
SPECIAL SECTION ON CYBER-PHYSICAL SYSTEMS

Received May 27, 2018, accepted July 2, 2018, date of publication July 17, 2018, date of current version August 15, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2856509

PsCPS: A Distributed Platform for Cloud and Fog
Integrated Smart Cyber-Physical Systems
JAMEELA AL-JAROODI 1, (Member, IEEE), AND NADER MOHAMED 2, (Member, IEEE)
1Department of Engineering, Robert Morris University, Moon, PA 15108, USA
2Middleware Technologies Laboratory, Pittsburgh, PA 15057, USA

Corresponding author: Nader Mohamed (nader@middleware-tech.net)

ABSTRACT Smart cyber-physical systems (sCPS) extend the traditional CPS by introducing intelligent
and autonomous capabilities to these systems. sCPS provide smart interactions, smart controls, and smart
enhancements for the physical world. These smart features can enhance the operations, efficiency, safety,
utilization, reliability, quality, and cost-effectiveness of the physical world. These systems are usually
highly distributed, real-time, deal with huge data sets, implement intelligent algorithms, and need powerful
computation power and large-scale storage capacity. Some of the promising approaches to achieve the
sCPS objectives include the use of a combination of cloud computing and fog computing to enable develop-
ing and operating them. Cloud computing can provide scalable and powerful computation platforms, large
storage capacities, and advanced and intelligent software services, while fog computing can provide more
optimized real-time controls for sCPS. Although cloud and fog computing can provide many advantages
for sCPS, developing and integrating all these systems is challenging. This is due to the strict requirements
of sCPS on one hand and the types of distributed and heterogeneous environments these systems support on
the other. This paper proposes a distributed platform for cloud and fog integrated sCPS, named PsCPS.
This platform can be distributed among multiple clouds, multiple fog nodes, and sCPS subsystems to
provide services to relax many challenges of such integration. The proposed platform includes system and
application agents that can be deployed on participating nodes to provide different services for cloud and fog
integrated sCPS. These agents can be developed, implemented, controlled, and managed as a set of single
agents, as multi-agent systems, or as hierarchical multi-agent systems. A prototype of the proposed platform
is implemented and evaluated as well.

INDEX TERMS Cyber-physical systems, smart CPS, distributed platform, cloud computing, fog computing,
software agent.

I. INTRODUCTION
In the last decade, there have been numerous research and
development activities studying and implementing Cyber-
Physical Systems (CPS) that offer valuable interactions
between the physical and cyber worlds [1]. The physical
world includes the machines, environments, infrastructures
and humans and the cyber world is the control software
that executes on computers and microcontrollers and imple-
ment useful algorithms to enable the interactions with the
physical world. CPS generally utilize and link numerous
technologies and ideas from software, networks, distributed
systems, embedded systems, and control systems. In addition,
it involves various hardware such asmicrocontrollers, sensors
and actuators. Moreover, they involve other fields such as

mechanical, biomedical, civil, and electrical engineering to
deliver added values to applications in the physical world [2].

A special and more advanced type of CPS are the smart
CPS (sCPS). As the name indicates, sCPS provide smart
interactions, controls, and enhancements for the physical
world. These smart features can enhance the operations,
efficiency, safety, reliability, quality, and cost-effectiveness
of the physical world. sCPS have numerous applications in
smart buildings, smart cities, smart manufacturing, smart
grids, intelligent transportation systems, smart infrastructure
monitoring, smart healthcare, and smart logistics. For exam-
ple, sCPS in healthcare applications can provide useful real-
time services for patients monitoring and treatments. sCPS in
smart buildings can improve energy efficiency and living and

41432
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-1376-0052
https://orcid.org/0000-0001-9246-0968


J. Al-Jaroodi et al.: PsCPS: Distributed Platform for Cloud and Fog Integrated sCPS

working conditions. In addition, it can be used in transporta-
tion systems to enhance safety and efficiency.

There are high systems requirements for successful imple-
mentations and operations of sCPS. These include managing
and analyzing large-scale data sets, operating in large envi-
ronments with complex processes, offering intelligent and
smart operations and optimized decisions. Cloud comput-
ing can provide powerful computational resources, scalable
storage capacity, and advanced software services that are
needed by sCPS. Examples of such advanced services are
knowledgebase implementations, machine leaning, data min-
ing, data analytics, optimizations, and simulation services.
Cloud computing has been proposed to be used for various
sCPS applications such as robotics and automation [3], smart
buildings [4], smart healthcare [5], and smart transportation
systems [6]. However, cloud computing cannot handle some
technical and performance requirements needed by sCPS like
providing low latency services, offering location-aware ser-
vices, providing better scalability support for geographically
widely distributed applications, supporting streaming com-
munication and processing, supportingmobility and localized
access control, offering better Quality of Services (QoS)
support, and providing context-aware processing, communi-
cation, and decisions.

Fortunately, fog computing has been proposed to provide
solutions for these requirements [7]. Fog computing can uti-
lize edge devices such as routers and dedicated computers to
operate cloud-like services to support different sCPS oper-
ations. The services can be control, communication, stor-
age, processing, configuration, monitoring, measurement,
and management services to support a sCPS application. The
Fog facilitates executing services geographically close to the
components of the sCPS applications and at the same time
it can access and use services provided by the cloud. Due
to its great advantages, many projects have been started to
utilize fog computing for sCPS applications in healthcare [8],
energy management [9], and smart cities [10], to name
a few.

Although both cloud computing and fog computing can
provide many advantages for sCPS applications, developing
such applications that can effectively and efficiently utilize
both is not trivial. This is due to several technical challenges
including how to develop, manage, control, monitor, and
secure this type of integration and operations. In this paper,
we propose a distributed platform, named PsCPS, to help
address these challenges. This platform can be used to imple-
ment and operate cloud and fog integrated sCPS.

In the rest of the paper we offer background information
about CPS and sCPS in Section II. In Section III, we dis-
cuss cloud and fog integrated sCPS and their requirements.
Section IV discusses the architecture of PsCPS, its compo-
nents, functions, and operations and Section V provides a
discussion of a PsCPS prototype implementation. Section VI
discusses example scenarios of utilizing PsCPS for sCPS
applications and their benefits. Experimental evaluations are
discussed in Section VII and Section VIII offers a discussion

of related work. Concluding remarks and future directions are
offered in Section IX.

II. CYBER-PHYSICAL SYSTEMS AND SMART
CYBER-PHYSICAL SYSTEMS
CPS are embedded systems, characterized by strong and
continuous interactions between the physical and cyber com-
ponents [2]. CPS are being increasingly used everywhere,
featuring physical domains such as energy, manufacturing,
healthcare, civil infrastructures, automotive, transporta-
tion, aerospace, entertainment, and consumer appliances.
A great portion of CPS is designed to support smart
and context-aware mission-critical applications [1]. Prede-
fined goals of the relevant application domain are achieved
through the monitoring and control processes, as provided
by the CPS. The control decisions are usually done by
the cyber world using specific algorithms implemented by
software. Unlike conventional embedded systems, CPS are
multifaceted embedded systems that feature distributed com-
ponents and processing capabilities. Microcontrollers, sen-
sors and actuators are examples of embedded computing
devices that are integrated within the CPS. These devices are
usually connected using wired or wireless networks and are
tightly coupled with their physical environment.

The controls can be divided to three main tasks:
1) Monitoring the status of the physical system or envi-

ronment using different types of sensors attached to the
elements of the physical system or environment.

2) Making decisions to control the operations or condi-
tions of the physical system or environment to meet the
predefined application objectives.

3) Initiating actions through actuators connected to
the different elements of the physical system or
environment.

These three main tasks are linked in a feedback loop known
as the closed-loop control (see Figure 1) to allow the
CPS to provide full monitoring and control functions to meet
the predefined objectives.

FIGURE 1. Closed-loop control steps of CPS.

The three tasks and the closed-loop control represent the
main functions of basic CPS. As software solutions used for
CPS become more complex and utilize intelligent mecha-
nisms and advanced analysis and decision-making processes,

VOLUME 6, 2018 41433



J. Al-Jaroodi et al.: PsCPS: Distributed Platform for Cloud and Fog Integrated sCPS

FIGURE 2. sCPS layers.

it is more accurate to refer to these systems as smart
CPS (sCPS). sCPS being embedded in physical environments
through intelligent mechanisms, they enable smart interac-
tions between the physical and cyber elements. The functions
of many sCPS will also include the required features and
operations for the application domain it represents. There-
fore, the overall functions of sCPS are more complicated due
to the various technical challenges and application domains
requirements. In addition, sCPS have smart features for dif-
ferent enhancements. In general, it is possible to organize
the different components of sCPS in five layers as shown
in Figure 2.

1) Physical World Layer: This includes any physical
environment or system such as buildings, aircrafts,
vehicles, or humans in addition to some intangi-
ble physical conditions such as temperature, sound,
smell etc.

2) Observation and Action Layer: This layer includes
the sensors that monitor the associated environ-
ment or system. In additions, it includes the actuators
used to act upon or initiate actions in the environ-
ment or system in response to certain decisions or
monitored conditions.

3) Network Layer: The components of CPS are usu-
ally distributed and connected via communication net-
works. In this layer, the communication networks can
be wired, wireless, or a combination of both. They
can have varying scales from a nanoscale network to
a global wide area network (like the Internet). This
is usually determined by the CPS applications and
their required coverage areas. Using the network con-
nectivity, it is possible to convert a set of individual
sensors into a wireless or wired sensor network.
Likewise, we can convert individual actuators to a wire-
less or wired actuator network. In both cases, the net-
work layer will provide better mechanisms to work
with these sensors and actuators as a system rather than
individual components. Examples of thesemechanisms
are addressing, routing, and forwarding schemes for
efficient communication.

4) Control Cyber Layer: This layer is part of the
cyber world. It collects current status information from
CPS sensors and sensor networks to make real-time
decisions based on pre-defined objectives. These deci-
sions then trigger action controls that are sent to actu-
ators or actuator networks to be executed. This layer
is implemented by centralized or distributed software.
In a centralized approach the software executes on
one microcontroller or computer/server and it is usu-
ally suitable for small-scale CPS. A distributed control
software uses multiple distributed compute nodes to
execute programs and provide the necessary opera-
tions across the CPS. This approach is generally more
complex, yet more reliable and suitable for medium
and large-scale CPS. In addition, using a distributed
approach provisions for requirements like scalability
and real-time support.

5) Smart Cyber Layer: This is a software layer used to
build a knowledgebase about the corresponding phys-
ical environments and CPS. It is an advanced sophis-
ticated layer that helps introduce smart features and
optimization models for CPS, thus it is only available
in advanced CPS applications. The knowledgebase is
built over time as sensors collect environmental and
system information and also monitor and record the
effects of the actions taken on the environment or sys-
tem. The collected information is organized and refined
over time to help provide advanced smart features to the
CPS applications such as prediction models, optimiza-
tions and smart decisions. Part of this layer includes
data mining and learning capabilities to discover new
knowledge from gathered information.

