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ABSTRACT We present a distributed power allocation algorithm for a cognitive radio network (CRN),
where the underlying secondary users (SUs) share the same licensed spectrum with the primary
users (PUs). Based on the target signal-to-interference-plus-noise ratio (target-SINR) tracking power
control (TPC) algorithm in a conventional network, the power allocation problem is modeled as a state-
space model with exogenous input that includes varying channel state information (CSI) and some parameter
measurement errors. This power allocation algorithm is actually a state feedback controller from the linear
quadratic Gaussian (LQG) solution, which is used to guarantee the SINR requirement of the SUs and keep
the interference temperature (IT) constraint of all PUs under a given threshold. Considering the quality of
service (QoS) of the SU, an adaptive control weight and a switching safety margin of the IT threshold
are introduced in this algorithm to achieve better performance. Analysis and simulation results show the
effectiveness and advantages of the proposed power allocation scheme, designed based on control theory,
compared with those of other traditional algorithms designed based on optimization.

INDEX TERMS Cognitive radio, power allocation, state-space description, closed-loop control, linear
quadratic Gaussian regulator.

I. INTRODUCTION
Power allocation in a cognitive radio network (CRN) is
an important research topic in the area of wireless com-
munication systems for high spectrum efficiency [1]. It is
well known that the secondary users (SUs) can use spec-
tral resources licensed to the primary users (PUs) without
interrupting the primary communication in a CRN. However,
this reuse of the spectrum inevitably leads to mutual interfer-
ence among users. Therefore, a reasonable power allocation
scheme should be developed according to the communication
requirements and environment to ensure the coexistence of
PUs and SUs in CRNs.

The power allocation problem for a CRN is easily solved
by centralized algorithms, which need all information about
the current network [2], [3]. These algorithms are often based
on the assumption that all known information does not have
measurement errors so that they can perform better to meet
the quality of service (QoS) for all users. However, this
assumption is more or less impractical when considering

an actual communication system. First, it requires much
overhead to send the information, taking up much band-
width. Additionally, more information and its measurement
will result in more time delays and errors. To reduce the
use of global information for centralized power allocation,
some interesting distributed power allocation methods that
use local information, which are more reliable and practical
than those of the centralized methods, have been proposed
in [4]–[6].

Categorizing the existing studies on the distributed power
allocation algorithms for CRNs, we find that the major-
ity use the optimization theory to maximize or minimize
one or more target functions parameterized by the com-
munication performance subject to some constraints and a
protection mechanism for PUs, for example, the interference
temperature (IT) constraint, the outage probability constraint
of the PU and so on [7]–[9]. This approach needs all cur-
rent channel state information (CSI) to calculate an optimal
transmit power sequence, which makes it very sensitive to
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different disturbances, uncertainties and time delays, which
are inevitable in CRNs. There are some methods for solving
this problem. Specifically, to address the influence of chan-
nel uncertainty, methods based on the robust optimization
theories, such as the Bayesian approach and the worst-case
approach, have been used [10], [11]. However, these methods
require some prior knowledge, which is difficult to obtain,
and they are conservative because of the formulation of all
disturbances, errors and time delays as a worst or statistical
uncertainty. Moreover, the traditional power allocation algo-
rithms are not dynamic in the sense of a dynamic description
of a CRN. The optimization solution is determined via static
modeling of the problem in one time slot. And it is only
an approximation of the problem but not applicable. The
technological framework still remains used on the research of
this issue though it has been extended in various ways, such
as introduction of newmodel, complexity reduction, diversity
improvement, new objective optimization, application con-
sideration and so on [12]–[15].

When we consider a time-varying channel, stochastic
uncertainty, different estimation errors, the time delay, ran-
dom changing of users and the different QoS requirements
for a CRN, power allocation becomes a dynamic process in
which the transmit power of each active SU should be dynam-
ically adjusted based on the instantaneous objective function,
all available information and the varying environment.

Control theories normally or basically provide us with
a useful tool for designing a closed-loop controller when
considering the dynamic property of a target system described
either by a state-space description, an input-output descrip-
tion or a differential equation. Those methods based on these
theories have been proven to be effective in almost every
domain of industry and even in social systems with very
precise control. They have already been used in some con-
ventional wireless networks to provide a dynamic way to
address the power control problem [16]–[20], most of which
are based on the target signal-to-interference-plus-noise ratio
(target-SINR) tracking power control (TPC) algorithm, also
called standard power control. These studies indicate that we
can design a feedback controller to realize power allocation
for wireless networks with robustness against measurement
errors, channel uncertainty, and time delays. Since the power
allocation problem does not need high-precision control and
requires only that certain interference constraints be kept
under some requirements with enough high object, we can
use control theory to effectively solve this problem in a
dynamic way that is more realistic and practical compared
with those approaches based on convex optimization or game
theory.

