements by using (1) and (2) for
state estimation. Meanwhile, the current phasor measurement
weight and the original measurement weight satisfy the
function transfer relationship [29].

B. STATE ESTIMATION MODEL
In general, for any given topology, network parameters and
hybrid measurement data, the mathematical model of state
estimation can be expressed as:

z = Hx+ v (5)

where z = [z1, · · · , zm]T is the vector of all measure-
ments with m-dimensional. H is the measurement coefficient
matrix depending on the network parameters, with the size
m× (2n− 1). x = [x1, · · · , x2n−1]T is the vector of all state
variables with (2n − 1)-dimensional, usually m ≥ (2n− 1).
v represents the error vector of the measurements with
m-dimensional.

When the amplitude and phase measurement of each bus
voltage and each branch current are known, equation (5) can
be expanded as the form of block matrix:


ze
zf
zIre
zIim

 =



∂ze
∂e

∂ze
∂f

∂zf
∂e

∂zf
∂f

∂zIre
∂e

∂zIre
∂f

∂zIim
∂e

∂zIim
∂f


[
e
f

]
+


ve
vf
vIre
vIim

 (6)

where ze and zf are the real part and imaginary part of bus
voltage phasor measurements. zIre and zIim are the real part
and imaginary part of branch current phasor measurements.
e are the real part of voltage variables of reference bus and the
other buses. f are the imaginary part of voltage variables of
the other buses. ve and vf are the real part and imaginary part
of voltage measurement error vector. vIre and vIim are the real
part and imaginary part of current measurement error vector.

Obviously, the measurement coefficient matrix H is a
constant matrix and the expression of each element can be

obtained by (3) and (4). Thus, equation (6) is the linear system
of equations.

C. WEIGHTED LEAST SQUARES(WLS) SOLUTION METHOD
The aim of state estimation based on WLS criteria is to find
the solution that minimizes the following objective function
developed from (5):

min f (x) = [z−Hx]T ·W−1 · [z−Hx] (7)

where W−1 = diag(1/σ 2
1 , 1/σ

2
2 , · · · , 1/σ

2
m) is the m-order

weight diagonal square of the measurements which is gener-
ally assigned to the reciprocal of the corresponding measured
variance.

The optimal estimate x∗ of this unconstrained optimization
problem is given by:

x∗ = [HTW−1H]−1HTW−1z (8)

III. INTERVAL STATE ESTIMATION MODELWITH
HYBRID MEASUREMENT DATA
The difference between the interval state estimation estab-
lished in this paper and the traditional state estimation is: The
traditional state estimation algorithm always tries to find the
optimal solution under WLS or other estimation criteria, and
applies the optimal solution as the ‘‘surrogate value’’ of the
true system state. However, the selection of such estimation
criteria is subjective, often based on certain assumptions,
such as normal distribution of measurement errors [30]. As a
result, the information obtained by this way is not necessarily
established in practice.

In order to better reflect the influence of uncertain factors
on the state estimation results, and to improve the engineer-
ing application value, the interval state estimation model is
established. In this model, all buses power injection pseudo
measurement and measurement error no longer follow the
normal distribution but are described as interval numbers. For
real-time measurement information, due to the high preci-
sion, the interval values are obtained by adding a small ±δ%
deviation to the measurements. For pseudo measurements
such as distributed generations and loads, we use neural
network model [31] to predict the state and also add an ±
average prediction error to generate the interval values. The
solution results are also interval numbers, which can provide
the dispatchers with effective information on the ‘‘boundary’’
of system state.

Therefore, once all variables are expressed by interval
numbers, the traditional state estimation solution algorithm
such as WLS method is no longer applicable.

A. INTERVAL ARITHMETIC
In this section, the uncertainties of parameters and measure-
ments are expressed as the upper and lower limits [32].