Table 1 provides a summary of some sCPS applications in
terms of the physical and cyber parts they include and the
benefits of utilizing sCPS.

III. CLOUD AND FOG INTEGRATED sCPS
Cloud and fog computing can provide services to effectively
implement and improve some of the sCPS layers shown
in Figure 2 and discussed in the previous section. For exam-
ple, the network layer in sCPS can be enhanced using services
provided by fog computing such as communication filtering,
streaming, and data fusion for large-scale sCPS. In addition,
fog computing can provide services to completely or partially
implement both the control cyber layer and the smart cyber
layer. Alternatively, it can provide support services for both
layers. At the same time, cloud computing can provide power-
ful resources to implement and operate the smart cyber layer.

Cloud and fog integrated sCPS can be developed using the
three-layer architecture shown in Figure 3. In this architec-
ture, the cloud computing layer will provide the necessary
large scale and resource intensive services such as powerful
processing, scalable data storage, intelligent and complex
algorithms for machine learning, data analytics, decision-
making, and optimization, in addition to integration ser-
vices with other systems, and development tools. The fog

41434 VOLUME 6, 2018



J. Al-Jaroodi et al.: PsCPS: Distributed Platform for Cloud and Fog Integrated sCPS

TABLE 1. The cyber and physical worlds in sCPS applications and their benefits.

FIGURE 3. Cloud and fog integrated sCPS layered architecture.

computing layer will provide, limited processing power for
local use, real-time services, data caching and limited data
storage services, collaborative control services, streaming
processing and communication services, in addition to other
localized and context sensitive services. The sCPS layer has
the actual sCPS components including the physical systems,
sensors, actuators, and control devices. While this architec-
ture is similar to the three-tier client/server architecture, there
is a major difference. Unlike the client/server architecture,
where service requests are one-directional from the clients to
the servers; in this model the service requests can be multi-
directional. The sCPS layer can issue requests to both the fog
and cloud layers, the fog layer can issue requests to the cloud
layer above and the sCPS layer below, and the cloud layer
can issue requests to the fog and sCPS layers. For example,
the limited resources sCPS components can issue a request

to offload computation to the fog layer for some tasks, while
the computing service in the fog layer can request to retrieve
some data stored on the cloud. At the same time, the cloud
can ask the fog layer to filter some information, which the
fog layer will ask for from the connected sCPS components.

There are twomodels of integrating and utilizing cloud and
fog computing for sCPS:

1) Integration with a single sCPS: cloud and fog comput-
ing can provide several services for a single sCPS such
as offloading computations, data storage, advanced
smart algorithm services such as machine leaning, data
mining, simulation, streaming, and caching. In addi-
tion, the cloud and fog can be used to enable the
integration among components of a large-scale smart
system that extends over a large geographic area such
as a smart grid and a smart water network. Cloud and

VOLUME 6, 2018 41435



J. Al-Jaroodi et al.: PsCPS: Distributed Platform for Cloud and Fog Integrated sCPS

fog computing can provide integration infrastructures
for these large-scale smart systems to smoothly link the
components reliably and securely. The compute com-
ponents in such systems can be all integrated together
through cloud and fog computing.

2) Integration with a system of multiple sCPS: some
systems consist of multiple sCPS. Each of these
sCPS can be considered an individual cyber-physical
system unit or node. Example of these nodes can be
robots, vehicles, traffic lights, and smart buildings.
Several of these nodes can be integrated together in
a single large sCPS. Cloud and fog computing can
provide, in addition to the services offered for a sin-
gle sCPS, collaborative services among these nodes to
build applications involving multi-robot systems [13],
collaborative drones [16], cooperative vehicles [17],
and collaborative smart buildings [18].

As implementing and operating cloud and fog integrated
sCPS can be challenging, the availability of a special platform
for developing and operating such systems can provide many
advantages. However, there are some requirements that such
platform should provide for cloud and fog integrated sCPS:
• Cloud, fog, and sCPS components integration: The
main goal for the platform is to allow sCPS applications
to gain access to the capabilities and services available
on fog and cloud nodes to enhance their operations and
performance. The platform should enable the integration
among sCPS components, fog computing, and cloud
computing. This integration will facilitate the exchange
of services and better utilization of these services at the
different levels as needed.

• Fog functions development and deployment: When
new fog functions or services are needed for the sCPS
applications, development and deployment capabilities
are necessary for uniform implementation of these ser-
vices and proper integration with already available ser-
vices. The platform should enable the development and
deployment of new fog functions as needed.

• Dynamic loading for fog functions: Fog computing
provides many functions for different sCPS applica-
tions. These functions need to be made available on the
integrated fog nodes for use by the sCPS applications.
Yet fog nodes usually have limited resources including
memory, processing, and storage. Therefore, the plat-
form should provide mechanisms to dynamically load
needed functions and remove unneeded ones.

• Communication mechanisms support: There are dif-
ferent communication mechanisms needed by differ-
ent distributed functions and services of cloud and
fog integrated sCPS. One example is the remote func-
tion/service calls which provide one-to-one synchronous
request/response communication. Another example is
publish/subscribe communication which provides asyn-
chronous one-to-many communication and is used to
send notifications. In addition, there is message passing
and multicasting. Different cloud and fog integrated

sCPS applications need to use different combinations
of these communication mechanisms to achieve the
required connectivity for integration among the compo-
nents of the cloud and fog integrated sCPS. Therefore,
the platform needs to have the ability to support these
mechanisms and provide easy access to them for the
different services.

• Collaboration among multiple fog nodes: While for
some cloud and fog integrated sCPS applications each
fog node can efficiently operate independently from the
others to satisfy the requirements of the applications;
there are applications that require collaboration and
communication among some fog nodes to optimize their
operations. For example, in a smart traffic light system,
multiple fog nodes at different intersections will need
to exchange traffic patterns information to optimize and
synchronize the lights operations. Furthermore, multiple
robots tasked with one large operation will need to coor-
dinate sub tasks and create an efficient workflow among
them. In such cases, the platformmust offer mechanisms
for collaboration and communication.

• Hierarchical fog nodes organization support: Some
cloud and fog integrated sCPS applications with a large
number of fog nodes need to virtually organize the fog
nodes in a hierarchical structure for efficient commu-
nication and operations [11], [12]. Fog nodes can be
organized in multiple levels in a hierarchical structure
such that each intermediate fog node has a single parent
node and one or more child nodes. In this structure,
integrated cloud and fog sCPS will be formed as n-tier
architectures where there will be multiple intermediate
fog level layers. In this structure, each fog node mainly
communicates and provides/uses functions/services to
and from its parent and children. An example highlight-
ing the need for this structure is a large-scale sCPS such
as that used for smart cities [11]. In smart cities, differ-
ent infrastructure components such as smart buildings,
smart traffic systems, and smart pipeline monitoring
need to be monitored and controlled. Cloud and fog ser-
vices can provide many advantages for such monitoring
and control. However, it is inefficient to use one level
of fog nodes with similar functions [11]. It is better to
use multiple levels of fog nodes such that each level
provides different functions for the applications. For
example, the fog nodes in the lower level can provide
services for individual components like a single smart
building or a single smart traffic light. The fog nodes in
the intermediate level can provide services for a number
of components together. In this level, each fog node
can be responsible for a number of smart components
in a neighborhood. The fog nodes in the upper level
can provide services for all smart components at the
level of communities, while the cloud can be used to
provide services at the level of a whole city. In this struc-
ture, the fog nodes at the lower levels can provide very
low latency services for smart components but at very

41436 VOLUME 6, 2018



J. Al-Jaroodi et al.: PsCPS: Distributed Platform for Cloud and Fog Integrated sCPS

small scale, while the fog nodes at the upper level can
provide large-scale services that need more powerful
resources but also can tolerate high latency. As fog nodes
have different characteristics at different levels in terms
of scale and latency, different services can be distributed
among these levels in such way that the requirements of
smart applications are satisfied in a more efficient way.

• Location Identification and Awareness: One or more
fog nodes are available in an area to provide services for
certain smart sCPS components in that area. Therefore,
requests for services can be associated with a specific
location instead of a specific fog node with specific
IP address. As an example, a request can come from a
cloud application to check the status of a specific smart
traffic light or smart building. Furthermore, a request can
come to check all smart buildings in a neighborhood.
In addition, some sCPS components that can provide ser-
vices may be mobile such as robots. These components
can only provide useful services if they are at a certain
location. For example, a mobile robot will only transmit
useful information when it arrives at the designated
location. As a result, the platform should provide support
for location identification and awareness.

• Security: Like any networked distributed system,
sCPS will have to face the security and privacy chal-
lenges. The integration with fog and cloud comput-
ing further magnify this requirement. The platform
should provide security mechanisms to protect all inte-
grated functions of cloud computing, fog computing,
and sCPS from attacks, data compromises and unautho-
rized access.

• Multiple applications and users support: Fog and
cloud nodes and the services they provide will be
accessed and used concurrently by many sCPS applica-
tions owned by different users or clients. The platform
should provide control and protection mechanisms to
separate these applications and users to ensure indepen-
dent operations of different applications and complete
isolation of users’ access.

• Management: Cloud and fog integrated sCPS appli-
cations are usually highly distributed spanning large
areas, include high volume of components and services,
and incorporate various types of resources. Therefore,
the platform should provide some mechanisms to easily
and efficiently manage the whole environment.

• Integration with other systems: Many cloud and fog
integrated sCPS applications cannot work in isolation.
They need to be integrated with other systems such as
wireless sensor networks (WSN), enterprise systems,
and privately-owned computing resources. The platform
should provide the right tools and methods to facilitate
integrating the sCPS applications with external systems.

IV. PsCPS ARCHITECTURE AND FUNCTIONS
PsCPS is designed to support the implementation and
operations of cloud and fog integrated sCPS applications.

PsCPS is a distributed architecture that consists of a
PsCPS manager, multiple node platforms (nodePlatform)
installed on fog, cloud, and sCPS nodes with compute capa-
bilities. Each installed nodePlatform offers an execution envi-
ronment for software agents that implement different sCPS,
fog and cloud functions. These agents will provide services
to other agents and use services provided by other agents.
The PsCPS Manager provides overall control for the whole
environment including loading, deploying, suspending, and
removing agents for all nodePlatforms. There are also differ-
ent types of software agents in PsCSP including single agents,
multi-agent systems, and hierarchical multi-agent systems.

A. NODEPLATFORM
Each fog node in the environment is equipped with a node-
Platform to be part of the PsCPS. In addition, some nodePlat-
forms can be available on some sCPS nodes with compute
components and a connected cloud node or multiple con-
nected cloud nodes based on the characteristics and require-
ments of the sCPS application. The main function of the
nodePlatform is to provide a runtime environment to securely
execute different agents’ services on the corresponding nodes
and to enable communication among different components,
agents and services within and outside the node. Each node-
Platform needs to be started to enable the corresponding fog,
cloud, or sCPS node to be integrated with the environment.
As soon as any nodePlatform is started it sends a secure login
request to the PsCPS Manager. If this request is accepted,
the nodePlatform starts to download the needed system agents
and application agents to support different environment and
applications functions.