Recently, some studies based on control theory have been
proposed to analyze and solve some real problems of power
allocation in CRNs. The authors in [21] analyze the stability-
related problem of power control in multiple coexisting wire-
less networks based on small-gain theorem. In [7] and [22],
the authors present the analysis of the transient behavior of a
CRN based on the modeling of the power allocation problem

as a projected dynamic system (PDS) by variational inequal-
ity. These fundamental works provide us with an interesting
research direction with the possibility and feasibility of using
control theory to solve the power allocation in a CRN. How-
ever, they do not give us a feedback controller in the sense
of closed-loop control for the problem. In [23], the authors
also propose a robust power allocation scheme based on
control theory for orthogonal frequency division multiplex-
ing (OFDM)-based CRNs, where a closed-loop controller is
designed for the PDS proposed in [7]. However, the con-
trol model is for a particular CRN and its mathematical
derivation is very complicated so that the controller design is
difficult.

According to our study, we find that, comparing with the
power allocation of traditional non-cognitive networks, the
IT constraint in a CRN is the main obstacle for using
the control theory to solve the problem of CRNs since we
have to obtain the control target to design a realized con-
troller from a physically measured signal. The authors in [24]
introduce PID control and model predictive control (MPC) to
solve the power allocation problem, where the actual transmit
power is determined by comparing the derived transmit power
with a constraint condition to avoid interference with the
primary networks; however, some parametric uncertainties
are not considered. In [25], the authors propose an energy-
saving adaptive transmit power control scheme based on bit
error rate (BER) feedback for a cognitive personal area net-
work (CPAN) in the multiband orthogonal frequency division
multiplexing (MB-OFDM) ultra-wideband (UWB) system.
In this scheme, each CPAN device controls its transmit power
using a nonlinear approximation of the power-time curve
to make the total power in an MB-OFDM band and the
BER lower than the corresponding acceptable threshold.
However, they consider only the total power constraint in an
MB-OFDM band and not the interference from a SU to PUs,
which may result in serious disturbance of the primary links.
In general, it is not direct and easy to manipulate control
theory to design a power controller for a CR system without
suitably modeling the dynamics of this CRN with the IT con-
straint [7], which is one of the most important and available
control requirements.

In this paper, based on the TPC algorithm, we remodel the
problem of power allocation in a CRN by following dynamic
control theory, where the IT constraint and QoS requirement
of SUs are formulated as state variables and a cost function.
Then, we design the corresponding state feedback controller
to minimize the cost function. Furthermore, to improve the
QoS of this CRN, we modify the proposed power control
scheme by introducing an adaptive control weight and a
switching safety margin of the IT threshold.

The major contributions of this paper are as follows:
• Based on the description of the channel gain fluctua-
tion as a first-order Markov model, we formulate the
dynamics of the power allocation problem in a CRN
as a linear state-space model with exogenous input by
its decibel scale, which is the basis of the closed-loop
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controller design of the CRN, to solve this problem via
the control method. This dynamic model is simple and
general with respect to the power allocation problem of a
CRN and provides a greater possibility of using different
control theories.

• Considering varying channel gains and measurement
errors of the parameters, we propose a distributed power
allocation algorithm for the givenCRN, named the linear
quadratic Gaussian (LQG) regulator, to optimize the
control performance index, including the IT constraint
and QoS of the SU, to obtain a feasible target-SINR and
a reasonable transmit power.

• According to the given basic LQG regulator, we also
propose an improved controller with an adaptive control
weight and a switching safety margin of the IT thresh-
old to address the varying environment. We present the
analysis of the proposed power allocation algorithm,
which involves a performance comparison, in terms of
the outage ratio of the PU and the SU and the total data
transmission rate, with other typical power allocation
algorithms.

The layout of the paper is as follows. Section II intro-
duces the network model in a state-space representation. The
formulation of the power allocation problem based on the
state-space model and the power controller design are given
in Section III. The improved version with an adaptive control
weight and the switching safety margin of the IT threshold
are given in Section IV. Section V presents the analysis
of the proposed power allocation algorithm. The simulation
results are provided in Section VI, and conclusion is drawn
in Section VII.

