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ABSTRACT In order to improve filtering accuracy and restrain the degradation of filtering performance
caused by the heavy-tailed process and measurement noises in multi-target tracking, this paper proposes a
robust Student’s t mixture probability hypothesis density (PHD) filter. In the proposed method, a Student’s t
mixture is implemented to the PHD filter, which recursively propagates the intensity as a mixture of
Student’s t components in PHD filtering framework. Furthermore, with the advantage of a designed judging
and re-weighting mechanism, an M-estimation-based dual-gating strategy is designed for the Student’s t
mixture implementation to suppress the negative effect of the heavy-tailed noises. Our proposed approach
not only utilizes the Student’s t distribution to match the real heavy-tailed non-Gaussian noise well but also
enhances the robustness of the Student’s t mixture-based approach via the designed dual-gating strategy. The
simulation results verify that the proposed algorithm can keep good filtering accuracy in the presence of the
process and measurement outliers simultaneously.

INDEX TERMS Multi-target tracking, PHD filter, student’s t mixture, heavy-tailed noises, dual-gating
strategy, robustness.

I. INTRODUCTION
Multi-target tracking (MTT) technique has been widely
used in the civilian and military applications such as air
traffic control, remote sensing, ballistic missile guidance
and computer vision [1], [2]. Traditional data association
based MTT approaches, such as the joint probabilistic data
association (JPDA) [3] and the multiple hypothesis track-
ing (MHT) [4], cannot match the real-time requirement since
they suffer from high computation complexity arising from
data association. Recently, much attention has been drawn
by the random finite set (RFS) frameworks, such as proba-
bility hypothesis density (PHD) filters [5], [6], multi-target
multi-Bernoulli filters [2], [7] and labeled RFS-based multi-
Bernoulli filters [8], [9], which are effective to relief the
computational burden in many real applications since they
need no data association.

This paper focuses on the computationally efficient PHD
filter with simple filtering framework and low computation
complexity. The PHD filter realizes the joint estimation of
the target states and the number of target by propagating the

first-order statistical moment of multi-target posterior prob-
ability density. To obtain closed form solution to the PHD
filter, the sequentialMonte Carlo (SMC) implementation [10]
and the Gaussian mixture (GM) implementation [11] are
proposed, respectively. Although the SMC implementation
can address the nonlinear problems well, it suffers from
high computational load. Compared with the SMC imple-
mentation, the GM implementation based on linear Gaussian
assumption has the advantage of low computational cost.
Furthermore, some nonlinear extensions [11]–[14] made the
GM-PHD filter have ability to handle mild nonlinear prob-
lems. And the GM-PHD filter has also been widely used in
many applications [15]–[17].

InMTT applications, the process andmeasurement models
are usually accompanied with the heavy-tailed non-Gaussian
noise (also called outlier in this paper). The heavy-tailed
noise is usually caused by various reasons such as elec-
tromagnetic interference, sensor’s own unreliability and
unknown dynamic model. The performance of the PHD filter
would be severely degraded by these heavy-tailed noises.
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The standard GM implementation lacks of robustness to the
heavy-tailed noise, especially the case that both heavy-tailed
process and measurement noises exist simultaneously. There
are some existing approaches [18]–[21] which can handle the
heavy-tailed noises in some degree. For example, the inflat-
ing approach [19] resists the heavy-tailed noise interfer-
ence through inflating covariance of the measurement noise.
The adaptive approach [20], [21], which utilizes variational
Bayesian (VB) approximation to estimate the multi-target
state and the measurement noise covariance jointly, has the
ability to cope with the mismatch between the actual heavy-
tailed measurement noise and the Gaussian-assumed mea-
surement noise. The multiple-model (MM) approach [18],
which utilizes themultiplemodels tomatch the target states in
different dynamic stages, can handle the mismatch between
the actual heavy-tailed process noise and the Gaussian-
assumed process noise. However, the inflating approach and
the adaptive approach cannot address the heavy-tailed pro-
cess noise, and the MM approach is not suitable to handle the
heavy-tailed measurement noise. Some robust filtering meth-
ods [22], [23] based onM-estimation theory can copewith the
heavy-tailed process andmeasurement noises simultaneously
by re-weighting scheme, which are often used in the Gaussian
assumption based Bayesian filtering framework. However,
the capability of the method to handle heavy-tailed non-
Gaussian noises is limited because of the Gaussian assump-
tion. Some recent studies focus on coping with this difficulty.
For example, [24] proposes a Student’s t based approach
for the linear system, which can address the process and
measurement outliers well through utilizing the heavy-tailed
Student’s t distribution. Further, a generalized Student’s t
based filter for the nonlinear system [25] and some corre-
sponding numerical approaches [26]–[29] are also proposed
and developed. Although the performance of the Student’s t
based filter may degrades due to inappropriate choice of the
degree of freedom parameter, it still shows the superiority
in terms of handling the heavy-tailed non-Gaussian noises
compared to the Gaussian approximation based filter.

In this paper, a robust implementation of the PHD filter
is proposed based on Student’s t mixture approximation,
intending to improve the estimation accuracy in terms of
the target states and the target number in the presence of
the heavy-tailed process and measurement noises. The pro-
posed implementation recursively propagates the intensity
as a mixture of Student’s t components in PHD filtering
framework. Based on this implementation, an M-estimation
based dual-gating strategy is designed in the updating step
of the Student’s t mixture PHD (STM-PHD) recursion for
improving its capability to handle outliers further. Firstly,
the proposed gating method separates the measurements into
normal measurements, outliers and clutters by two prede-
termined thresholds. Then, it assigns different weights to
the corresponding types of the measurements with a three-
piece weight function, making a balance between utilizing the
useful information contained in normal measurements and
outliers and suppressing the harmful information contained in

outliers and clutters. The main contributions of our work are
that utilize the Student’s t distribution tomatch the real heavy-
tailed non-Gaussian noise well and combine gating tech-
nique with M-estimation theory to enhance the robustness
of the proposed Student’s t mixture based filtering algorithm
further.