The nodePlatforms in PsCPS are identified by unique
nodePlatform IDs. These IDs can be flat, hierarchical or a
combination of both. Each nodePlatform ID is associated
with the node IP address. Flat nodePlatform IDs can be used
when there are a few fog nodes in the environment and
they have the same functionality. An example of flat node-
Platform IDs can be SBuilding1, SBuilding2, SBuilding3,
and SBuilding4, where a single fog node is responsible for
one of the four smart buildings in the system. Hierarchical
nodePlatform IDs can be used to associate a specific set
of nodes to a specific area or to identify a related group
of nodes together. An example of hierarchical nodePlat-
form IDs is N1.SBuilding1, N1.SBuilding2, N1.SBuilding3,
N2.SBuilding1, and N2.SBuilding2. Here we have N1 as the
ID of the first neighborhood and N2 as the ID of the sec-
ond. Each neighborhoodmay havemultipole smart buildings,
hence the SBuildingx IDs in the next level. As we can see
from the example, there are two neighborhoods each hav-
ing multiple smart buildings and each smart building has a
nodePlatform. A combination set of nodePlatform IDs can
be N1, N2, N1.SBuilding1, N1.SBuilding2, N1.SBuilding3,
N2.SBuilding1, and N2.SBuilding2. In this example, in addi-
tion to the five nodePlatforms responsible for the five smart
buildings, there are two more nodePlatforms solely respon-
sible for two neighborhood, N1 and N2. In addition, each

VOLUME 6, 2018 41437



J. Al-Jaroodi et al.: PsCPS: Distributed Platform for Cloud and Fog Integrated sCPS

nodePlatform can have more than one unique ID. This type of
identification can provide features to easilymanage thewhole
PsCPS environment for different applications.

Each nodePlatform has a Node Service Broker (NSB) and
several system and application agents. The system agents pro-
vide functions and services to support the system operations
of the node while application agents are available to sup-
port the sCPS applications. NSB is responsible for services
registration, advertisement, and discovery. The agents of a
nodePlatform are either preloadedwith the platform or loaded
from PsCPS Manager when needed. Each agent implements
some functions and can be a service provider, service con-
sumer, or both. The provided services can be control func-
tions for sCPS, filtering services for some communications,
storage services, caching services, etc. Any service provider
agent needs to register its services with the node’s NSB to
enable other agents to discover and access their services.
An agent needs to specify the services available and the types
of access to these services when registering these services.
NSB registers remotely accessible services with PsCPS to be
known for the whole environment.

Local client agents can access some services provided
by other local and remote agents by looking up these ser-
vices with the NSB that provides information to access the
requested services. This access information is directly pro-
vided by the NSB for locally available services, while it
forwards any request for remote services to the PsCPS Man-
ager, which maintains access information about all available
remote services on all nodePlatforms.

B. AGENTS
An agent contains programs that can be executed on nodePlat-
forms. Each agent implements certain functions or services
for other agents within the environment including agents from
other nodePlatforms. In addition, it can provide services for
other programs outside the environment, to facilitate access
to external systems for example. There are two kinds of
agents: system agents and application agents. System agents
have functions to enable the operations and management of a
single nodePlatform or the whole PsCPS. The system agents
can provide services for other system agents and applica-
tion agents. Examples of system agents are a fog storage
agent that provides services to use temporary storage in fog
nodes. Another example is a caching agent that provides
data caching services for other agents. While system agents
generally implement functions for the nodePlatforms, appli-
cation agents are developed to support application domain
specific functionalities. An example of application agents
is agents that provide control service (e.g. monitoring the
timing of a specific traffic light) for a smart traffic light sCPS.
These agents will differ from one application to another;
however, they will be able to use existing services within the
nodePlatforms.

One of the main differences between system agents and
application agents is that while system agents can directly
access the node resources such as a node’s storage, operating

systems, and network ports and interfaces; application agents
cannot directly access these resources. However, they can
access them through the available system agents or through
some interfaces provided by the nodePlatform. The main
reason of this restriction is to enable the nodePlatform to
enforce required security and access control policies. For
example, using this distinction, it will be possible for a
nodePlatform to prevent an application from unauthorized
access to resources and also prevent one application from
accessing resources or features of another application. Agents
available within the same nodePlatform or within different
nodePlatforms can communicate using two mechanisms:
• Service calls, where one agent can communicate with
another agent by calling a service provided by that agent.
This provides one-to-one synchronized request/response
communication.

• Publish/subscribe communication services, where
agents can publish notifications while other agents can
subscribe to receive these notifications. This provides
many-to-one and one-to-many communication across
multiple agents.

Agents that provide services for other agents need to register
their services with the nodePlatform NSB. This is needed to
allow other agents to know about the availability of these
services. With the registration of these services, the agent
should specify the type of access on these services. In PsCPS,
access to any service provided by any agent can be restricted
with four options:
• Services publicly available to all agents and other pro-
grams that have access to the environment.

• Services only available for the agents within the
PsCPS environment.

• Services only available for agents within the same node-
Platform.

• Services only available for a group of agents in a multi-
agent system, as discussed next.

C. MULTI-AGENT SYSTEMS (MAS)
A multi-agent system is a group of related agents that can
be distributed on multiple nodePlatforms to implement cer-
tain functions for certain applications or system operations.
A MAS can be controlled and managed as a single system
by the PsCPS Manager and sCPS applications. Although,
a MAS can consist of multiple agents that will be installed
on different nodePlatforms, all of these agents can be eas-
ily managed and controlled as a single system within the
whole environment. Like a single agent, which can be system
agent or application agent, a MAS can also be either a system
MAS, or an application MAS. Similarly, system MAS have
more access to the resources of the nodes and application
MAS have controlled access to the nodes resources.

MAS can be either homogenous where all agents have the
same programs and perform the same type of tasks or hetero-
geneous where agents have different programs and perform
different tasks. A homogenous example is when a MAS is
used to provide the same set of services and functions on

41438 VOLUME 6, 2018



J. Al-Jaroodi et al.: PsCPS: Distributed Platform for Cloud and Fog Integrated sCPS

FIGURE 4. A 4-level hierarchical multi-agent system.

multiple fog nodes. In contrast, a heterogeneous MAS is used
to provide services on fog nodes, compute sCPS components,
and cloud nodes. For example, in a MAS, agents on the fog
nodes provide communication services, agents in the sCPS
components provide interfaces and controls for the sCPS
application, and agents in the cloud nodes provide services to
allow external applications such as web applications to access
the environment.

Furthermore, MAS can be either static or dynamic. A static
MAS has a fixed number of agents from the instantia-
tion to the end of the life of the system, while a dynamic
MAS can have a dynamic number of agents based on the
current situation of the application. In the dynamic MAS,
agents can be dynamically added and removed based on the
needs of the application. For example, in an application that
involves multiple mobile components such as collaborative
mobile robots [13], special agents to support the mobile
components such that only the nodePlatforms that are geo-
graphically close to these components will have the services
related to them. In such applications, an agent is created and
started on a fog nodePlatform if the application’s mobile
components are within its location. However, more agents
will be created and started on other nodePlatformswhen these
mobile components move to their locations. At the same time,
agents created earlier on a certain nodePlatform for these
components will be removed when the mobile components
move out of their locations.

While agents in a MAS can communicate through ser-
vice calls and publish/subscribe services like single agents,
they can also communicate directly through message pass-
ing to exchange and broadcast messages among themselves.
Message passing is only allowed among agents within the
same MAS. Message passing can provide fast communica-
tion among the agents of a MAS. Each agent instantiation in
a multi-agent system receives a unique ID when it starts. This
ID can be used within the programs of the agents to control
the logical flow in the agent instantiation. In this formation,
all agents in a single MAS are at the same level, allowing
direct access to any and all of them.

D. HIERARCHICAL MULTI-AGENT SYSTEMS (HMAS)
A hierarchical multi-agent system is a special type of MAS,
where the agents are organized in hierarchical (tree) structure
across a set of nodePlatforms on multiple nodes. These nodes
can be cloud, fog, and sCPS nodes. The agents in a HMAS
are organized in multiple levels, where the top level can be
on a cloud node or on a node that is relatively close to a
cloud node. The lowest levels can be a set of sCPS compute
components and fog nodes that are relatively close to the
sCPS compute components. The intermediate levels can be
on several fog nodes with different capabilities. The nodes
in the upper intermediate levels usually have more resources
compared to the nodes in the lower levels. Several agents at
one of the lower or intermediate levels of the HMASwill have
a parent agent at the upper level.

A HMAS can have different types of agents in the different
levels. In other words, all agents in each level provide similar
services but are different from the services provided by agents
in the other levels. For example, a HMAS with 4 levels
can have 4 different agent types as shown in Figure 4. The
communication and services utilization among these agents
are done through the defined hierarchy. Agent2 will com-
municate with its parent: Agent1, and will provide services
for it, while the parent, Agent1, will also provide services for
Agent2. At the same time, Agent2 will communicate with its
child agents, Agent4 and Agent5, and provide services for
them. The child agents, Agent4 and Agent5, will also com-
municate and provide services to Agent2. The root agent of a
hierarchical multi-agent systems can be available in a cloud
node to provide high level and complex services for several
hierarchical multi-agent systems for multiple applications
available on the cloud. These services can be information
collection from distributed sCPS components or common
configuration and control services for a large-scale sCPS. The
communication and service calls in a hierarchical multi-agent
system can take two directions:
• Bottom-up: A child agent requests a service provided
by its parent agent. The parent agent can complete the
service and return the result by itself, or it initiates

VOLUME 6, 2018 41439



J. Al-Jaroodi et al.: PsCPS: Distributed Platform for Cloud and Fog Integrated sCPS

another service call to its parent agent. It will wait for a
response to generate a response to the child agent. This
process will continue until the initial request is satisfied.

• Top-down: A parent agent requests a service provided
by its child agent. Then either the child agent can satisfy
the request, or it calls its child agents. The process
continues until the request is satisfied and a response is
returned to the requester.

E. PsCPS MANAGER
PsCPS Manager provides overall control and management
services for all PsCPS components. It keeps information
about the nodePlatforms that are part of the environment. This
includes their unique IDs and login information to authenti-
cate and identify the nodePlatforms and their node. It also
keeps information about the nodes types, which identify
them as fog, sCPS compute components, or cloud nodes.
In addition, it associates these nodes with their IP addresses
if they have fixed IP address. Only nodePlatforms with valid
credentials can access and connect with the PsCPS Manager.
As soon as a nodePlatform is authenticated and connected, the
PsCPS Manager downloads the necessary system and appli-
cations agents to the nodePlatform. Although, the nodePlat-
form can be preloaded with some system agents, the PsCPS
Manager can provide the newly started nodePlatform with
unloaded and new system agents. In addition, it can provide
some application agents that are needed to provide specific
functions for the applications. The PsCPSManager maintains
information about all active and connected nodePlatforms,
their current IP addresses, ports, and types.