II. CRN MODEL
We consider the CRN that is schematically presented
in Fig. 1. In this given model, there is a primary cel-
lular network coexisting with a secondary arbitrary net-
work. The primary network is composed of one PU base
station (PU-BS) and L PU receivers (PU-RXs) with index l,
l ∈ L and L = {1, · · · ,L}. The secondary network
has M SU transmitter (SU-TX) and SU receiver (SU-RX)
pairs with index i, i ∈ M and M = {1, · · · ,M}. Since the
practical power control algorithms are usually implemented
in discrete-time, we directly present the discrete-time version
of our power control algorithm. In this CRN, the power
adjustment time for a packet is divided into 32 slots, and
each slot period Ts, in which power control, including signal
measurement, feedback and the corresponding information
update, is conducted, is appropriately chosen. We mainly
study the power control for SUs at the downlink time of
the PU, namely, in the channels from the BS to the mobile
terminals. However, the following obtained results can also be
used in the uplink case, i.e., in the channels from the mobile
terminals to the BS.

In the CRN, the communication of the PU is protected by
the IT constraint such that the interference from SUs to the
l th PU must be below a corresponding threshold, which is

FIGURE 1. CRN model.

described as

I l(k) =
∑

i∈M
hli(k)pi(k) ≤ I

l
th, l ∈ L (1)

where hli(k) is the interference gain at the time slot k between
the ith SU-TX and the l th PU-RX, pi(k) is the transmit
power of the ith SU and I lth is the predefined IT threshold of
the l th PU, its value would be a maximum amount of tolerable
interference for a given frequency band in a particular loca-
tion and can be determined according to a given IT model
like [26]. Note that the channel gain represents the chan-
nel power gain unless otherwise noted in this paper. Since
SUs are coupled by (1), power control cannot be completed
by using only local information. Moreover, it is impracti-
cal or even impossible for each SU to know the interference at
PU-RX caused by all SUs, including itself. Thus, we replace
this interference constraint with the sum of transmit power of
all SUs, with an individual constraint on each SU to address
(1) according to [27], where we call it average IT constraint.
And the QoS requirement for the l th PU can be easily guar-
anteed as long as the following average IT constraint

I li (k) = hli(k)pi(k) ≤ I
l
avg (2)

is held, where I lavg = I lth/M is the average IT threshold.
Using the new constraint will introduce somewhat conser-
vativeness, but it greatly simplifies the designing distributed
power control algorithm under the premise of ensuring data
transmission of SU without communication interruption of
PU in the CRN.

In power control algorithm design, it is difficult to address
the multiplication relation in (2). To simplify the subsequent
control model, we use the decibel scale x̄ = 10 lg(x) to
represent a variable. Substituting the variables of (2) with the
decibel values, we can obtain the following linear equation:

I
l
i(k) = h

l
i(k)+ pi(k) ≤ I

l
avg (3)

For the secondary network, we regard the SINR of each SU
as a performance metric for power control, as the measured
SINR at the receiver’s antenna is a parameter directly related
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to the carrier power, which can be controlled by transmit
power adjustment. In the CRN, the instantaneous SINR of
the ith SU is described by

γi(k) =
gij(k)pi(k)∑

j 6=i gij(k)pj(k)+ I
ps
i (k)+ ni2

(4)

where gij(k) is the channel gain from the jth SU-TX to the
ith SU-RX at the time slot k and

∑
j 6=i gij(k)pj(k) and I

ps
i (k)

are the interferences at the ith SU-RX from other SUs and
all PUs, respectively. ni2 is the background noise power.
We define I ss

−i(k) =
∑

j 6=i gij(k)pj(k) + N 2
i to represent the

interference plus noise at the ith SU-RX,whereN 2
i = Ipsi (k)+

ni2 is regarded as the generalized background noise power,
including the interference from the PUs to SU i, the value
of which is assumed to be measurable and invariable in a
packet transmission. In addition, each SU can utilize a quiet
period as in IEEE 802.22WRANs tomeasure the interference
from primary transmissions since there is only a primary
transmission in this period [28]. Alternatively, we useµi(k) =
gii(k)
I ss
−i(k)

to represent the effective channel gain of the ith SU;
then, (4) becomes γi(k) = µi(k)pi(k). After carrying out the
same transformation from (2) to (3), the SINR of the ith SU
at the decibel scale is

γ̄i(k) = µ̄i(k)+ p̄i(k) (5)

Our purpose is to design a distributed power controller by
using only local information to allocate power for each SU.
To realize this goal, the dynamics modeling of this CRNmust
be carried out.