The remainder of this paper is organized as follows.
Section II provides an overview of the PHD filter and some
properties of Student’s t filtering. Section III presents the
Student’s t mixture implementation of the PHD filter and
Section IV presents the robust Student’s t mixture PHD filter
with dual-gating strategy. Simulation results are displayed
in Section V, and conclusions are given in Section VI.

II. BACKGROUND
A. THE PHD FILTER
Under the random finite set (RFS) framework [2], multi-
target states and measurements at time k are expressed as
finite sets Xk = {xk,1, . . . , xk,M (k)} ∈ F(X) and Zk =
{zk,1, . . . , zk,N (k)} ∈ F(Z), respectively, where X(X ⊆ Rdx )
is the state space,Z(Z ⊆ Rdz ) is the measurement space, F(•)
is the collection of all the finite subsets of the corresponding
space, M (k),N (k) ∈ N, and the superscript dx and dz are the
dimensions of X and Z, respectively. Let

Xk =
[
∪

x∈Xk−1
Sk|k−1(x)

]
∪

[
∪

x∈Xk−1
Bk|k−1(x)

]
∪ 0k , (1)

Zk =
[
∪

x∈Xk
Gk (x)

]
∪�k , (2)

where Sk|k−1(x) and Bk|k−1(x) denote the finite sets of sur-
vival targets and spawned targets at time k , and 0k is the
finite set of birth targets at time k . Gk (x) and�k respectively
represent the finite sets of measurements originated from
targets and clutters at time k .

On the basis above, the MTT problem can be recast into
Bayesian filtering framework. Then a tractable approach,
namely the PHDfilter, was proposed in [5]. In PHD recursion,
multi-target intensityD(x) which is the first-order moment of
multi-target posterior probability density p(Xk |Zk ), is recur-
sively propagated in time. Given the PHD Dk−1(x) at time
k − 1, the predicted PHD Dk|k−1(x) and the updated PHD
Dk (x) are calculated by (3) and (4),

Dk|k−1(x) =
∫

(ps(u)fk|k−1(x|u)+ βk|k−1(x|u))Dk−1(u)du

+ γk (x), (3)

Dk (x) = [1− pD(x)

+

∑
z∈Zk

pD(x)gk (z|x)
κk (z)+

∫
pD(ζ )gk (z|ζ )Dk|k−1(ζ )dζ

]

×Dk|k−1(x), (4)

where fk|k−1(x|u) and βk|k−1(x|u) respectively are the tran-
sition density function associated with survival targets and
spawned targets from state u at time k − 1 to state x at
time k , γk (x) and κk (x) respectively are the intensity function
of birth targets and clutters at time k , pS (x) and pD(x) are
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survival probability of each target and detection probability,
respectively. gk (z|x) is the measurement likelihood function
at time k .

B. IMPORTANT PROPERTIES OF STUDENT’S T FILTERING
The probability density function (PDF) of Student’s t distri-
bution can be presented by [30]

p (x) =
0(υ+22 )

0(υ2 )
1

(υπ )d/2
1

√
det (P)

(1+
12

υ
)−(

υ+2
2 ), (5)

where 0 (•) is the Gamma function and 12
=

(x − m)TP−1(x − m). The abbreviated form of PDF is
St (x;m,P, υ) with mean m, scale matrix P and degree of
freedom parameter υ.

Student’s t distribution has a heavy tail, the behavior
of which is severely influenced by its degrees of freedom
υ. The heavy-tailed level has a negative correlation with
the parameter υ. Because of this characteristic, Student’s t
distribution is often used to approximate the heavy-tailed
non-Gaussian noise in many scenarios. In Bayesian filtering
framework, two important Lemmas for the nonlinear models
derived based on the Student’s t approximation are shown as
follows [25].
Lemma 1: Given that the jointly PDF of the current state

and one-step ahead state vectors is Student’s t and Q, m and
P of appropriate dimensions and that Q and P are positive
definite.∫

St(x; f (u),Q, υ1)St(u;m,P, υ3)du = St(x; m̄, P̄, υ3),

(6)

where

m̄ =
∫
f (u)St(u;m,P, υ3)du (7)

P̄ =
υ3 − 2
υ3

∫
f (u)f T (u)St(u;m,P, υ3)du

−
υ3 − 2
υ3

m̄m̄T +
υ1(υ3 − 2)
(υ1 − 2)υ3

Q. (8)

Lemma 2: Given that the jointly PDF of the state and
measurement vectors is Student’s t and R, m, P of appropriate
dimensions and that R and P are positive definite.

St(z; h(x),R, υ2)St(x;m,P, υ3)

= St(z; η,Pzz, υ3)St(x;m′,P′, υ ′3), (9)

where

m′ = m+ K (z− η) (10)

P′ =
υ3 +1

2

υ3 + dz
(P− KPzzKT ) (11)

υ ′3 = υ3 + dz (12)

K = Pxz(Pzz)−1 (13)

12
= (z− η)T (Pzz)−1(z− η) (14)

η =

∫
h(x)St(x;m,P, υ3)dx (15)

Pzz,k|k−1 =
υ3 − 2
υ3

∫
h(x)hT (x)St(x;m,P, υ3)dx

−
υ3 − 2
υ3

ηηT +
υ2(υ3 − 2)
(υ2 − 2)υ3

R (16)

Pxz,k|k−1 =
υ3 − 2
υ3

∫
xhT (x)St(x;m,P, υ3)dxk

−
υ3 − 2
υ3

mηT . (17)

The detailed derivations of Lemma 1 and Lemma 2 can be
seen from [25]. Note that the Student’s t integrals in (7), (8)
and (15)-(17) need to be solved. Numerical solutions of the
Student’s t integrals can be found from [26]–[29].