For convenience, the following square brackets variables
are interval variables and can be mathematically defined as:

[x] = [x, x] = {x ∈ R|x ≤ x ≤ x} (9)
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where x, x are the lower bound and upper bound of the
interval [x] respectively. Especially, when x = x, [x] becomes
point number, that is, the normal real number. The common
operations of the interval number are:

[x]#[y] = {x#y|x ∈ [x], y ∈ [y]} (10)

where # ∈ {+,−,×,÷,≤,∪,∩}.
In addition, the interval width of [x] refers toWid([x]) and

the absolute value refers to |[x]|, which are defined as:

Wid([x]) = x̄− x, |[x]| = max(|x̄| ,
∣∣x∣∣) (11)

Similar as the real vector, the interval vector is defined to be a
vector with interval components. For an n-dimensional inter-
val vector, its value space can be denoted by IRn. According
to [33], a norm of an interval vector [x] ∈ IRn×1 is given by:

‖[x]‖ = max {|[xi]| : i = 1, 2, . . . , k} (12)

where k is the dimension of the interval vector.

B. INTERVAL STATE ESTIMATION MODEL
According to the interval arithmetic, the traditional state
estimation model can be transformed into an interval model.
In this section, the uncertainties of measurement data, net-
work parameters and distributed generations are considered,
which can be mathematically described as:

[z] =
[
[ze], [zf ], [zIre], [zIim]

]T
= {z ∈ Rm×1 : zj ≤ zj ≤ zj, j = 1, 2, . . . ,m} (13)

[H] =


[
h1,1

]
· · ·

[
h1,2n−1

]
...

. . .
...[

hm,1
]
· · ·

[
hm,2n−1

]


= {h ∈ Rm×(2n−1) : hi,j ≤ hi,j ≤ hi,j,

i = 1, 2, . . . , 2n− 1, j = 1, 2, . . . ,m} (14)

[x] = [[e], [f ]]T = {x ∈ R(2n−1)×1
: Hx ∈ [z]} (15)

where hi,j is each element of matrix H .
Equation (13) is the expression of measurement vector

in the interval state estimation model, which represents the
measurement information of node voltage and branch current
depicted with interval numbers. Equation (14) is the expres-
sion of measurement coefficient matrix in the interval model
related to network parameters. Equation (15) represents that
the real and the imaginary part of node voltage is taken as the
state variables in the interval model.

When all variables are expressed by interval numbers,
the objective function in (7) is not applicable. This is because
the measurement error of the buses in the interval state esti-
mation model no longer obeys specific distribution. It has
been quantitatively analyzed and described by the interval
numbers. Meanwhile, the state variables are also interval
numbers, rather than the optimal solution underWLS or other
estimation criteria. Thus, the whole interval state estimation
model in this paper can be formed as:

[H][x] = [z] (16)

Since the dimension of the measurements is larger than the
dimension of the system state variables, this kind of prob-
lem is subordinate to the modeling and solution of interval
over-determined equations. It is generally believed that estab-
lishing a unified analytical expression and standard analysis
method is difficult. A method proposed in [34] is applied
to convert the over-determined equations into the following
equations with square matrix as coefficient matrix:[

[H] −1
0 [H]TW−1

] [
[x]
0

]
=

[
[Z]
0

]
(17)

where−1 and 0 indicate an identity matrix and a zero matrix
of appropriate dimension respectively.

Equation (17) can be thought as the following form which
is linear equation with interval element:

[A][x] = [b] (18)

where [A] is a square matrix of size (m+ 2n− 1) ×
(m+ 2n− 1). [x] and [b] are both a vector with
(m+ 2n− 1)-dimensional.

C. IGE SOULUTION METHOD OF INTERVAL ARITHMETIC
Currently, the solution algorithm of the interval linear equa-
tion mainly includes the optimization method [35], the lin-
ear programming method [36] and the interval analysis
method [37]. However, due to the first two methods need
to focus on the objective function, the solving process is
relatively complex. The interval analysis method only needs
one calculation to complete the interval estimation of state
quantities, so it has been widely studied. In the previous
research literatures [38], [39], IGE was taken as the inter-
val analysis solving method. This method is based on the
traditional Gaussian method, where the interval numbers are
employed to replace the point value. The coefficient matrix
can be formed and converted to the upper triangular matrix in
the usual way but with interval arithmetic. The whole process
can be divided into three steps:

(1) Equation (18) can be expanded as the following form: [a1,1] · · · [a1,m+2n−1]
...