In wireless networks, varying channel gain is a combina-
tion of slow shadow fading and fast multipath fading on top
of path loss. In this paper, we assume that the period of update
power Ts is more than the coherence time of the channel,
the maximum time difference range in which the channel
remains the same fading properties. Therefore the multipath
influence will be negated in this channel model. We consider
the case where the lognormal distribution shadow fading
and the relative distance between two users does not change
in 32 slots, which means that the change in the channel
gain depends only on the shadow fading during the power
adjustment process for a packet.

According to [16], the spatial correlation of the channel
gain at the decibel scale can be described as a simple first-
order Markov random model when the shadow fading is
dominant. Taking the ith SU, the first-order Markov random
model of its channel gain can be written as

ḡii(k) = ḡ0ii +1ḡii(k) (6)

1ḡii(k) = a1ḡii(k − 1)+ ω̄gii (k − 1) (7)

where ḡ0ii is a constant bias, ω̄gii is the zero-mean white

Gaussian random sequence, a = exp
(
−
vTs
Xs

)
, with moving

velocity v of the user and varying distance vTs during a time
slot, and Xs is the decorrelation distance.

From (6) and (7), we can obtain

ḡii(k) = aḡii(k − 1)+ (1− a) ḡ0ii + ω̄gii (k − 1) (8)

When the SU is assumed to not move, i.e., v = 0, resulting in
a = 1 in (8), we have

ḡii(k) = ḡii(k − 1)+ ω̄gii (k − 1) (9)

Through the same modeling process with channel gain
of SU, we formulate the dynamics of the interference plus
noise I ss

−i(k) of the ith SU and the channel gain of PU as
follows

Ī ss
−i(k) = Ī ss

−i(k − 1)+ ω̄I ss
−i
(k − 1) (10)

h
l
i(k) = h

l
i(k − 1)+ ω̄lhi (k − 1) (11)

where ω̄I ss
−i

and ω̄lhi are also the zero-mean white Gaussian
random sequences. Although (10) cannot precisely describe
the dynamics of I ss

−i(k) at all times, it is still reasonable when
the shadow fading is dominant in the channel gain [29].
Furthermore, the dynamics of the effective channel gain of
the ith SU at the decibel scale can be determined by

µ̄i(k + 1) = µ̄i(k)+ ω̄µi (k) (12)

where ω̄µi (k) = ωgii (k)− ω̄I ss−i (k) is also the zero-mean white
Gaussian random sequence.

In previous distributed power control schemes, an assump-
tion that the channel remains constant despite the interference
plus noise of the ith SU during a packet transmission is
often required [24]. In fact, for practical communication, this
assumption is strong and ideal when the wireless channel
differs for different time slots, even when the mobile terminal
does not move. At the same time, the interference from
another user to the SU changes as the transmit power of
other users changes. Thus, the use of random sequences ω̄µi
and ω̄lhi to model the dynamics of the channel gain for a
wireless communication environment is closer to reality.

III. PROBLEM FORMULATION AND STATIC
CONTROLLER DESIGN
In this section, we build a state-space model to formulate
the power allocation problem of the CRN. Under this model,
we propose a distributed power control scheme based on the
LQG regulator.

In a non-cognitive network, the conventional methods used
to control the transmit power are normally designed as target
tracking algorithms for the given QoS benchmark, which is
often given in a fixed or time-varying SINR form. Gener-
ally, the power control process in a code division multiple
access (CDMA) network is divided into two parallel parts:
inner loop and outer loop. In the inner loop, the user adopts
a TPC algorithm [30] to make the received SINR track the
given target-SINR provided by the outer loop. In the outer
loop, the procedure for updating the target-SINR usually
depends on the communication requirement of users and
the current network status. In this study, we also adopt this
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flexible QoS benchmark to control the transmit power for
each SU in the CRN described in Section II.

Note that the applicability of a dynamic control method
based on the flexible QoS service depends on the feasibil-
ity of the fast target QoS tracking [16], [19]. In traditional
cellular communication, varying target-SINR is provided by
the outer control loop according to the network requirements,
such as the transmission rate or BER. Moreover, the update
frequency of the target-SINR in the outer loop is lower than
that of the transmit power. For the current networks or even
5G networks, the update period for the target-SINR in one
time slot is also supported by the rapid development of hard-
ware technology, which allows flexible target-SINR tracking
in communications [19].