III. STUDENT’S T MIXTURE PHD FILTER
A. MODELS AND ASSUMPTIONS
Consider the system models with additional noise shown
in (18) and (19).

xk = fk (xk−1)+ ξk (18)

zk = hk (xk )+ vk , (19)

where xk and zk are the state vector and the measurement
vector at time k , respectively, fk (·) is the state transition, hk (·)
is the measurement function, ξk and vk are process noise
vector and measurement noise vector, respectively.

Different from the Gaussian assumption based GM imple-
mentation, the proposed Student’s t mixture (STM) imple-
mentation of the PHD filter is derived based on the following
Student’s t assumptions.
Assumption 1: The process noise and the measurement

noise are assumed as the Student’s t distribution.

p (ξk) = St(ξk ; 0,Qk , υ1) (20)

p (vk) = St(vk ; 0,Rk , υ2). (21)

Assumption 2: Each target follows the nonlinear state and
measurement models as (18)-(19), i.e.,

fk|k−1 (x|u) = St (x; fk (u),Qk , υ1) (22)

gk (z|x) = St (z; hk (x),Rk , υ2) . (23)

Assumption 3: The survival probability and detection
probability are state independent, i.e.,

pS (x) = pS (24)

pD(x) = pD. (25)

Assumption 4: Assume the birth target intensity can be
approximated as a Student’s t mixture of the form.

γk (x) =
Jγ,k∑
i=1

w(i)
γ,kSt

(
x;m(i)

γ,k ,Pγ,k , υ3
)
. (26)

Assumption 3 is commonly used in GM-PHD filters.
Assumption 1, 2 and 4 are given for the actual applications
with the process and measurement outliers, i.e., tracking
some agile targets with unreliable sensors.
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B. STUDENT’S T MIXTURE PHD RECURSION
Based on the Assumptions 1-4 and the Lemma 1 and
Lemma 2 (in section II.B), the Student’s t mixture based
closed form recursion to PHD (3)-(4) is derived as
follows [31].

1) PREDICTION STEP
Suppose that Assumptions 1-4 hold and the posterior inten-
sity of multi-target RFS at time k − 1 is a Student’s t mixture
with the form shown in (27),

Dk−1(x) =
Jk−1∑
j=1

w(j)
k−1St(x;m

(j)
k−1,P

(j)
k−1, υ3). (27)

Then the predicted intensity Dk|k−1(x) can be given by

Dk|k−1(x) = DS,k|k−1(x)+ γk (x) , (28)

where the birth target intensity γk (x) is shown as (26) and
the survival target intensity DS,k|k−1(x) is approximated as a
Student’s t mixture of the form (29),

DS,k|k−1(x) =
Jk|k−1∑
j=1

w(j)
S,k|k−1St(x;m

(j)
S,k|k−1,P

(j)
S,k|k−1, υ3),

(29)

with

w(j)
S,k|k−1 = pSw

(j)
k−1 (30)

m(j)
S,k|k−1 =

∫
fk (x)St(x;m

(j)
k−1,P

(j)
k−1, υ3)dx

=

L∑
l=1

µ(j,l)fk (x
(j,l)
k−1) (31)

P(j)S,k|k−1 =
υ3 − 2
υ3

∫
fk (x)f Tk (x)St(x;m(j)

k−1,P
(j)
k−1, υ3)dx

−
υ3 − 2
υ3

m(j)
S,k|k−1(m

(j)
S,k|k−1)

T

+
υ1(υ3 − 2)
(υ1 − 2)υ3

Qk−1

=
υ3 − 2
υ3

L∑
l=1

µ(j,l)(fk (x
(j,l)
k−1)− m

(j)
S,k|k−1)

× (fk (x
(j,l)
k−1)− m

(j)
S,k|k−1)

T
+
υ1(υ3 − 2)
υ3(υ1 − 2)

Qk−1,

(32)

where
{
x(j,l)k−1, µ

(j,l)
}L
l=1

are the set of cubature points and

weights corresponding to St(x;m(j)
k−1,P

(j)
k−1, υ3), computa-

tion of which can be found from [27].

2) UPDATING STEP
Suppose that Assumptions 1–4 hold and the predicted PHD
Dk|k−1(x) is a Student’s t mixture,

Dk|k−1(x) =
Jk|k−1∑
i=1

w(j)
k|k−1St(x; m

(j)
k|k−1,P

(j)
k|k−1, υ3). (33)

Then, the posterior intensityDk (x) at time k can be approx-
imated by a Student’s t mixture,

Dk (x) = (1− pD)Dk|k−1(x)+
∑
z∈Zk

Dk (x; z), (34)

with

Dk (x; z) =
Jk|k−1∑
j=1

w(j)
k (z)St(x;m(j)

k|k
′(z),P(j)k|k

′(z), υ ′3) (35)

υ ′3 = υ3 + dz (36)

w(j)
k (z) =

pDw
(j)
k|k−1q

(j)
k (z)

κk (z)+ pD
Jk|k−1∑
l=1

w(l)
k|k−1q

(l)
k (z)

(37)

m(j)
k|k
′(z) = m(j)

k|k−1 + K
(j)
k (z− η(j)k|k−1) (38)