. . .
...

[am+2n−1,1] · · · [am+2n−1,m+2n−1]


 [x1]

...

[xm+2n−1]


=

 [b1]
...

[bm+2n−1]

 (19)

(2) Equation (19) can be converted to the following upper
triangular form by matrix row and column transformation: [a′1,1] · · · [a′1,m+2n−1]

...
. . .

...

0 · · · [a′m+2n−1,m+2n−1]


 [x1]

...

[xm+2n−1]


=

 [b′1]
...

[b′m+2n−1]

 (20)
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(3) Equation (20) can be solved as follow interval algebraic
equations:
[xm+2n−1] = [b′m+2n−1]/[a

′

m+2n−1,m+2n−1]
...

[x1] =
([b′1]− [a′1,2][x2]− · · · − [a′1,m+2n−1][xm+2n−1])

[a′1,1]
(21)

D. CONSERVATISM OF INTERVAL ARITHMETIC
It is important to note that the solution of the interval linear
equations is completely different from that of the ordinary
linear equations. First, the solution set for interval linear
equations has very complex non-convex structure that cannot
be easily characterized by interval vector. Figure 1 illustrates
the solution of two-dimensional interval equations. The blue
area in Figure 1 is the exact feasible solution set [S]. It can be
seen from the figure that the set [S] cannot be characterized
as an interval. However, it is possible to find the shell of [S],
where the shell is defined as the minimum interval vector
that contains [S], which is illustrated as the square area sur-
rounded by the black dotted line in Figure 1. The results of the
IGEmethod and the Krawczyk algorithm are also represented
in Figure 1 with the red dotted line and the green dotted line
respectively.

FIGURE 1. Solution of 2 by 2 interval equations.

It can be seen that the interval solution set obtained by
IGE method is much larger than that by Krawczyk algorithm.
Considering the solving target of the interval analysis method
is to obtain the minimum interval vector containing [S] as
much as possible, obviously, IGE method is always too con-
servative to maintain its results high precision.

IV. INTERVAL STATE ESTIMATION ALGORITHM WITH
KRAWCZYK OPERATOR AND POWER
FLOW CONSTRAINT
In this section, the improvement of the interval analysis
method by using Krawczyk algorithm is discussed. In addi-
tion, the power flow constraint is considered to further melio-
rate the accuracy and efficiency of the algorithm.

A. POWER FLOW CONSTRAINT
In practice, the linear interval state estimation with Krawczyk
operator are faced with severe challenges in terms of accu-
racy and speed when the network is complex. The width of
the solution set computed by Krawczyk algorithm is always
larger than the exact feasible solution [S]. Thus, partial results
in the solution set cannot satisfy the constraint of the power
flow equations. In order to solve this problem, the relation
information of state variables in power flow equations is
added into the interval state estimation. More specifically,
the equality power flow constraint is introduced into the
interval state estimation.

Therefore, the state estimation model of distribution net-
work with power flow constraint is adopted:[

[H] −1
0 [H]TW−1

] [
[x]
0

]
=

[
[Z]
0

]
s.t. c([x]) = 0 (22)

The equality constraint (22) represents the AC power flow
equations of the distribution network, and its two important
functions are summarized as follows:

(1) Increase the accuracy of the interval solving method.
The electrical relationship implied by each state variable can
be included in the state estimation process by adding the
power flow constraint. In the iterative process, as long as the
solution conforms to the power flow constraint, it belongs
to the solution set [S]. Under the constraint of power flow
equations, the deviation of the solution is limited to a cer-
tain space, and the estimated results are closer to the actual
operation state of the distribution network. These factors are
supposed to jointly improve the accuracy of the interval state
estimation.