PsCPS Manager has a service broker to register available
services that can be remotely accessed either by external
programs or other agents in the environment. Named the
Global Service Broker (GSB), it maintains information about
all remotely accessible services. Furthermore, the PsCPS
Manager provides services to instantiate agents in different
nodePlatforms including:
• Agent as a Service (AGENTaaS): A service that
enables users, administrators or programs to load, start,
integrate, monitor, control, and remove an instance of
a single agent in a specific nodePlatform. We will use
arrow ‘‘→’’ to formally specify loading and starting
an agent on a nodePlatform. Examples are Agent1 →
FogNode1, indicating that an instance of Agent1 is
loaded and started on the nodePlatform on FogNode1.

• MAS as a Service (MASaaS):A service that enables
users, administrators, or programs to load, start, inte-
grate, monitor, control, and remove instances of the
agents in a MAS in a selected group of nodePlat-
forms. This service can basically use multiple requests
for AGENTaaS to load and start multiple agents on
multiple nodePlatforms. An example of using this
service can be starting a static heterogeneous MAS
named MAS1 with requests: Agent1 → CloudNode
and Agent2→ FogNode1, FogNode2, and FogNode3.
In this example, we are instantiating four agents of

two different types. An Agent1 instance is loaded and
started on the nodePlatform on CloudNode, while three
instances of Agent2 are loaded and started on the node-
Platforms on FogNode1, FogNode2, and FogNode3.
Another example of using this service is to load and
start a dynamic heterogeneous MAS named MAS2 with
the requests: Agent1→ CloudNode and Agent2 →
CloudNode.∗. Here, an instance of Agent1 is loaded
started on the nodePlatform of CloudNode and an
instance of Agent2 is loaded and started on each con-
nected nodePlatform with the 2-level hierarchical ID
that starts with CloudNode like CloudNode.FogNode1,
CloudNode.FogNode2, etc. If a new nodePlatform with
ID CloudNode.FogNode9 is started and connected later,
the system will load and start an instance of Agent2 on
CloudNode.FogNode9 and add it to MAS2.

• HMAS as a Service (HMASaaS): A service that
enables users, administrators, or programs to load, start,
integrate, monitor, control, and remove an instance
of a HMAS on a selected group of hierarchical
nodePlatforms. This service can also use AGENTaaS
to instantiate multiple agents in multiple nodes
based on the defined nodes hierarchy. An example
can be starting a dynamic 4-level HMAS named
HMAS1 with the requests: Agent1 → CloudNode,
Agent2 → CloudNode.∗ , Agent3 → CloudNode._.∗,
and Agent4→ CloudNode._._.∗. Like in the MASaaS,
if a new nodePlatform with an ID that fits one of
the IDs defined in the hierarchy (e.g. CloudNode.
FogNode13.FogNode24 or CloudNode.FogNode4.
FogNode25.sCPSNode7) is started and connected later,
the system will load and start an instance of the required
agent at the proper location in the hierarchy and add it
to HMAS1.

The PsCPS Manager maintains information including the
status and locations of all instantiated agents, MAS, and
HMAS in the environment. In addition, it handles adding and
removing agents to dynamic MAS and HMAS as needed.

V. PsCPS IMPLEMENTATION
The PsCPS can be implemented in different ways. However,
for this paper we experimented with the features of the pro-
posed platform through a prototype implementation using
Java. We selected Java due to its portability, performance,
security, network programming, and reflection advanced fea-
tures. In this section, we discuss the implementation of the
agents, MAS, and HMAS. We also discuss the nodePlat-
form and PsCPS Manager implementations in addition to
the implementation ofmessage passing and publish/subscribe
notification services.

A. AGENTS IMPLEMENTATION
Agents are completely implemented in Java including agents
that provide local and remote services. These services are pro-
vided in the form of public Java methods that can be accessed
by Remote Method Innovation (RMI) mechanisms [22].
Different agents’ classes can be implemented by extending

41440 VOLUME 6, 2018



J. Al-Jaroodi et al.: PsCPS: Distributed Platform for Cloud and Fog Integrated sCPS

the sCPSAgent class. This class provides an extra layer on
top of RMI to add PsCPS features that are not available in the
original implementation of RMI. Examples of these features
are the support for different security mechanisms, location
awareness, MAS, HMAS, and interfaces connecting with the
corresponding nodePlatform. This layer deals with NSB and
GSB to provide the extra value-added services in addition to
services already provided by the RMI registry. Examples of
the methods provided by this layer are:
• NodePlatformIDs[]getNodePlatformID()
to retrieve nodePlatforms’ IDs list

• void bind(String AgentName, Object obj)
to register an agent object that provides services for other
agents available locally or remotely.

• boolean secureService(Object obj,
String methodName, int securityLevel)
to define a security feature for accessing different ser-
vices provided by an agent.

• Remote lookup(String AgentName) to search
for an agent with a specified name and return its stub’s
reference.

• Remote lookup(String AgentName, Node-
PlatformID nodeID) to search for a remote agent
with a specified name at a specified nodePlatform ID
and return its stub’s reference.

• int agentType() to check the type of agent. This
method returns 0 for single agent deployment, 1 for
MAS deployment, and 2 for HMAS deployment.

• int hierarchicalLevel() to return the level of
the agent in a HMAS. It will always return 0 if the
deployment is a single agent or a MAS.

• Remote getParent() to get the stub’s reference of
the parent agent in a HMAS.

• int getNoChildren() to retrieve the number of
child agents associated with an agent.

• Remote getChild(int childNo) to get the
stub’s reference of the child agent number childNo in
a HMAS.

Different agents that provide diverse services for accessing
CPS devices can be also developed and deployed in the
environment. These services can be used by other agents
in PsCPS to access different CPS devices. For our proto-
type implementation and for CPS side, we used the Arduino
board [23] which is open source hardware for embedded
systems. For this prototype, the Arduino was used as the
CPS payload subsystem that is the onboard device request-
ing services. Some sensors were connected to the Arduino
such as DHT11 sensor [24] for temperature and humidity
measurements. Furthermore, some LEDs and a buzz were
installed to represent actuators. In addition, we installed an
Adafruit CC3000 Wi-Fi board [25] to connect the Arduino
to a local area network that has a fog node. We developed
an agent, named the ArduinoAgent, to provide access ser-
vices to the Arduino devices. For this agent, we used the
Arduino IDE [26] with the Adafruit CC3000 library [27] to
develop it.

B. NODEPLATFORM IMPLEMENTATION
The main functions of a nodePlatform are to deploy, sched-
ule, and support the execution of different agents in a fog,
cloud, or sCPS node.When a nodePlatform receives a request
to deploy an agent from the PsCPS Manager, the nodePlat-
form performs the following tasks:

1) If the agent’ programs, their stubs and skeletons are not
available on the nodePlatform, it requests them from
the PsCPS Manager.

2) The nodePlatform starts the agent and registers all
available services to the local NSB and registers all
remotely accessible services with the GSB available
with the PsCPS Manager.

3) The nodePlatform enables local and remote clients to
use the available registered service.

For high throughput, the nodePlatforms are designed to be
multithreaded, where each thread serves a client’s service
request. Each nodePlatform consists of several components
that implement different functions:

1) The Agent Classes Loader retrieves specific agent
classes’ code from the PsCPS Manager.

2) The Request Manager handles client requests to call a
service provided by a local agent in the nodePlatform.

3) The Resource Manager provides methods to man-
age, schedule, and maintain the resources of the
machine where the nodePlatform resides. It keeps
records of executing threads, machine and communi-
cation resources’ utilization, and performance infor-
mation. In addition, it is responsible for reclaiming
system resources after each service’s completion or
termination.

4) The Security Manager provides security measures for
the system as discussed next.

Executing user services on remote fog, cloud, and sCPS
nodes exposes these nodes to many ‘‘alien’’ threats, raising
security and integrity worries. Therefore, these machines
must be protected to ensure safe execution. Java’s default
security manager offers some security mechanisms by check-
ing execution requests against certain defined security poli-
cies before execution. However, the security manager in Java
has some limitations, thus additional security features were
added to our nodePlatforms. More specifically, two modes
of operation are used to offer a secure and reliable execution
environment:

1) The System Mode, in which no limitations are
enforced. This mode is used only by the system agents
to enable full access and control of all the operations,
services, and resources in the corresponding node. This
is necessary as system agents need to provide access to
resources and services to other agents.

2) The Application Mode, in which limitations are
enforced to limit users’ access to the node operations,
services, and resources. This mode is used for applica-
tion agents. Some operations, such as removing files,
initiating a process, using system calls, and changing
system properties are inactive. However, application

VOLUME 6, 2018 41441



J. Al-Jaroodi et al.: PsCPS: Distributed Platform for Cloud and Fog Integrated sCPS

agents can use services provided by system agents to
get some node related services when needed and with
proper authentication.

The security manager also ensures the proper execution of
services within the restrictions required. Thus, it will provide
full access to public services, and restrict access to other
types of services depending on their availability and access
policies. For example, some services are only available for
agents on the same nodePlatform, some are available for
agents within the same MAS or HMAS, while others are
available to agents within one PsCPS environment.

C. PsCPS MANAGER IMPLEMENTATION
The PsCPS Manager was also implemented in Java as a
multithreaded server. The threads allow the PsCPS to process
requests from both external user programs, nodePlatforms,
and system administrators. The PsCPS Manager consists of
several components that implement different functions:

1) Agents’ Repository stores all classes’ codes of all
agents, stubs, and skeletons used in the environment.

2) Agents Manager handles the operations of AGENTaaS,
MASaaS and HMASaaS.

3) Global Service Registry handles services’ registration
and lookup processes.

4) Security Manager handles login processes and access
monitoring for user programs, nodePlatforms, and sys-
tem administrators.

AGENTaaS, MASaaS and HMASaaS are implemented
as Java classes. These classes can be used as part of Java
programs to instantiate single agents and agents’ groups on
single or multiple nodePlatforms. Examples of using these
classes are:
• AGENTaaS a = new AGENTaaS(“Agent1”,
NodePlatformID) to instantiate an Agent1 object
on the nodePlatform with ID NodePlatformID.

• MASaaS mas = new MASaaS(0, Agents,
NodePlatformIDs) to instantiate a static MAS
object. Agents is an array of agent objects and Node-
PlatformIDs is an array of nodePlatform IDs where
the agents will be instantiated. For example, if Agents
= {‘‘Agent1’’, ‘‘Agent2’’, ‘‘Agent2’’, ‘‘Agent2’’} and
NodePlatformIDs = {‘‘CloudNode’’, ‘‘FogNode1’’,
‘‘FogNode2’’, ‘‘FogNode3’’}. This will instantiate an
instance of Agent1 object on CloudNode and 3 instances
of Agent2 object one on each of FogNode1, FogNode2,
and FogNode3.