P(j)k|k
′(z) =

υ3 +1
2
k

υ3 + dz
× (P(j)k|k−1 − P

(j)
xz,k|k−1(P

(j)
zz,k|k−1)

−1(P(j)xz,k|k−1)
T )
(39)

q(j)k (z) = St
(
z; η(j)k|k−1,P

(j)
zz,k|k−1, υ3

)
(40)

K (j)
k = P(j)xz,k|k−1(P

(j)
zz,k|k−1)

−1 (41)

12
= (z− η(j)k|k−1)

T (P(j)zz,k|k−1)
−1(z− η(j)k|k−1) (42)

η
(j)
k|k−1 =

∫
hk (x)St(x;m

(j)
k|k−1,P

(j)
k|k−1, υ3)dx

=

L∑
l=1

µ(j,l)hk (x
(j,l)
k|k−1) (43)

P(j)zz,k|k−1 =
υ3−2
υ3

∫
hk (x)hTk (x)St(x;m

(j)
k|k−1,P

(j)
k|k−1, υ3)dx

−
υ3 − 2
υ3

η
(j)
k|k−1(η

(j)
k|k−1)

T
+
υ2(υ3 − 2)
(υ2 − 2)υ3

Rk

=
υ3 − 2
υ3

L∑
l=1

µ(j,l)(hk (x
(j,l)
k|k−1)− η

(j)
k|k−1)

× (hk (x
(j,l)
k|k−1)− η

(j)
k|k−1)

T
+
υ2(υ3 − 2)
υ3(υ2 − 2)

Rk (44)

P(j)xz,k|k−1 =
υ3 − 2
υ3

∫
xhTk (x)St(x;m

(j)
k|k−1,P

(j)
k|k−1, υ3)dx

−
υ3 − 2
υ3

m(j)
k|k−1(η

(j)
k|k−1)

T

=
υ3 − 2
υ3

L∑
l=1

µ(j,l)(x(j,l)k|k−1 − m
(j)
k|k−1)(hk (x

(j,l)
k|k−1)

− η
(j)
k|k−1)

T , (45)

where
{
x(j,l)k|k−1, µ

(j,l)
}L
l=1

are the set of cubature points and

weights corresponding to St(x;m(j)
k|k−1,P

(j)
k|k−1, υ3).

Based on (36), the degree of freedom υ ′3 will tend to infin-
ity with recursion performing. It means that the Student’s t
mixture converges to the Gaussian mixture [24]. It results
in that the Student’s t mixture PHD filter loses robustness
against outliers. To avoid such degradation of performance,
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correction to (35) is performed with the moment matching
method shown in (46),

Dk (x; z) =
Jk∑
j=1

w(j)
k (z)St(x;m(j)

k|k (z),P
(j)
k|k (z), υ3) (46)

where

m(j)
k|k (z) = m(j)

k|k
′(z), (47)

P(j)k|k (z) =
υ3 − 2
υ3

υ3
′

υ ′3 − 2
P(j)k|k

′(z). (48)

After the corrected posterior intensity Dk (x) derived,
the target number and their states can be computed just like
the GM-PHD filter [11]. The proposed STM implementation
is a robust method, which can address the heavy-tailed noises
well through choosing the appropriate value of the degree
of freedom parameters (are generally set [3], [10] accord-
ing to [25]).
Remark 1: Like the GM-PHD recursion, the Student’s t

mixture PHD (STM-PHD) recursion also needs the process of
merging and pruning. And the concrete process is almost the
same as the GM case (can refer to [11]). The different point
is that scale matrix is presented in Student’s t component
while covariance matrix is presented in Gaussian component.
So the scale matrix P should be converted to the covariance
matrix 6 (6 = υ

υ−2P [30]) in the merging process of the
STM-PHD recursion.

IV. DUAL-GATING STRATEGY BASED STUDENT’S T
MIXTURE PHD RECURSION
Although the Student’s t mixture PHD filter is robust to the
heavy-tailed noises, the selection of the degree of freedom
parameters is still a difficult task. The mismatch between the
noise model and the real noise induced by the inappropriate
degree of freedom parameter will degrade the performance
of the algorithm, especially for the scenarios with high dense
outliers. Because the M-estimation theory [32] has good
robustness against outliers and its wide applications in robust
filtering, this paper proposes an M-estimation based dual-
gating strategy in the updating step of the STM-PHD filter,
which improves the robustness of the algorithm further.

A. DUAL-GATING STRATEGY BASED PHD UPDATING
The contribution of a measurement to the posterior intensity
of the PHD filter depends on the distance between the mea-
surement projection onto the state space and the estimate.
Further with the increasing of the distance, the contribution
of the measurement is decreasing. Once a certain distance
limit is exceeded, the contribution of the measurement can be
ignored [33]. This illustrates that the almost all contribution to
the posterior intensity just orients from the nearby measure-
ments. Based on this basic principle, the likelihood function
can be given as follows.

ĝk (z|x) =


g1k (z|x) if d(z, hk (x)) ≤ I1
g2k (z|x) if I1 < d(z, hk (x)) ≤ I2
0 otherwise,

(49)

where I1 and I2 (I1 < I2) are two elliptical gate thresholds,
respectively, which are set for separating the measurements
into normal measurements, outliers and clutters according to
measurements noise variance. d(z, hk (x)) denotes a distance
between the measurement z and the predicted measurement
hk (x). The judging condition d(z, hk (x)) ≤ I1 indicates
that the measurement is normal measurement, correspond-
ing to the likelihood g1k (z|x). Under the condition of I1 <

d(z, hk (x)) ≤ I2, the measurement is regarded as outlier,
corresponding to the likelihood g2k (z|x). And g

2
k (z|x) is always

lower than g1k (z|x). The likelihood corresponding to clutter is
set zero. Such strategy makes a trade-off between utilizing
the useful information and resisting the harmful information
from the measurements.