(2) Improve the speed of the interval solving method.
Compared with the iterative process that only uses Krawczyk
operator, adding power flow constraint theoretically filters
out some infeasible solution that does not conforms to the
actual constraint. It accelerates the convergence of the itera-
tive interval set. Therefore, the less limited iteration step and
the faster calculation speed given the same accurate interval
solution can be achieved.

B. KRAWCZYK SOLUTION OF INTERVAL ARITHMETIC
The Krawczyk algorithm was developed by Krawczyk
in 1969. The main idea of this algorithm is utilizing
the Krawczyk operator for iteration to approximate the
solution shell. Due to the iteration, the conservatism of
Krawczyk algorithm is much smaller than IGE method,
which means the results of the Krawczyk algorithm can be
more accurate [40]–[45].

The detail process of Krawczyk algorithm can be summa-
rized as follows:

(1) Take any A ∈ [A] and b ∈ [b], A−1b ∈ [x] according
to (18).

(2) Then according to [34], a specific C ∈ R(m+2n−1)×

(m+2n−1) can be found that makes A−1b can be further
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expanded to (23).

A−1b = Cb− (CA− I)A−1b (23)

where I is a (m+ 2n− 1)× (m+ 2n− 1) unit matrix.
(3) Here,C can be the inverse of themidpointmatrix of [A]:

C = (Mid([A]))−1 (24)

Mid([A])=

 Mid([a1,1]) · · · Mid([a1,m+2n−1])
...

. . .
...

Mid([am+2n−1,1]) · · · Mid([am+2n−1,m+2n−1])


(25)

whereMid() is the median function of interval number.
(4) When equation (23) satisfies the following condition:

A−1b = Cb − (CA − I)A−1b ∈ C[b] − (C[A] − I)[x],
the Krawczyk operator Koperator can be used to obtain the
following iterative equation that can approximate the solution
set [S]:

Koperator = (C[b]− (C[A]− I)[xk])

[xk+1] = Koperator ∩ [xk] (26)

where [xk] is the solution of iteration k.
Thus, substituting (17), the iterative equation can be

expressed as follow:

[xk+1] = (C
[
[z]
0

]
− (C

[
[H] −1
0 [H]TW−1

]
−I)[xk]) ∩ [xk]

(27)

According to [46], Krawczyk operator at iteration k is a
set containing all feasible solutions and the interval width is
always less than that of [xk−1]. Therefore, with the iteration
of (27), the interval width of the solution set [x] decreases and
gradually approaches the shell of [S].
(5) When the amplitude of the infinite norm of the interval

solution vector [xk] decreases to the convergence criterion,
the iteration will be stopped, which is:

n∑
i=1

||Wid([xk])|| −
n∑
i=1

||Wid([xk+1])|| < ε (28)

where ||Wid([x])|| is the interval width of [x]. ε is a given
small positive number, usually taking 10−6.
In addition, it can be noted that the initial value should be

set to cover the entire feasible solutions. Due to the common
equation for the initial value of Krawczyk algorithm is rel-
atively complex, and considering the conservatism of IGE
method, the state calculated by IGE method can be directly
taken as the initial value of the Krawczyk algorithm in order
to start iteration more quickly.

C. ALGORITHM FLOW
In summary, the detailed steps of the interval state estimation
with Krawczyk operator and power flow constraint are shown
in Figure 2.

FIGURE 2. Flow chart of interval state estimation.

Step 1: Get the fusion measurement data according to the
equation (1) and (2), and input the measurement interval
values of the original parameters.

Step 2: Select the state variables, which is the bus voltage
phasor in this paper.

Step 3: Calculate the interval expression of (7) for state
estimation of distribution system.

Step 4: Calculate the initial value [x0] by IGE method and
substitute it into the iterative equation (27) to obtain [xk+1].
Step 5: Determine whether the iteration has converged

using the convergence criterion. In this paper, the criterion
of convergence is given in (28).