• MASaaS mas = new MASaaS(1, Agents,
NodePlatformIDs) to instantiate a dynamic MAS
object where an array of the agents is defined in Agents
and an array of nodePlatform IDs is in NodePlat-
formIDs. Here, if Agents[1] = ’’Agent2’’ and Node-
PlatformIDs[1] = ’’CloudNode.∗’’ then an object of
Agent2 will be instantiated on any connected node-
Platform with an ID matching ‘‘CloudNode.∗’’ as soon
as it starts. The new agent will also be added to the
defined MAS.

• HMASaaS hmas = new HMASaaS(0, Agents,
NodePlatformIDs)to instantiate a static HMAS
object, where an array of agents is defined in Agents and
an array of nodePlatform IDs is in NodePlatformIDs.
For example, Agents = {‘‘Agent1’’, ‘‘Agent2’’,
‘‘Agent3’’} and NodePlatformIDs = {‘‘CloudNode’’,
‘‘CloudNode.∗’’, ‘‘CloudNode._.∗’’}, will result in cre-
ating a static HMAS object of 3 levels. In the first
level, an object of Agent1 is instantiated on CloudNode,
several objects of Agent2 are instantiated on all
active and connected nodePlatforms with IDs match-
ing ‘‘CloudNode.∗’’, and several objects of Agent3 are
instantiated on all active nodePlatforms with IDs match-
ing ‘‘CloudNode._.∗’’.

There are several additional methods in these classes
that support managing and controlling the created single
agents,MAS, andHMAS. These includemethods to suspend,
remove, or query the agents.

D. MESSAGE PASSING SERVICES
A facility for message passing services was provided as a
system MAS, where its agents are deployed on the nodePlat-
forms that need to usemessage passing services in the PsCPS.
The agents of this MAS are developed to provide all services
and supporting functions for message passing operations.
We used the Java Object Passing Interface (JOPI) [14], [15] to
offer the message passing services for the PsCPS. JOPI pro-
vides an MPI-like (Message Passing Interface) interface that
can be used to exchange objects among distributed agents.
JOPI provides Java programmers with the necessary services
to write object-passing distributed and parallel programs in
distributed systems. JOPI provides point-to-point blocking
(synchronous) communication services, non-blocking com-
munication services, broadcast communication services, and
a group synchronization service. All these services can be
used for distributed and parallel operations for other applica-
tion and system related MAS. This allows for utilizing multi-
ple closely located nodePlatforms to achieve some distributed
and parallel tasks needed for some applications.

E. PUBLISH/SUBSCRIBE COMMUNICATION SERVICES
Publish/subscribe communication services are implemented
in PsCPS either by a single agent, MAS or HMAS. In a
small environment with a few nodes, it is usually enough and
efficient to use a single agent, while in a large-scale environ-
ment with many nodes, it is more efficient to use a HMAS.
The implementation of the publish/subscribe services in a
small system using a single agent will utilize one designated
agent as a manager of the services. The managing agent is
responsible for keeping track of notifications, subscriptions
and publication. This agent should reside on a powerful node
such as a cloud node to provide these services for all other
agents in the system. Other agents in the system will con-
tact the managing agent to subscribe to be notified for the
occurrence of a specific event, unsubscribe from previous
subscriptions, and publish a notification of the occurrence of

41442 VOLUME 6, 2018



J. Al-Jaroodi et al.: PsCPS: Distributed Platform for Cloud and Fog Integrated sCPS

a specific event to interested agents. When a certain event
occurs, the managing agent finds and notifies all agents who
subscribed for that event.

In large-scale systems a single agent will not be able to
efficiently manage these services. Therefore, it is more effi-
cient to use HMAS to achieve better performance. In such
system, multiple homogenous agents can be used in the
PsCPS to provide distributed management for the notifica-
tion, subscription and publication services. All these agents
will provide the needed services to subscribe to be notified
for the occurrence of a specific event, to unsubscribe from
previous subscriptions, and to publish a notification of the
occurrence of a specific event. These services are the same
as those provided by the single agent solution. However,
in the hierarchy, these services are provided only for the
agent’s parent and for the agent’s children. If the subscription
request comes to AgentX from a child agent, then AgentX
will subscribe for that notification with its other child agents
and with its parent agent. However, if the subscription request
comes to AgentX from its parent agent, thenAgentXwill sub-
scribe for that notification with all its child agents. This pro-
cess will progressively continue in the whole environment.
A notification for an event will only be published through
the hierarchy and only to the subscribed agents. If an agent
in this hierarchy receives a notification from its parent agent,
then it will forward this notification to only its child agents
that are already subscribed to receive that notification. If an
agent receives a notification from one of its child agents,
it will forward this notification to its parent agent and other
child agents if and only if they subscribed to receive this
notification.

Using HMAS for publish/subscribe services provides
many advantages. One of these advantages is that a notifica-
tion for an event will be sent over the network only to agents
that need it. Another advantage is that the notification process
can be faster and more scalable as the hierarchical struc-
ture is used to publish the notifications. Furthermore, more
optimizations can be added to the publish/subscribe system
that can further enhance the services performance by taking
advantage of the decentralized management approach. One
possible optimization is the ability to add a location attribute
to subscriptions to receive notifications of an even only if it
occurs at a specific location or only if the subscribing agent
is at a specific location. For example, there is an interest to
know about a certain event if it occurred in a specific building
(e.g. a manufacturing facility, a hospital, or a school). In this
case, there is no need to subscribe everywhere with all agents.
Only agents residing on nodePlatforms at these locations will
subscribe and get notified, while agents in other locations do
not need to be part of this.

VI. APPLICATION SENARIOS
This section demonstrates how to utilize PsCPS for some
sCPS applications. Using two examples from smart buildings
and smart traffic lights systems, we show how the agents can
be developed and deployed to assist in integrating specific

applications with services on fog and cloud nodes for best
possible results.

A. CLOUD-BASED FAULT DETECTION AND
DIAGNOSIS IN SMART BUILDINGS
This example demonstrates how to utilize PsCPS for enhanc-
ing energy efficiency in smart building applications. The
example application is a collaborative cloud-based fault
detection and diagnosis in smart buildings. Accurate and
timely detection and diagnosis of faults in Building Energy
Management Systems (BEMS), which are CPS has the
prospective to save 15 to 30 percent of the overall building
energy consumption. Finding and learning about faults in
a single building can take significant time and can be a
very costly process. However, utilizing experiences from a
number of similar buildings and smart cloud services for fault
detection and diagnosis can reduce the time and cost needed
to find the common faults in these buildings [18].

PsCPS can be used to enable developing and operating a
collaborative cloud-based fault detection and diagnosis appli-
cation for similar smart buildings. Each building has its own
BEMS that connects to all devices in the building. Within the
PsCPS context each of these agents will be active on a node-
Platform for a building. This may be a fog node nearby or a
computing facility within the building. All similar buildings
within a city will have similar nodePlatforms and agents
representing the buildings’ BEMS. These can be connected
and integrated with the Cloud using PsCPS and the services
its agents offer. PsCPS will integrate all services provided by
the buildings BEMS in the smart buildings and the services
provided by the Cloud. Two types of agents can be used for
this application: cloud agent and building agent. The cloud
agent will provide services to store, validate, process, and
learn from the collected information from the participating
buildings. This will enable the discovery of unknown com-
mon faults faster based on the collected data from multiple
buildings. This agent will utilize services available on the
cloud such as high-performance processing, scalable data
storage, machine learning, data mining, and simulation ser-
vices. Building agents provide services to enable collecting
data from the BEMSs and configure the BEMS with new
rules to appropriately react to the discovered faults in the
energy systems of these buildings. Depending on the number
of buildings covered, the building agents can be configured
as single agents or as MAS. PsCPS will connect all agents
and allow for adding more services to facilitate the operations
in the smart buildings and seamless integration with cloud
services. More information about this application are in [19].

B. SMART TRAFFIC LIGHTS
The second example is using PsCPS for implementing smart
traffic lights in a city. PsCPS can be used to enable smart
traffic light controls, which includemonitoring devices across
multiple locations to accurately determine current traffic con-
ditions and software models to predict possible traffic pat-
terns. This information is then used to adjust traffic lights

VOLUME 6, 2018 41443



J. Al-Jaroodi et al.: PsCPS: Distributed Platform for Cloud and Fog Integrated sCPS

to optimize flow. This type of application can also benefit
from global positioning systems and vehicle-to-vehicle and
vehicle-to-infrastructure communication systems to collect
a more detailed view of the traffic situation. The collected
information can be used to achieve traffic flow optimizations
at different levels within a city including, a single intersection,
a neighborhood, a community, or thewhole city. Learning and
adaptation algorithms are usually used in such applications
for decision making and optimizations [20], [21].

Smart traffic light controls can be developed and operated
using PsCPS. A hierarchical fog computing structure with a
HMAS can be used to provide controls and optimizations at
different levels in the whole city. This HMAS has different
types of agents that provide different services for controlling
and optimizing city traffic:
• Traffic light agents (TLA), where each agent provides
services to monitor, control and optimize traffic in one
intersection.

• Neighborhood traffic agents (NTA), where each agent
provides services to control and optimize traffic in one
neighborhood through its direct connections with all
TLAs within that neighborhood.

• Community traffic agents (CTA), where each agent pro-
vides services to control and optimize traffic in one
community. As a community is comprised of multiple
neighborhoods, the hierarchy allows a CTA to directly
connect with the NTAs in its area. This also creates the
indirect links to all TLAs in all neighborhoods involved.

• A city traffic agent that is available on a cloud node to
provide services to control and optimize traffic in the
city. This represents the top level of the hierarchy as it
will connect to all CTAs in the city.

The hierarchy looks a lot like the example in figure 4,
which can be easily interpreted as Agent1 being the city
traffic agent, Agent 2 and Agent 3 are CTAs and each has
two neighborhoods represented by two NTAs and each NTA
connects to two TLAs in the lowest level. All these agents
work together enabling the PsCPS to reduce traffic delays,
minimize vehicles travel times, increase vehicles average
velocity, and enhance the prioritization for emergency vehi-
cles’ movements in the city area. For example, in normal
traffic conditions, each TLA will deploy a local traffic light
sequencing policy and may also locally adjust it as traffic
patterns fluctuate lightly. Information about flow patterns are
sent to the corresponding NTA, which monitors conditions
across all traffic lights within the neighborhood. If traffic
flow changes significantly, the NTA will notify all TLAs
in the neighborhood to adjust their light sequences to help
reduce congestion. In addition, it will notify its CTA about
the changes and wait for further instructions. The CTA, aware
of traffic situations across all neighborhoods, can make more
informed decisions about how to handle the traffic. In addi-
tion, it will consult with the top level, the city traffic agent,
to utilize the available intelligent optimization techniques to
find the best way to handle the traffic across the community.
Another example could be when emergency vehicles need to

travel a certain path from one part of a city to another. In this
case, the city traffic agent will determine the optimal route,
notify the CTAs with a new traffic lights sequences to be
propagated to all NTAs, which in turn will send them to their
TLAs to ensure the emergency vehicles will not hit any red
lights as they travel and also to quickly clear the path ahead
of them.