Similar to the judging mechanism of typical gating tech-
niques [4], [13], [33], [34], dual-gating strategy reduces
the validation region of observation through presetting gate
thresholds. The reduction of the validation region will reduce
the number of clutters used for updating. In theory, the clut-
ter intensity needs to be corrected with the change of
validation region. However, the contribution of discarded
clutters is so small that the correction of the clutter intensity
can be ignored.

In our approach, the dual-gating strategy based PHD cor-
rector with the modified likelihood ĝk (z|x) can be formally
written as

Dk (x)

= [1− pD,k (x)

+

∑
z∈Zk

pD(x)ĝk (z|x)
κk (z)+

∫
pD(ζ )ĝk (z|ζ )Dk|k−1(ζ )dζ

]Dk|k−1(x).

(50)

B. DUAL-GATING STRATEGY BASED STUDENT’S T
MIXTURE IMPLEMENTATION
The prediction stage of the dual-gating STM-PHD filter is
the same as the standard STM-PHD recursion (can be seen
in section III.B). The main difference is mainly located in the
updating step.

The key point of the dual-gating strategy is how to con-
struct the form of the likelihood reasonably in update step
of the STM-PHD filter. Inspired by the idea [22] that the
likelihood calculation can be converted to the design of an
equivalent weight function, we replace the scale matrix Rk
in (44) with the inverse equivalent weight matrix ρ−1k . With
this change, the equivalent innovation scale matrix P̄(j)zz,k|k−1
is given by

P̄(j)zz,k|k−1 =
υ3 − 2
υ3

L∑
l=1

µ(j,l)(hk (x
(j,l)
k|k−1)− η

(j)
k|k−1)

× (hk (x
(j,l)
k|k−1)− η

(j)
k|k−1)

T
+
υ3 − 2
υ3

υ2

υ2 − 2
ρ−1k .

(51)
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Then, the updated intensity shown as (34) changes to

Dk (x) = (1− pD,k )Dk|k−1(x)+
∑
z∈Zk

D̄k (x; z), (52)

where

D̄k (x; z) =
Jk∑
j=1

w̄(j)
k (z)St(x; m̄(j)

k|k
′(z), P̄(j)k|k

′(z), υ3′) (53)

υ ′3 = υ3 + dz (54)

w̄(j)
k (z) =

pD,kw
(j)
k|k−1q̄

(j)
k (z)

κk (z)+ pD,k
Jk|k−1∑
l=1

w(l)
k|k−1q̄

(l)
k (z)

(55)

m̄(j)
k|k
′(z) = m(j)

k|k−1 + K̄
(j)
k (z− η(j)k|k−1) (56)

P̄(j)k|k
′(z) =

υ3 + 1̄
2

υ3 + dz
× (P(j)k|k−1 − P

(j)
xz,k|k−1(P̄

(j)
zz,k|k−1)

−1(P(j)xz,k|k−1)
T )
(57)

q̄(j)k (z) = St
(
z; z(j)k|k−1, P̄

(j)
zz,k|k−1, υ3

)
(58)

K̄ (j)
k = P(j)xz,k|k−1(P̄

(j)
zz,k|k−1)

−1 (59)

1̄2
= (z− η(j)k|k−1)

T (P̄(j)zz,k|k−1)
−1(z− η(j)k|k−1). (60)

The correction of the posterior intensity in the STM-PHD
filter shown as (46)-(48) should be presented by

Dk (x; z) =
Jk∑
j=1

w̄(j)
k (z)St(x;m(j)

k|k (z),P
(j)
k|k (z), υ3), (61)

with

m(j)
k|k (z) = m̄(j)

k|k
′(z) (62)

P(j)k|k (z) =
υ3 − 2
υ3

υ3
′

υ ′3 − 2
P̄(j)k|k

′(z), (63)

where •̄ denotes equivalent formation of the corresponding
vector or matrix. With the equivalent weight function being
introduced, a response to outlier is made in updating step
of the PHD recursion by propagating ρ−1k . From compar-
ison of (50) with (55), it indicates that q̄(j)k (z) is the con-
crete expression for the likelihood ĝk (z|x) in the dual-gating
STM-PHD filter. So calculation of ĝk (z|x) can be converted
to the design of the equivalent weight matrix ρk .

The equivalent weight matrix ρk can be designed to be [35]

ρk =


R−1k λk ≤ I1

R−1k
I1
λk

(λk−I1I2−I1
)2 I1 < λk ≤ I2

Odz λk > I2,

(64)

where λk is a judgment variable which is used to judge
the type of the measurement at time k . According to [36],
we take the squared Mahalanobis distance between the pre-
dicted measurement and the actual measurement as the judg-
ment variable, that is, λk = (zk − ηk|k−1)P

−1
zz,k|k−1 (zk −

ηk|k−1)T . I1 and I2 are the same thresholds as shown in (49).