We describe the process of power control using a cascade
block diagram, as shown in Fig. 2, where the SU-RX uses
an outer loop controller to update the target-SINR based on
the information from the environment, including the instan-
taneous SINR and the interference affecting the PUs, and the
update period of the target-SINR is one time slot, as men-
tioned above.

FIGURE 2. Block diagram of the i th SU transceiver pair.

The power control law of the TPC algorithm for the system
in Fig. 2 is

p̄i(k + 1) = p̄i(k)+ αi
[
γ̄ ∗i (k)− γ̄i(k)

]
(13)

where 0 < αi < 1 is the control gain of TPC algorithm, which
varies from one link to another to provide the ‘‘smoothing’’
change of transmit power from one time slot to the next when
p̄i(k + 1) is not larger than p̄max

i . The initial power p̄i(0)
is also assumed to be different in different links. In (13),
the variable γ̄ ∗i (k) is the decibel form of the time-varying
target-SINR γ ∗i (k). In our CRN, the normal communication
of SUs needs to be guaranteed, and the interference affecting
the PUs should be kept below a given threshold. To satisfy
the communication requirements for both the SUs and PUs,
we introduce an auxiliary control ui(k) for the target-SINR to
realize the tracking of γ̄ ∗i (k) by the instantaneous SINR γ̄i(k).
The feasible γ̄ ∗i (k) ensures that the interference power with
respect to the PU is below the IT threshold at a given time;
the communication requirement of each SU can be satisfied
if γ̄i(k) reaches γ̄ ∗i (k). The iterative updating of γ̄ ∗i (k) is
expressed as

γ̄ ∗i (k + 1) = γ̄ ∗i (k)+ ui(k) (14)

We know that the obtained γ̄ ∗i (k) is available in a practical
environment only when the current channel state is good
enough to support communication by the active SU and the
allocated power for each SU lies within the allowable range.
When too many active SUs generate an excessive amount of
traffic, the called admission control should be used to guar-
antee satisfactory services for the admitted SUs. The focus of
this research is power allocation rather than admission control
of the CRN; thus, we assume that the number of current SUs is
reasonable such that all services can be ensured. In addition,
we do not consider the maximum power constraint of SU
when we design our power controller because the traffic of
the SU can be assumed to drop when the allocated power is
outside its own range or when the power can be directly set
as p̄max

i .
Substituting(12), (13) and (14) into (5), we can obtain a

new representation for γ̄i(k):

γ̄i(k + 1) = (1− αi) γ̄i(k)+ αiγ̄ ∗i (k)+ ω̄µi (k) (15)

To establish the relation between the target-SINR and
the IT constraint, we substitute (11) and (13) into (3) to
obtain the difference equation of the interference affecting
the PU, i.e.,

Ī li (k + 1) = Ī li (k)+ αi
[
γ̄ ∗i (k)− γ̄i(k)

]
+ ω̄lhi (k) (16)

Our work aims to select a power control sequence {pi(k)}
such that the actual SINR of the SU must approach as closely
as possible the target one defined by (14) subject to the given
IT constraint. In the CRN, the existence of the IT constraint
makes the power control different compared with that in a
non-cognitive network. Hence, control theory must be used
for power allocation on the basis of the dynamic description
of the CRN with the IT constraint via a feasible state-space
model. In particular, we convert this constraint into a perfor-
mance index and minimize it using a feasible controller.

We introduce two state variables ε̄ssi (k) and ε̄
l
i (k), defined

as the error between the target-SINR and its actual value and
that between the IT threshold and its actual value, respec-
tively, as follows

ε̄ssi (k) = γ̄
∗
i (k)− γ̄i(k) (17)

ε̄li (k) = Ī lavg − Ī
l
i (k) (18)

Their difference equations are

ε̄ssi (k + 1) = (1− αi) ε̄ssi (k)+ ui(k)− ω̄µi (k) (19)

ε̄li (k + 1) = −αiε̄ssi (k)+ ε̄
l
i (k)− ω̄

l
hi (k) (20)

Then, we define an element state vector xi(k) =[
ε̄ssi (k), ε̄

1
i (k), · · · , ε̄

L
i (k)

]T
, with L + 1 dimensions, for the

SU link i. Combining (19) with (20), we establish the general
state-space model for this link as

xi(k + 1) = Aixi(k)+ B1
i wi(k)+ B2

i ui(k) (21)
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where the coefficient matrices are as follows:

Ai =


1− αi 0 0 · · · 0
−αi 1 0 · · · 0
−αi 0 1 · · · 0
...