VII. RESULTS AND DISCUSSION
To evaluate the performance of the proposed distributed plat-
form, PsCPS, several sets of experiments were conducted
using the prototype implementation. We used several com-
puters to represent cloud nodes, fog nodes, and sCPS nodes.
Furthermore, we used the Arduino board as a compute sCPS
component. In addition, we used a wide area network (WAN)
emulator to connect the cloud nodes with fog nodes to include
the effects of WAN such as high return trip time (RTT),
limited bandwidth, and packet drops.

The first set of experiments was conducted to find the
response time of using services provided by devices con-
nected to the Arduino. Here, we used three computers; one
as a cloud node and the other two as fog nodes. We installed
three nodePlatforms on the nodes and used the WAN emu-
lator to connect them. Experiments were conducted for a
local sCPS service call (SC1) within the corresponding fog
nodePlatform (from a local client agent to ArduinoAgent),
a remote sCPS service call from the cloud nodePlatform
(SC2) (from a client cloud agent to remote ArduinoAgent on
a fog nodePlatform), and a remote sCPS service call from
another fog nodePlatform (SC3) (from a client fog agent to a
remote ArduinoAgent on a different fog nodePlatform). The
experiments were repeated for two types of services. The
first service is to get the current temperature (CurTemp())
while the second is to turn on the LED (LEDon()). The
average results of 10 runs of multiple service calls are shown
in Figure 5. The recoded times for these calls do not include
service lookup times. The response time for a service call
from fog to fog and from cloud to fog are similar as the
service call is directly done between the client fog node and
the server fog node without involving the cloud. The cloud is
only involved during the service lookup process. After that,
the service can be directly called.

The second set of experiments was conducted to test the
effect of using an agent at a local fog node to provide com-
putation services for sCPS applications. This agent provides
a matrix multiplication service for sCPS applications if it
can provide that service faster than the cloud; otherwise it
will send the request to the cloud as the cloud can provide
parallel matrix multiplication using 4 nodes.Generally, there
are many computation problems that can be solved locally
with limited resources if the data set is small. However, large-
scale computational problems need higher system resources
that can be provided by the cloud. An agent to provide a
matrix multiplication service is implemented on the local
fog nodePlatform, while a service that provides parallel
matrix multiplication is provided by 4 powerful cloud nodes.

41444 VOLUME 6, 2018



J. Al-Jaroodi et al.: PsCPS: Distributed Platform for Cloud and Fog Integrated sCPS

FIGURE 5. sCPS evices service call response times.

The main function of this agent is to provide integrated
matrix multiplication service that will allow it to decide to
perform the process locally for small matrices or forward the
process request to the cloud for large matrices. Experiments
were conducted using a local fog node (Fog), cloud nodes
(Cloud), and both fog and cloud nodes (Integrated) for matrix
multiplication. The machines used for this experiment have
Intel CoreTM i5 CPUs running at 2.20 GHz and 8.00 GB
memory. The average results of 10 runs are shown in Figure 6.
The results are reported for square matrices of sizes 1000,
1500, 2000, 2500, and 3000. The fog node provides good
performance for small computational problems (e.g. matrix
size 1500 or smaller); however, the cloud provides better
results for larger problems. The integrated solution provided
by the developed agent can combine the advantages of both
in a single solution.

FIGURE 6. fog, cloud, and integrated matrix multiplication performance.

The third set of experiments was conducted to test the
performance of the MAS in PsCPS. If there are multiple
fog nodes available within the same area, they can collab-
orate on some tasks. For example, if we have 3 fog nodes
in one area all 3 nodes can provide local parallel matrix
multiplication. To demonstrate this approach with PsCPS,

aMAS that provides parallel matrix multiplication was devel-
oped using PsCPS. Direct message passing mechanism using
JOPI was used. The same problem used in the second set of
experiments is used. However, now we have the MAS that
provides parallel matrix multiplication on multiple fog nodes
instead of a single fog node. Figure 7 shows that with this
approach, matrix multiplication with size less than 2500 can
be achieved faster locally using multiple fog nodes compared
to less than 1500 square matrices using a single fog node.

FIGURE 7. Multi-agent fog-based and cloud matrix multiplication
performance.

The fourth set of experiments was conducted to investigate
the benefits of using PsCPS for one of the important smart
environments, smart buildings. We selected this smart envi-
ronment as cloud computing can provide many services and
advantages for smart buildings to enhance energy efficiency,
reduce carbon emissions, and enhance quality of living for the
occupants [4], [28]. PsCPS can be used to implement different
integration models between cloud and fog computing and
smart buildings. We will evaluate possible integration models
in terms of communication traffic and delay. These models
are:
• 1-Level Model: Cloud computing is used to provide
BEMS services. All sensors and actuators of smart build-
ings are connected directly to the cloud.

• 2-LevelModel: In this model, the top level is the cloud to
provide advanced services needing powerful resources
such as fault detection, while the second level is the fog
where each fog node provides other BEMS services for
each smart building. These services include communi-
cation and data aggregation services for the collected
information needed at the cloud level.

• 3-LevelModel: In this model, the top level is the cloud to
provide advanced services needing powerful resources
such as fault detection, the next level is a fog level
where each fog node provides some communication and
data aggregation services to link smart buildings in a
community with the cloud, while the lower level is also a
fog level where fog nodes provide other BEMS services
like communication and data aggregation for individual
building.

VOLUME 6, 2018 41445



J. Al-Jaroodi et al.: PsCPS: Distributed Platform for Cloud and Fog Integrated sCPS

To evaluate these models, we used PsCPS to develop a single
agent solution for 1-Level Model, a 2-level HMAS for the
2-Level Model, and a 3-level HMAS for the 3-Level Model.
We also developed a smart building software emulator with
some functions for sensors and actuators to control different
devices. We instantiated multiple smart buildings and linked
them using the integration models. We used WAN emulators
between the smart buildings and the cloud for the 1-Level
Model, between the building fog level and the cloud for the
2-Level Model, and between the community fog level and the
cloud for the 3-Level Model.

For these experiments, we considered schools as smart
buildings and two types of applications. The first application
is that each room in a smart school building is equipped with
a temperature sensor to monitor the temperature and a con-
troller that links with the classroom’s schedule and the num-
ber of students in each classroom maintained on the cloud to
control air-conditioning to maintain convenient temperatures
in the classrooms and at the same time regulate and optimize
energy consumption. The second application is cloud-based
fault detection and diagnosis (as discussed in Section V1.A)
to discover unknown faults in the air-conditioning control
system. We configured the environment to have 5 communi-
ties, each with 4 smart school buildings. There are 20 class-
rooms in each school. Each temperature sensor measures and
sends temperature value every one minute. We configured
the system to count the number of messages that the cloud
needs to receive or send for both monitoring and control-
ling tasks to correctly execute the closed-loop control. The
results are shown in Figure 8. Both the 2-Level and 3-Level
Models produce less traffic to the cloud compared to the
1-Level Model as they transfer the control process to the
lower levels. Both the 2-Level and 3-Level Models use data
aggregation to transfer collected information. The 3-Level
Model provides the best results as it uses two levels of data
aggregation, the smart building level and community level.
We also measure the average control response times for
all models as shown in Figure 9. As we can see both the
2-Level and 3-Level Models provide better control response
times compared to the 1-Level Model. This can enhance the
control processes for better energy efficiency and occupants’
comfort. The 3-Level Model generally provides better results
in both the number of messages and average control response
time. However, this depends on the number of connected
communities, schools, and classrooms, and targeted smart
buildings applications.

VIII. RELATED WORK
Smart CPS (sCPS) are becoming the focus of research both in
industry and research communities. From a general perspec-
tive, governments and large organizations are considering a
strong move towards applying sCPS to enhance operations
in various sectors. The Road2CPS in Europe, for example
aims to coordinate different sCPS projects across Europe to
create a collaborative environment to advance the research
and development in the field with the main target of digitizing

FIGURE 8. No. of messages using the different integration models.

FIGURE 9. Average control response time of the different integration
models.

the European industry. Topics like integration of tools for
safety-critical systems development, interoperability, indus-
trial automation, and maintenance are key. In addition, there
is a strong focus on validation and verification to ensure
safety and security. Other areas of interest include trusted
computations, high performance computing, standardization,
and recommendations for future work [29]. The SEsCPS
workshop outcomes also highlighted the importance of find-
ing ways to better facilitate the design and development
of sCPS applications in light of the challenges and issues
faced. These include aligning software engineering princi-
ples with other disciplines like mechanical and control engi-
neering; including humans throughout the development life
cycle; handling uncertainties; andmanaging large-scale inter-
disciplinary projects [30]. The following discussion further
emphasizes this direction through the discussed examples of
research and development in the field.

One example of sCPS design approaches is SMART-CPS,
which starts with suitable and well-defined modeling tools
for sCPS such as ECML (ETRI CPS Modeling Language) to
create verifiable designs for sCPS applications [31]. Service-
Oriented Middleware (SOM) can also play an important
role as an enabler for the design, development, deployment
and interoperability of sCPS applications. In the smart city
context, the SOM approach was used to facilitate the devel-
opment of smart city applications as a set of services [10].

41446 VOLUME 6, 2018



J. Al-Jaroodi et al.: PsCPS: Distributed Platform for Cloud and Fog Integrated sCPS

CPSWare further enhances this approach by extending the
SOMmodel for CPS applications. This facilitates integration
across different platforms and service providers such as the
cloud, fog computing and built in sCPS components [32].
This approach can also be easily integrated in our proposed
model, PsCPS, as the base development unit.

More research efforts have emerged recommending inte-
grating CPS with cloud computing to incorporate the ben-
efits of large-scale computing and storage facilities with
the CPS applications. One group recommends a twin archi-
tecture reference model (C2PS) that incorporates various
degrees of computation-interaction modes in such applica-
tions [33]. This model incorporates a smart context-aware
interaction controller and facilitates reconfiguration of appli-
cations. Another group tackles the issue of resource man-
agement when CPS is integrated with cloud computing to
increase the sustainability of such systems [34]. The article
identifies bottlenecks in accessing web server capabilities,
service delays, and the torrent demand as major challenges
that can bemanaged through predictive cloud capacities when
assigning tasks to heterogeneous clouds.

Unfortunately, cloud computing imposes some constraints
on such integration with CPS as it faces limitations
when it comes to supporting real-time responses, mobil-
ity, and location- and context-awareness [35]. As a result,
some work has emerged to incorporate edge-computing
(fog, mist, or dew) in these systems as highlighted in [35].
Several examples of developing mist-, dew- fog-, cloud-
computing integrated CPS are being developed or proposed.
In [36], Frincu propose a model to add intelligence at the
edges of the network (dew-computing) to support low latency
data analysis and decision making, while keeping a central-
ized control at the cloud level. An efficient broker system to
support publish/subscribe systems for large-scale CPS that
integrates fog- and cloud-based data delivery model using
a hierarchy of brokers across the environment is proposed
in [37]. IFCIoT (Integrated Fog Cloud IoT) proposes an
architecture to integrate clusters of IoT or CPS instances
through fog computing, which are then integrated with the
cloud for efficientmanagement of locality, data collection and
processing. It uses energy-efficient adaptive layered fog node
architecture to facilitate abstraction and implementation and
is illustrated using an intelligent transportation system [38].