When λk satisfies the judgment condition I1 < λk ≤ I2,
the corresponding weight R−1k

I1
λk
(λk−I1I2−I1

)2 is assigned to the
present measurement which is regarded as the outlier. Such
assignment can successfully reach the expectation that just
utilizes the useful information contained in outliers for updat-
ing. Considering ρk = Odz might lead to the divergence
of algorithm, the evaluation of the state, scale matrix and
corresponding weight should be as follows.

m̄(j)
k (z) = m(j)

k|k−1 (65)

P̄(j)k = P(j)k|k−1 (66)

w̄(j)
k (z) = 0. (67)

C. GATE SIZE ISSUES
Usage of gating technique in STM-PHD filter will produce
many gate regions, which correspond to different Student’s t
components, respectively. The union of all these gate regions
forms validation region for the measurements. The volume of
the validation region is given as

VV =
n
∪
i=1

Vi. (68)

Based on [13], given the gate threshold I , the i-th gate
volume Vi can be expressed by (69)

Vi = cdz |Pzz|
1/2I1/2, (69)

where cdz is a constant determined by the dimension of the
measurement vector. Equation (69) indicates that the gate
volume depends on both innovation scale matrix and gate
threshold.

Combining (69) with (51) and (64), the gate volume under
the dual-gating strategy is given as{

V1 = cdz |Pzz0 + Rk |
1/2I1/21

V2 = cdz |Pzz0 + βRk |
1/2I1/22 ,

(70)

with

Pzz0 =
υ3 − 2
υ3

L∑
l=1

µ(j,l)

× (hk (x
(j,l)
k|k−1)− η

(j)
k|k−1)(hk (x

(j,l)
k|k−1)− η

(j)
k|k−1)

T (71)

β =
λk

I1
(
I2 − I1
λk − I1

)2. (72)

Corresponding to gate regions of the proposed method
shown in Figure 1,V1 andV2 denote the volume of the regions
corresponding to gate 1 and gate 2, respectively, and the
predicted measurement ηk|k−1 is the center point. The region
G1 is the region where the measurement z1,k is viewed as
normal measurement. The region G2 is an important region
where the measurement z2,k is regarded as outlier. Its volume
can be expressed as V2 − V1 whose size determines the
number of outliers contained in this region. (70) and (72)
indicate that the gate thresholds I1 and I2 not only directly
affect the volume of region G2, but also indirectly affect the
volume of region G2 through the factor β. It means that the
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FIGURE 1. Gate region of dual-gating strategy.

choice of gate thresholds I1 and I2 is the key point in the dual-
gating strategy.

Under the assumption of Student’s t distribution, the judg-
ment variable λk approximately follows the F-distribution
with dz degree of freedom. Consequently, I1 and I2 can be
obtained according to the different confidence level α1 and α2
as follows.

p(λk > I1) = 1− α1 (73)

p(λk > I2) = 1− α2, (74)

where p(·) is probabilistic computation operator, I1 and I2
actually represent α1 quantile and α2 quantile, respectively,
which can be chosen from F-distribution tables. Besides,
the value of I1 and I2 can be also obtained with the empirical
method according practical conditions.
Remark 2: Compared with the traditional gating tech-

niques with only one gate threshold, the proposed gating
strategy with two gate thresholds is more feasible in terms
of the gate size. Concretely speaking, in traditional gating
technique, the big gate size will lead more clutters to be used
for updating, which not only increases the computation load
but also reduces the estimation accuracy. The small gate size
is likely to miss the target-oriented measurements, leading to
the degradation of filtering performance. On the contrary,
the dual-gating strategy can make a trade-off between the
computation load and the estimation accuracy. Especially
in the presence of outliers, it can effectively utilize the
information contained in outliers and obtain more accurate
estimation.

V. SIMULATIONS AND RESULTS
To demonstrate the performance of the proposed approach,
simulation examples are designed in the linear range-only
scenario and the nonlinear range-bearing scenario, respec-
tively. In the simulation, we choose optimal subpattern
assignment (OSPA) distance as the metric to evaluate the
performance of filter, because OSPA distance can compre-
hensively measure the estimation errors of the multi-target
filtering algorithms [37]. The OSPA distance between arbi-
trary finite sets X = {x1, . . . , xm} and Y = {y1, . . . , yn}

(m, n ∈ N0) is defined as

d̄ (c)p (X ,Y )

:=

(
1
n

(
min
π∈5n

m∑
i=1

d (c)
(
xi, yπ(i)

)p
+ cp (n− m)

)) 1
p

(75)

if m < n; and d̄ (c)p (X ,Y ) := d̄ (c)p (Y ,X ) if m > n, where
d (c)(x, y) := min(c, ‖x − y‖). In our simulation examples,
the parameters p and c are set as 2 and 100, respectively.

A. LINEAR RANGE-ONLY SCENARIO
Consider a two-dimensional scenario with 10 targets which
respectively appear and disappear over the observation region
[−1000, 1000] m × [−1000, 1000] m during the interval
of 100 s. The linear state model and the measurement model
are the same as [11] with

F =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1



Q =



T 4/
4

T 3/
2 0 0

T 3/
2 T 2 0 0

0 0 T 4/
4

T 3/
2

0 0 T 3/
2 T 2

 σ
2
u ,

H =
[
1 0 0 0
0 0 1 0

]
, R =

[
σ 2
v 0
0 σ 2

v

]
,

where T = 1 s, σξ = 5 m/s2 and σv = 10 m. The state
xk = [px,k , p′x,k , py,k , p

′
y,k ]

T of each target consist of position
[px,k , py,k ] and velocity [p′x,k , p

′
y,k ] at time k . Table 1 presents

initial conditions for each target.

TABLE 1. A list of initial target states.

The process and measurement noises with heavy tails are
given as [25].

ξk ∼

{
N (0,Q) with probability 0.96
N (0, 25Q) with probability 0.04

(76)

vk ∼

{
N (0,R) with probability 0.96
N (0, 25R) with probability 0.04.

(77)
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From (76) and (77), four percent (namely contaminated
rate ε = 0.04 [36]) of the process noise and measurement
noise generate fromGaussians with severely high covariance.