Step 6: If not convergent, [xk+1] is used as the initial
approximate value of the iterative equation, and the next
iteration is started from Step 4. The process ends when the
convergence criterion is reached. Finally, the estimated value
of the interval state estimation of distribution network can be
obtained.

V. PRECISION EVALUATION METHOD
In this paper, Monte Carlo method is employed to evaluate
the precision of the algorithm [47], [48]. The Monte Carlo
method first samples the uncertain parameters to carry out
the point state estimation, and the result is considered as one
feasible value. Then the sampling process is taken for many
times and it can get the corresponding state estimation results.
Finally, the intervals which can include all those estimation
results are defined as the optimal intervals. The accuracy of
two interval state estimation methods with and without power
flow constraints are compared respectively. More concretely,
the following two indicators are used to evaluate the precision
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of the results:

W1 =
1

2n− 1

2n−1∑
i=1

(xi − xi) (29)

W2 = max(xi − xi) (30)

W1 is the average value of the interval width and W2 is
the maximum value of the interval width. The smaller the
W1 and W2 are, the more accurate the interval algorithm is.

VI. CASE STUDIES
A. TEST SYSTEM
In order to verify the accuracy of the proposed method in
distribution network, the interval estimation is conducted on
the IEEE 57-bus system as shown in Figure 3. Bus 19 and
Bus 35 are connected to a PV station with rated capacity
of 500kW, Bus 22 and Bus 53 is connected to a wind turbine
with rated capacity of 1000kW.

FIGURE 3. IEEE 57-bus test system.

In practice, the uncertainty of measurement and parameters
are various. The uncertainty variables considered in this paper
include voltage, current and power data, network parameters
and distributed generations. The standard deviations for each
type are listed as follows [22]:

(1) For the PMUmeasurement data, the standard deviation
of current measurement is 0.4% with respect to(w.r.t.) the
measured values. The standard deviation of voltage measure-
ment is 0.8% w.r.t. the measured values.

(2) For the SCADA measurement data, the standard devi-
ations of active and reactive power measurement are 1% and
1.5% w.r.t. the measured values respectively. The standard
deviation of voltage amplitude measurement is 1% w.r.t. the
measured values.

(3) For network parameters, the standard deviation of
conductance is 2% w.r.t. the measured values. The standard
deviation of susceptance is 3% w.r.t. the measured values.

(4) For other pseudo measurement data such as distributed
generations and loads, the standard deviation is 8% w.r.t. the
actual values [49].

B. RESULTS COMPARISON BETWEEN
IGE AND KRAWCZYK
In this section, the comparison is made by considering the
real part of voltage. In addition, Monte Carlo results are taken

as the actual values. The indicators used here are formu-
lated in (29) and (30) to measure the accuracy of the results
obtained from the IGE and Krawczyk methods respectively.
The evaluation index of different methods is shown in Table 1.

TABLE 1. Comparison between interval state estimation with IGE and
Krawczyk methods.

It can be observed from the evaluation index that W1 is
0.0214 and W2 is 0.0259 when using IGE method whereas
W1 and W2 are 0.0147 and 0.0187 respectively when using
Krawczyk algorithm without power flow constraint. The
results indicate that compared with IGE method, Krawczyk
algorithm can obtain a more accurate solution of the interval
equations.

C. THE EFFECT OF POWER FLOW CONSTRAINT
In this section, the influence of the power flow con-
straint on the accuracy is analyzed. Taking Bus 2 as an
example, the interval voltage obtained by Monte Carlo
method is [1.009, 1.011]6 [−13.003,−12.455], and the inter-
val width of amplitude is 0.002. The interval voltage com-
puted by the Krawczyk algorithm without power flow
constraint is [1.004, 1.017]6 [−13.247,−12.205], and the
interval width of amplitude is 0.013. The interval volt-
age by Krawczyk algorithm with power flow constraint is
[1.008, 1.012]6 [−13.127,−12.320], and the interval width
of amplitude is 0.004. Compared to the Krawczyk algo-
rithm without power flow constraint, the interval width of
the Krawczyk algorithm with power flow constraint reduces
69.23% relatively.