In addition to these general approaches being proposed,
work in specific application domains of sCPS has emerged.
Many offer approaches, models and designs to integrate
fog and cloud computing with application-specific CPS
to achieve some level of smartness. In healthcare, work
is underway to integrate fog computing with cloud-based
IoT and CPS applications to overcome the limitations
imposed by location, heterogeneity and uneven data loads.
Examples include work in [39], where the fog, cloud and
IoT integration issues and orchestration are studied and solu-
tions are proposed and [40], where fog computing is inte-
grated with the system as a way to overcome the instability
and delay issues encountered when cloud computing is used

alone. Smart transportation systems are also an area where
CPS plays a vital role and [41] offers a detailed discussion
on how cloud computing can be integrated for better perfor-
mance. In the area of smart buildings, an example in [37]
discusses a fog architecture to integrate CPS with fog nodes
to account for human preferences as part of the building’s
system control and decision-making process. This approach
allows for negotiation and conflict resolution for optimized
energy management in smart buildings. Stack4Things [42]
offers a framework for smart city CPS that migrates some
of the control and processing from the cloud to fog nodes
to allow developers to manage sCPS applications and scatter
application logic closer to the CPS components. Another area
where CPS becomes useful is the food industry as illustrated
in [43], where CPS and fog computing are used together to
facilitate value stream-based food traceability sCPS. In addi-
tion, an approach is proposed for developing food traceability
systems using IoT, cloud and fog computing to track and
control food products’ conditions, quality and location [44].

As a major driver, manufacturing has also become a large
domain where several approaches were introduced to incor-
porate cloud-computing, fog-computing or both into indus-
trial and manufacturing sCPS applications. In this domain,
it has been shown that such large-scale integration faces
multiple challenges. For example, large amounts of data,
security, privacy, reliability, scalability, flexibility, and sus-
tainability are key concerns. However, the complexity also
increases when we consider the priorities of these challenges
with respect to specific applications [45]. In [46] a fog-
enabled architecture is proposed for data collection, self-
diagnosis and fault detection of manufacturing systems as
a way to leverage some of the cloud-based CPS systems.
de Brito et al. [47] also propose bringing analytics and pro-
cessing features closer to the CPS in smart-factories using
fog nodes through extending the machine-to-machine com-
munication architecture using container-based orchestration.
A discussion of how CPS and cloud computing can be inte-
grated to optimize and enhance maintenance activities is
available in [48].

As discussed above, various ways and models have been
investigated and proposed to integrate one or more of the
modern technologies in CPS, the cloud and fog computing
to create more efficient and better ways to develop, operate
and manage sCPS applications. The approaches discussed
usually focus on a limited number of aspects or challenges,
while many offer application domain-specific frameworks.
In most cases, fog computing is introduced as an additional
layer between the CPS and the cloud to leverage some of the
constraints. However, the majority do not offer a complete
platform for generic design and development of different
sCPS applications. In addition, some proposed a hierarchical
structure for their models; yet most are predefined within a
specific application domain or a specific sCPS application.
Our proposed PsCPS incorporates a hierarchical organization
for the CPS, fog and cloud components that facilitates better
communication and distribution of tasks as part of a generic

VOLUME 6, 2018 41447



J. Al-Jaroodi et al.: PsCPS: Distributed Platform for Cloud and Fog Integrated sCPS

development and deployment platform. In our work, we focus
on these issues and offer a generic platform, where multiple
nodes in the system can assume different roles and collaborate
using efficient distribution and communication mechanisms
through their hierarchical structure. Moreover, PsCPS offers
a structure and development environment, where different
applications can be built by integrating sCPS, cloud and fog
services and can be deployed across the whole environment.

IX. CONCLUSION
Smart CPS (sCPS) incorporate the basic elements and func-
tionality of CPS with intelligent software features. These
intelligent features enable CPS to make smart decisions
through various algorithms and methods in analytics, self-
x capabilities, smart control, machine learning and artificial
intelligence. Therefore, it becomes necessary to have suffi-
cient and sophisticated hardware resources that will enable
these functionalities effectively and efficiently. Using the
cloud as the support environment for sCPS provides many of
these needed resources such as high-performance computing,
large-scale storage capabilities, and distributed and parallel
computations. However, the very nature of sCPS dictates
certain constraints on the system such as timely responses,
location and context awareness and mobility support. The
cloud, being far from the sCPS components, may not be capa-
ble of efficiently satisfying these needs. The imposed latency,
unstable connectivity, burstiness of data and loads cold lead
to undesired effects on the sCPS performance. As a result,
work has been directed towards integrating fog computing
with these systems to overcome some of the limitations.

Our proposed platform, PsCPS, offers a framework to sup-
port this type of integration, thus enabling the development
and deployment of complete sCPS applications utilizing the
most suitable resources from all available resources within
the sCPS components, on fog nodes and on the cloud. Unlike
many other approaches, PsCPS offers a generic agent-based
platform that facilitates the development and deployment of
different sCPS applications. The PsCPS platform consists of
nodePlatforms that can be initiated and deployed on any com-
pute node available in the environment. Agents are instan-
tiated and operate on these nodePlatforms to offer control
and processing capabilities as needed by the applications.
Furthermore, these agents can be organized in different ways
based on the size and organization of the sCPS and its needs
for recourses. For a small sCPS environment, a collection of
single agents can be used to handle the required tasks of the
application. However, as the environment grows bigger and
more distributed, more nodePlatforms and accordingly more
agents are deployed. In this case the agents are treated as a
MAS where these agents collaborate together to achieve the
sCPS application’s objectives. Yet, as sCPS further integrates
several levels of fog and cloud nodes, organization can shift
to a HMAS where several levels of agents are deployed
with specific tasks assigned at each level. This organization
optimizes operations and allow for better ways to exchange
information and perform tasks.

PsCPS allows for the development and integration of
application services with platform services to create a com-
plete sCPS application using all available resources on the
fog and cloud nodes. Therefore, it becomes easier to dis-
tribute different tasks to where they can be best performed,
optimize localized services such as mobility support and
location awareness at the sCPS and fog levels, and utilize
high performance resources when needed at the cloud level.
PsCPS offers different communication models such as direct
communication, message passing and publish/subscribe
models to enhance information exchange across the differ-
ent layers of the system. The prototype implementation and
experimental results show good performance in terms of
response times, processing performance, and data exchange.
As future work, we plan to further extend the implementation
of PsCPS to support more features, provide complete APIs for
the platform for sCPS applications developers, and perform
more complex measurements using examples from different
sCPS applications to further illustrate the capabilities and
functionalities of PsCPS.

REFERENCES
[1] E. A. Lee, ‘‘Cyber physical systems: Design challenges,’’ in Proc. 11th

IEEE Int. Symp. Object Compon.-Oriented Real-Time Distrib. Com-
put. (ISORC), May. 2008, pp. 363–369.

[2] R. R. Rajkumar, L. Sha, I. Lee, and J. Stankovic, ‘‘Cyber-physical systems:
The next computing revolution,’’ in Proc. ACM 47th Design Automat.
Conf., Jun. 2010, pp. 731–736.

[3] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, ‘‘A survey of research on
cloud robotics and automation,’’ IEEE Trans. Autom. Sci. Eng., vol. 12,
no. 2, pp. 398–409, Apr. 2015.

[4] N. Mohamed, J. Al-Jaroodi, and S. Lazarova-Molnar, ‘‘Energy cloud:
Services for smart buildings,’’ in Sustainable Cloud and Energy Services.
Cham, Switzerland: Springer, 2018, pp. 117–134.

[5] C. Doukas, T. Pliakas, and I. Maglogiannis, ‘‘Mobile healthcare infor-
mation management utilizing cloud computing and Android OS,’’ in
Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Aug. 2010,
pp. 1037–1040.

[6] Z. Li, C. Chen, and K. Wang, ‘‘Cloud computing for agent-based urban
transportation systems,’’ IEEE Intell. Syst., vol. 26, no. 1, pp. 73–79,
Jan./Feb. 2011.

[7] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, ‘‘Fog computing and its
role in the Internet of Things,’’ in Proc. ACM 1st Ed. MccWorkshopMobile
Cloud Comput., Aug. 2012, pp. 13–16.

[8] A. M. Rahmani et al., ‘‘Exploiting smart e-health gateways at the edge of
healthcare Internet-of-Things: A fog computing approach,’’ Future Gener.
Comput. Syst., vol. 78, pp. 641–658, Jan. 2017.

[9] M. A. Al Faruque and K. Vatanparvar, ‘‘Energy management-as-a-service
over fog computing platform,’’ IEEE Internet Things J., vol. 3, no. 2,
pp. 161–169, Apr. 2016.

[10] N. Mohamed, J. Al-Jaroodi, I. Jawhar, S. Lazarova-Molnar, and
S. Mahmoud, ‘‘SmartCityWare: A service-oriented middleware for
cloud and fog enabled smart city services,’’ IEEE Access, vol. 5,
pp. 17576–17588, 2017.

[11] B. Tang, Z. Chen, G. Hefferman, T. Wei, H. He, and Q. Yang, ‘‘A hierar-
chical distributed fog computing architecture for big data analysis in smart
cities,’’ in Proc. ASE BigData SocialInform., 2015, Art. no. 28.

[12] L. Tong, Y. Li, and W. Gao, ‘‘A hierarchical edge cloud architecture
for mobile computing,’’ in Proc. 35th Annu. IEEE Int. Conf. Comput.
Commun. (INFOCOM), Apr. 2016, pp. 1–9.

[13] L. E. Parker, D. Rus, and G. S. Sukhatme, ‘‘Multiple mobile robot sys-
tems,’’ in Springer Handbook of Robotics. Berlin, Germany: Springer,
2016, pp. 1335–1384.

[14] N. Mohamed, J. Al-Jaroodi, H. Jiang, and D. Swanson, ‘‘JOPI: A Java
object-passing interface,’’ inProc. Joint ACM-ISCOPEConf. JavaGrande,
Nov. 2002, pp. 37–45.

41448 VOLUME 6, 2018



J. Al-Jaroodi et al.: PsCPS: Distributed Platform for Cloud and Fog Integrated sCPS

[15] J. Al-Jaroodi, N. Mohamed, H. Jiang, and D. Swanson, ‘‘JOPI: A Java
object-passing interface,’’ Concurrency Comput., Pract. Exper., vol. 17,
nos. 7–8, pp. 775–795, 2005.

[16] N. Mohamed, J. Al-Jaroodi, I. Jawhar, and S. Lazarova-Molnar,
‘‘A service-oriented middleware for building collaborative UAVs,’’
J. Intell. Robot. Syst., vol. 74, nos. 1–2, pp. 309–321, 2014.