Without considering spawned target, the birth process of
target is regarded as the Poisson point process with intensity

γk (x) = 0.03
4∑
i=1

St(x;m(i)
γ ,Pγ , υ3), (78)

where

m(1)
γ = [0 m, 0 m/s, 0 m, 0 m/s]T

m(2)
γ = [400 m, 0 m/s,−600 m, 0 m/s]T

m(3)
γ = [−800 m, 0 m/s,−200 m, 0 m/s]T

m(4)
γ = [−200 m, 0 m/s, 800 m, 0 m/s]T

υ3

υ3 − 2
Pγ = diag([10 m, 10 m/s, 10 m, 10 m/s]2)

υ3 = 10.

The true trajectories of each target are shown in Figure 2.
The detection probability is pD,k = 0.98 and the survival
probability is pS,k = 0.99. The parameters related to pruning
and merging are set as Tp = 10−5, U = 4 and Jmax = 100,
respectively. The judgment thresholds are set as I1 = 10 and
I2 = 32. For simplification, assume υ1 = υ2 = υ3 = 10.

FIGURE 2. True trajectories of each target.

Case 1: To evaluate the performance of the proposed
algorithm, 100 Monte Carlo (MC) trails are performed with
fixed clutter rate λc=20 (an average of 20 clutter returns
per scan). We make comparison among the GM-PHD fil-
ter, the Student’s t mixture PHD (STM-PHD) filter and the
dual-gating Student’s t mixture PHD (DGSTM-PHD) filter
in terms of cardinality and OSPA distance. The results are
shown in Figure 3 and Figure 4, respectively.

The result in Figure 3 shows that the DGSTM-PHD filter
and the STM-PHD filter have noticeable improvement in
terms of the cardinality estimation accuracy compared with
the GM-PHD filter. Moreover, compared with the STM-PHD
filter, the DGSTM-PHD filter has obvious superiority in
terms of the cardinality estimation accuracy. However, some
biased cardinality estimates still appear for the DGSTM-PHD

FIGURE 3. Comparison of cardinality estimation of three filters with fixed
clutter rate (λc=20).

FIGURE 4. Comparison of OSPA distance of three filters with fixed clutter
rate (λc=20).

filter and the STM-PHD filter with the existence of heavy-
tailed process and measurement noises. The main reason is
that the negative influence of the heavy-tailed process and
measurement noises is too strong to be completely conquered
by the DGSTM-PHD filter and the STM-PHD filter.

In Figure 4 the OSPA distance of the DGSTM-PHD filter
is the lowest in three filters, and the OSPA distance of the
STM-PHD filter is lower than that of the GM-PHD filter.
Especially 20s later, when the outliers appear, the superiority
of the DGSTM-PHD filter is more noticeable in terms of the
OSPA distance. The main reason is that the DGSTM-PHD
filter has more accurate cardinality estimate.
Case 2: To evaluate the performance of the proposed algo-

rithm sufficiently, simulation is executed over 100 MC trials
with different contaminated rate from ε = 0 to ε = 0.06.
Then time averaged OSPA distances of three filters are shown
in Figure 5.

From Figure 5, it can be seen that the time averaged
OSPA distance of the STM-PHD filter is lower than that of
the GM-PHD filter no matter how many the contaminated
rate is. Moreover, the time averaged OSPA distance of the
DGSTM-PHD filter is lower than that of the STM-PHD filter
when ε > 0.03. This result indicates that the performance
of the STM-PHD filter is superior to the GM-PHD filter.
Because the Student’s t noise model in the proposed approach
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FIGURE 5. Comparison of OSPA distance of two filters with different
contaminated rate (λc=20).

can match the heavy-tailed non-Gaussian noise well. Further-
more, the DGSTM-PHD filter outperforms the STM-PHD
filter when more outliers appear. Because the proposed dual-
gating strategy can effectively suppress the negative effect of
high dense outliers, which is helpful for improving the car-
dinality estimation accuracy further. Additionally, at ε = 0,
the OSPA distance for the STM-PHD filter is the same as the
GM-PHD filter. It indicates that the STM-PHD filter and the
GM-PHD filter have the same tracking performance when no
outliers exist.

B. NONLINEAR RANGE-BEARING SCENARIO
We consider a two-dimensional scene with 12 targets which
respectively appear and disappear over the observation region
[−π, π] rad× [0, 2000] m. Each of targets moves as a nearly
constant turn dynamic model [19].

xk = F(ωk−1)xk−1 + Gξk
ωk = ωk−1 + Tςk , (79)

with

F(ω) =


1 sinωT/ω 0 −(1− cosωT )/

ω

0 cosωT 0 − sinωT

0 (1− cosωT )/
ω 1 sinωT/ω

0 sinωT 0 cosωT



G =


T 2/

2
T

0

0

0

0

T 2/
2

T



Q =


σξT 2/

2 0 0
σξT 0 0

0 σξT 2/
2 0

0 σξT 0
0 0 σςT

× (•)T ,

where F(ω) andG respectively represent the transition matrix
and the input matrix with sample interval T = 1 s. The state

vector x̃k = [xTk , ωk ]
T consists of positions and velocities

xk = [px,k , p′x,k , py,k , p
′
y,k ]

T along with turn rate ωk . Q
denotes the covariance matrix of the process noise vector
ξ̃k = [ξTk , ςk ]

T . with σξ = 5 m/s2 and σς = π/180 rad/s.
(•)T denotes the transpose operation for the matrix before
product sign.