The evaluation index is shown in Table 2.

TABLE 2. Comparison between interval state estimation with and without
power flow constraint.

According to the Table 2, when using the Krawczyk algo-
rithm without power flow constraint, W1 is 0.0147 andW2 is
0.07, whereasW1 andW2 are 0.0082 and 0.0119 respectively
for the Krawczyk algorithm with power flow constraint.
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It is obvious that among the aforementioned two methods,
the Krawczyk algorithmwith power flow constraint generates
more accurate results w.r.t. the actual values, which indicates
the Krawczyk algorithmwith power flow constraint performs
better for interval state estimation of distribution network.

D. ACCURACY UNDER VARIOUS PMU AND
SCADA DATA ERRORS
The influence brought by PMU and SCADA measurement
accuracy on the performance of the algorithm is also ana-
lyzed. The errors of PMU and SCADA data are set to be the
two times, four times, six times and eight times the width of
the uncertainty interval respectively. The evaluation results
are shown in Table 3.

TABLE 3. Comparison under various PMU and SCADA data errors.

It can be noticed that the increase of uncertainties enlarges
the variations of the estimated values of state variables. Even
so, compared to the Krawczyk method without constraint,
the proposed method still gives tighter outer solutions in this
test case.

E. THE ACCURACY UNDER VARIOUS DG DATA ERRORS
In order to investigate the influence of DG pseudo measure-
ment accuracy on the state estimation of distribution network,
the maximum interval width of bus voltage amplitude is
reported in Table 4 where the measurement errors are 25%,
50% and 75%, respectively.

TABLE 4. Maximum Interval Width(W2) under Various DG Data Errors.

Compared with the method without power flow con-
straint, using power flow equations as the equality con-
straint, the interval width is narrower, so the conservatism is
lower, and the accuracy of the estimation results is higher.

However, with the growth of the measurement error,
the uncertain region gradually increases, which brings in
more difficulty for convergence of the interval state estima-
tion. It can be seen from Table 4 that when the error is 75%,
the maximum interval width is beyond the normal range.
Therefore, the interval state estimation algorithm proposed in
this paper perform better as DG data errors decrease. Basing
on above observation, we claim that if some PMUs can be
installed at the DG buses in real application, our algorithm is
supposed to be more practical.

F. PERFORMANCE ANALYSIS
In order to verify the universality of the algorithm for different
types and different scales of power grid, the performance of
the algorithm is tested on IEEE 57-bus distribution network
and IEEE 300-bus system. The results accuracy, iteration
numbers and the time consumption are calculated respec-
tively under the uncertainty width varying from twice to
eight times of the original set width. The results are shown
in Table 5.

TABLE 5. Performance analysis.

It can be observed that the computational complexity of
the algorithm is reduced and the speed of the interval state
estimation is improved by adding the power flow constraint.
Also, compared with the method without power flow con-
straint, the estimation results of the algorithm with power
flow constraint always maintains high precision.

VII. CONCLUSIONS
In this paper, the problem of network uncertainties and low
redundancy in state estimation of distribution network has
been studied. The interval state estimation algorithm based
on Krawczyk operator and power flow constraint is proposed.
The proposal has several advantages as follows:
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The algorithm adopts SCADA and PMU hybrid measure-
ment data which can make full use of existing measure-
ments. Compare with IGE method that is too conservative
to solve the interval state estimation model, adding our pro-
poser greatly improve the accuracy of the estimation results.
Compared with the method that do not constraint with power
flow equations, our proposer improve not only the estimation
accuracy but also the calculation speed.

In future work, we will further analyze and model for
the situation of three phase unbalanced distribution network,
systemmeasurement outliers (bad data) and dynamic interval
state estimation [50], [51]. We will also focus on speeding
up online, real-time and practical application of interval state
estimation for distribution network.
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