[17] S. Hallé and B. Chaib-draa, ‘‘A collaborative driving system based on
multiagent modelling and simulations,’’ Transp. Res. C, Emerg. Technol.,
vol. 13, no. 4, pp. 320–345, 2005.

[18] S. Lazarova-Molnar and N. Mohamed, ‘‘Collaborative data analyt-
ics for smart buildings: Opportunities and models,’’ Cluster Com-
put., pp. 1–13, Nov. 2017. [Online]. Available: https://link.springer.com/
article/10.1007/s10586-017-1362-x

[19] S. Lazarova-Molnar and N. Mohamed, ‘‘A framework for collaborative
cloud-based fault detection and diagnosis in smart buildings,’’ in Proc.
7th Int. Conf. Modeling, Simulation, Appl. Optim. (ICMSAO), Apr. 2017,
pp. 1–6.

[20] I. Arel, C. Liu, T. Urbanik, and A. G. Kohls, ‘‘Reinforcement learning-
based multi-agent system for network traffic signal control,’’ IET Intell.
Transp. Syst., vol. 4, no. 2, pp. 128–135, 2010.

[21] S. El-Tantawy, B. Abdulhai, and H. Abdelgawad, ‘‘Multiagent reinforce-
ment learning for integrated network of adaptive traffic signal controllers
(MARLIN-ATSC):Methodology and large-scale application on downtown
Toronto,’’ IEEE Trans. Intell. Transp. Syst., vol. 14, no. 3, pp. 1140–1150,
Sep. 2013.

[22] E. Pitt and K. McNiff, Java.rmi: The Remote Method Invocation Guide.
Reading, MA, USA: Addison-Wesley, 2001.

[23] (Dec. 1, 2017). Arduino. [Online]. Available: https://www.arduino.cc/
[24] (Dec. 1, 2017). DHT Sensor Library. [Online]. Available: https://github.

com/adafruit/DHT-sensor-library, viewed .
[25] (Dec. 1, 2017). CC3000 Wi-Fi Board. [Online]. Available: https://www.

adafruit.com/products/1469
[26] (Dec. 1, 2017). Arduino IDE. [Online]. Available: http://arduino.

cc/en/main/software
[27] (Dec. 1, 2017). Adafruit CC3000 Library. [Online]. Available:

https://github.com/adafruit/Adafruit_CC3000_Library
[28] I. Hong, J. Byun, and S. Park, ‘‘Cloud computing-based building energy

management system with ZigBee sensor network,’’ in Proc. IEEE 6th
Int. Conf. Innov. Mobile Internet Services Ubiquitous Comput. (IMIS),
Jul. 2012, pp. 547–551.

[29] H. Thompson, ‘‘The ‘smart cyber-physical systems’ cluster of EU
projects,’’ Rep. Road2CPS Clustering Commun. Event, Vienna, Austria,
Event Rep., Apr. 2016.

[30] T. Bures et al., ‘‘Software engineering for smart cyber-physical systems—
Towards a research agenda: Report on the first international workshop on
software engineering for smart CPS,’’ ACM SIGSOFT Softw. Eng. Notes,
vol. 40, no. 6, pp. 28–32, 2015.

[31] I. Chun, H. Lee, W. Kim, and E. Lee, ‘‘SMART-CPS: Self-managed
reliable system development method for cyber-physical systems,’’ Int. Inf.
Inst. Tokyo-Inf., vol. 17, no. 3, pp. 1025–1030, 2014.

[32] N. Mohamed, S. Lazarova-Molnar, I. Jawhar, and J. Al-Jaroodi, ‘‘Towards
service-oriented middleware for fog and cloud integrated cyber phys-
ical systems,’’ in Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst.
Workshops (ICDCSW), Jun. 2017, pp. 67–74.

[33] K.M. Alam andA. El Saddik, ‘‘C2PS: A digital twin architecture reference
model for the cloud-based cyber-physical systems,’’ IEEE Access, vol. 5,
pp. 2050–2062, 2017.

[34] K. Gai, M. Qiu, H. Zhao, and X. Sun, ‘‘Resource management in sustain-
able cyber-physical systems using heterogeneous cloud computing,’’ IEEE
Trans. Sustain. Comput., vol. 3, no. 2, pp. 60–72, Apr./Jun. 2017.

[35] I. Stojmenovic, ‘‘Fog computing: A cloud to the ground support for
smart things and machine-to-machine networks,’’ in Proc. IEEE Australas.
Telecommun. Netw. Appl. Conf. (ATNAC), Nov. 2014, pp. 117–122.

[36] M. Frincu, ‘‘Architecting a hybrid cross layer dew-fog-cloud stack for
future data-driven cyber-physical systems,’’in Proc. IEEE 40th Int. Conv.
Inf. Commun. Technol., Electron. Microelectron. (MIPRO), May. 2017,
pp. 399–403.

[37] A. Seitz, J. O. Johanssen, B. Bruegge, V. Loftness, V. Hartkopf, and
M. Sturm, ‘‘A fog architecture for decentralized decision making in smart
buildings,’’ in Proc. ACM 2nd Int. Workshop Sci. Smart City Oper. Plat-
forms Eng., Apr. 2017, pp. 34–39.

[38] A. Munir, P. Kansakar, and S. U. Khan. (Jan. 2017). ‘‘IFCIoT: Inte-
grated fog cloud IoT architectural paradigm for future Internet of Things.’’
[Online]. Available: https://arxiv.org/abs/1701.08474

[39] R. Mahmud, F. L. Koch, and R. Buyya, ‘‘Cloud-fog interoperability in IoT-
enabled healthcare solutions,’’ in Proc. 19th Int. Conf. Distrib. Comput.
Netw. (ICDCN), 2018, Art. no. 32.

[40] L. Gu, D. Zeng, S. Guo, A. Barnawi, and Y. Xiang, ‘‘Cost efficient
resource management in fog computing supported medical cyber-physical
system,’’ IEEE Trans. Emerg. Topics Comput., vol. 5, no. 1, pp. 108–119,
Jan./Mar. 2015.

[41] H. Song, Q. Du, P. Ren, W. Li, and A. Mehmood, ‘‘Cloud computing
for transportation cyber-physical systems,’’ in Cyber-Physical Systems:
A Computational Perspective, vol. 15. London, U.K.: Chapman & Hall,
2015, pp. 351–369.

[42] D. Bruneo et al., ‘‘Stack4Things as a fog computing platform for
Smart City applications,’’ in Proc. IEEE Conf. Comput. Commun.
Workshops (INFOCOM WKSHPS), Apr. 2016, pp. 848–853.

[43] R.-Y. Chen, ‘‘An intelligent value stream-based approach to collaboration
of food traceability cyber physical system by fog computing,’’ Food Con-
trol, vol. 71, pp. 124–136, Jan. 2017.

[44] M. Mededjel, G. Belalem, and A. Neki, ‘‘Towards a traceability system
based on cloud and fog computing,’’ Multiagent Grid Syst., vol. 13, no. 1,
pp. 47–68, 2017.

[45] M. Heiss, A. Oertl, M. Sturm, P. Palensky, S. Vielguth, and F. Nadler,
‘‘Platforms for industrial cyber-physical systems integration: Contradict-
ing requirements as drivers for innovation,’’ in Proc. IEEE Workshop
Modeling Simulation Cyber-Phys. Energy Syst. (MSCPES), Apr. 2015,
pp. 1–8.

[46] D. Wu, J. Terpenny, L. Zhang, R. Gao, and T. Kurfess, ‘‘Fog-enabled
architecture for data-driven cyber-manufacturing systems,’’ in Proc. ASME
Int. Manuf. Sci. Eng. Conf. (MSEC), June. 2016, p. V002T04A032.

[47] M. S. de Brito, S. Hoque, R. Steinke, A. Willner, and T. Magedanz,
‘‘Application of the fog computing paradigm to smart factories and cyber-
physical systems,’’ Trans. Emerg. Telecommun. Technol., vol. 29, no. 4,
p. e3184, 2018.

[48] E. Jantunen, U. Zurutuza, M. Albano, G. di Orio, P. Maló, and C. Hegedus,
‘‘Theway cyber physical systemswill revolutionisemaintenance,’’ inProc.
30th Conf. Condition Monit. Diagnostic Eng. Manage., 2017, pp. 1–8.

JAMEELA AL-JAROODI received the B.Sc.
degree in computer science from the University
of Bahrain, the M.Sc. degree in computer sci-
ence fromWestern Michigan University, the Ph.D.
degree in computer science from the University
of Nebraska–Lincoln, and the M.Ed. degree in
higher education management from the University
of Pittsburgh. She was a Research Assistant Pro-
fessor with the Stevens Institute of Technology,
Hoboken, NJ, USA, then an Assistant Professor

with United Arab Emirates University, UAE. She was an independent
Researcher in the computer and information technology. She is currently an
Associate Professor and a Coordinator of software engineering concentration
with the Department of Engineering, Robert Morris University, Pittsburgh,
PA, USA. She is involved in various research areas, including middleware,
software engineering, cyber-physical systems, and distributed and cloud
computing, in addition to UAVs and wireless sensor networks.

NADER MOHAMED received the Ph.D. degree
in computer science from the University of
Nebraska–Lincoln, Nebraska, USA, in 2004. From
2004 to 2006, he was an Assistant Professor of
computer engineering with the Stevens Institute of
Technology, Hoboken, NJ, USA. He was with the
College of Information Technology, United Arab
Emirates University, Al Ain, UAE, as an Assistant
Professor, from 2006 to 2009, and an Associate
Professor from 2009 to 2015. He is currently an

independent Computer and Information Research Scientist in Pittsburgh, PA,
USA. In addition, he has eight years of industry experience in the information
technology field. His current research interest focuses on middleware, cloud
and fog computing, cyber-physical systems, unmanned aerial vehicles, and
cyber security.

VOLUME 6, 2018 41449


	INTRODUCTION
	CYBER-PHYSICAL SYSTEMS AND SMART CYBER-PHYSICAL SYSTEMS
	CLOUD AND FOG INTEGRATED sCPS
	PsCPS ARCHITECTURE AND FUNCTIONS
	NODEPLATFORM
	AGENTS
	MULTI-AGENT SYSTEMS (MAS)
	HIERARCHICAL MULTI-AGENT SYSTEMS (HMAS)
	PsCPS MANAGER

	PsCPS IMPLEMENTATION
	AGENTS IMPLEMENTATION
	NODEPLATFORM IMPLEMENTATION
	PsCPS MANAGER IMPLEMENTATION
	MESSAGE PASSING SERVICES
	PUBLISH/SUBSCRIBE COMMUNICATION SERVICES

	APPLICATION SENARIOS
	CLOUD-BASED FAULT DETECTION AND DIAGNOSIS IN SMART BUILDINGS
	SMART TRAFFIC LIGHTS

	RESULTS AND DISCUSSION
	RELATED WORK
	CONCLUSION
	REFERENCES
	Biographies
	JAMEELA AL-JAROODI
	NADER MOHAMED