The range and bearing measurement vector zk = [rk , θk ]
admits the following model

zk =


√
p2x,k + p

2
y,k

arctan
py,k
px,k

+ vk . (80)

with measurement variance R=diag([10 m, 2(π/180) rad]2).
Like the linear scenario, the outliers-contaminated process

and measurement noises can be given by

ξ̃k ∼

{
N (0,Q) with probability 0.96
N (0, 25Q) with probability 0.04

(81)

vk ∼

{
N (0,R) with probability 0.96
N (0, 25R) with probability 0.04,

(82)

In the simulation, spawned target is not under considera-
tion. The birth process of target is regarded as the Poisson
point process with intensity

γk (x) = 0.02
2∑
i=1

St(x;m(i)
γ ,Pγ , υ3)

+ 0.03
4∑
i=3

St(x;m(i)
γ ,Pγ , υ3), (83)

with

m(1)
γ = [−1500 m, 0 m/s, 250 m, 0 m/s, 0 rad]T

m(2)
γ = [−250 m, 0 m/s, 1000 m, 0 m/s, 0 rad]T

m(3)
γ = [250 m, 0 m/s, 750 m, 0 m/s, 0 rad]T

m(4)
γ = [1000 m, 0 m/s, 1500 m, 0 m/s, 0 rad]T

υ3

υ3 − 2
Pγ

= diag([50 m, 50 m/s, 50 m, 50 m/s, 6π/180 rad]2)

υ3 = 6.

In nonlinear example, parameters of filters are the same as
the linear example except for the degree of freedom parame-
ters υ1 = υ2 = υ3 = 6. The target trajectories are shown as
Figure 3 and the initial target states can be seen in Table 2.
Case 3: To evaluate the performance of the proposed

algorithm in nonlinear system, we also compared the
DGSTM-PHD filter along with the STM-PHD and the
GM-PHD filter in terms of cardinality and the OSPA dis-
tance. Simulation is performed over 100 MC trials under
condition λc=30 and the average results are shown in
Figure 7 and Figure 8.

From Figure 7, it can be seen that the DGSTM-PHD
filter is superior to the STM-PHD filter and the GM-PHD
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TABLE 2. A list of initial target states.

FIGURE 6. True trajectories of each target.

FIGURE 7. Comparison of cardinality estimation of three filters with fixed
clutter rate (λc=30).

filter in terms of cardinality estimation accuracy, although
the DGSTM-PHD filter has some cardinality bias. The result
in Figure 7 also shows that the STM-PHD filter outperforms
the GM-PHD filter.

In Figure 8, the OSPA distance of the DGSTM-PHD filter
is the lowest in three filters and the OSPA distance of the
STM-PHD filter is also strikingly lower than that of the
GM-PHD filter. This result matches the result in Figure 7
well. It indicates that the Student’s t mixture based approach
can improve the estimation accuracy in the presence of the
outliers and the proposed dual-gating strategy can further
enhance the performance of the STM-PHD filter.

FIGURE 8. Comparison of OSPA distance of three filters with fixed clutter
rate (λc=30).

Case 4: To evaluate the performance of the proposed filter
sufficiently, simulation is performed over 100 MC trials with
different contaminated rate from ε = 0 to ε = 0.1. Then
the time averaged OSPA distances of three filters are shown
in Figure 9.

FIGURE 9. Comparison of OSPA distance of three filters with different
contaminated rate.

From Figure 9, it shows the results analogous to the lin-
ear scenario as the Figure 5. Except for ε = 0, the time
averaged OSPA distances of the DGSTM-PHD filter and the
STM-PHD filter are almost lower than that of the GM-PHD
filter. When ε > 0.02, the time averaged OSPA distance
of the DGSTM-PHD filter becomes lower than that of the
STM-PHD filter. This result verifies that the Student’s t mix-
ture based approach can still keep a good estimation accuracy
in the nonlinear scenario with the outliers and the dual-
gating strategy can improve the performance of the algorithm
further. The difference is that the gaps of the time averaged
OSPA distances among the three filters are not noticeable like
the linear scenario. The main reason is that a relatively big
approximation error is induced in nonlinear scenario for the
Student’s t mixture based implementation.

In summary, when the process and measurement outliers
exist simultaneously, the linear scenario results in Figures 3-5
and the nonlinear scenario results in Figures 7-9 together
indicate that the proposed Student’s t mixture based approach

VOLUME 6, 2018 39217



Z. Liu et al.: Robust STM-PHD Filter for MTT With Heavy-Tailed Noises

has better estimation accuracy and robustness than the Gaus-
sian mixture based approach. In particular, the proposed dual-
gating strategy improves the performance of the Student’s t
mixture based algorithm further in scenarios with relatively
high dense outliers.

VI. CONCLUSIONS
To solve the problem that the process and measurement out-
liers degrade the performance of the PHD filter, this paper
proposes a novel robust implementation of the PHD filter.
Firstly, a Student’s t mixture based analytic solution to the
PHD filter is derived, which propagates the intensity as the
Student’s t mixture of the form. Furthermore, we propose an
M-estimation based dual-gating strategy, which can resist the
influence of the outliers through a judging and re-weighting
mechanism. The proposed dual-gating strategy enhances the
robustness of the Student’s t mixture PHD filter against the
outliers further. The numerical examples show that compared
with the GM-based algorithm, the proposed Student’s t mix-
ture algorithm can obtain more accurate and robust estima-
tions when the heavy-tailed process and measurement noises
exist simultaneously; besides, the dual-gating strategy can
effectively improve the estimation accuracy in the scenes
with high dense outliers. These examples can also indicate
that the proposed robust algorithm is more suitable for the
real engineering applications than the GM-PHD filter. In the
future research, we will try to improve the robustness of
the other RFS-based filters against heavy-tailed noises.
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