...
...

. . .
...

−αi 0 0 · · · 1


(L+1)×(L+1)

(22)

B1
i =

−1 · · · 0
...

. . .
...

0 · · · −1


(L+1)×(L+1)

(23)

B2
i =

[
1 0 · · · 0

]T
(L+1)×1 (24)

The fluctuation about the corresponding channel gain
wi(k) can be considered as an exogenous disturbance in this
state-space model and defined as a vector

wi(k) =
[
ω̄µi (k), ω̄

1
hi (k), · · · , ω̄

L
hi (k)

]T
(25)

whose property will be discussed later.
Regarding the control of (21), we must verify its

controllability, which is necessary for a control prob-
lem described by the state-space model. We calculate the
controllability matrix as (26), as shown at the bottom
of this page. Clearly, the rank of this matrix is only
2 instead of L + 1, which means that this state model is not
controllable. The reason is that there is only one working
interference entry, which must belong to the most vulnera-
ble PU. Therefore, in the process of power control, we need
to consider only this interference entry of the corresponding
link from the SU to the PU at every instance of time so that
the interference of other links can be satisfactorily restricted.
From this discussion, we define lmin as the index of the PU
whose transmission is the most easily disturbed. The way to
obtain lmin is to select the index with the minimal distance
between the IT threshold and its actual interference, which is
given as

lmin = arg
l
min

{
Ī lavg − Ī

l
i (k)

}
(27)

Considering only the error between the IT threshold and
the actual value of interfenence in the primary link lmin,
we modify (21) as

x̃i(k + 1) = Ãix̃i(k)+ B̃1
i w̃i(k)+ B̃2

i ui(k) (28)

where x̃i(k) =
[
ε̄ssi (k), ε̄

lmin
i (k)

]T
is the state vector, Ãi =[

1− αi −αi
−αi 0

]
, B̃1

i =

[
−1 0
0 −1

]
and B̃2

i =

[
1
0

]
are the

coefficient matrices, and w̃i(k) =
[
ω̄µi (k), ω̄

lmin
hi (k)

]T
is the

coefficient exogenous disturbance vector. Since the control-
lability matrix is now full rank, the state model of (28) is
controllable.

To achieve the power allocation objective, we design a
controller that makes

∣∣∣Ī lmin
avg − Ī

lmin
i (k)

∣∣∣ and ∣∣γ̄ ∗i (k)− γ̄i(k)∣∣ as
small as possible during a period of time T withN samplings.
Thus, we first define a cost function

Ji = E

{
1
2

N−1∑
k=0

[
x̃Ti (k)Qix̃i(k)+ ui(k)riui(k)

]}
(29)

where E {·} is the expectation for a variable and Qi =[
ρssi 0
0 ρ

lmin
i

]
and ri are controlling weights, the values of

which can be adjusted according to the control requirements.
These weights determine whether or not the corresponding
element is important since we can give more or less weight to

any term in x̃i(k) =
[
ε̄ssi (k), ε̄

lmin
i (k)

]T
and ui(k). Specifically,

ρssi and ρlmin
i help us to paymore attention to the SINR and the

IT threshold tracking in particular, and ri can limit the energy
of the controller. Since the SU should efficiently utilize the
available spectrum resources, we assign to ρlmin

i a value larger
than that of ρssi and ri to achieve better tracking of the IT
a priori.

Interestingly, we know that (29) subject to (28) is a lin-
ear quadratic optimal control problem. However, we cannot
directly use a linear quadratic regulator (LQR) to solve this
problem because the fluctuation term w̃i(k) in (28) is consid-
ered as exogenous input. For this optimal control problem,
how much information regarding this exogenous input is
available a priori will determine the control mode and preci-
sion [16], [18]. If the stochastic distribution of the exogenous
disturbance is assumed to be the zero-mean white Gaussian
sequence, the controller can be formulated as an LQG solu-
tion; otherwise, a more complex stochastic control theory
should be introduced, such as H∞ control technology which
has been studied in our follow-up works. Here, we study the
former case to show the effectiveness of power allocation
via our control method in this CRN in contrast to using
optimization approaches. We assume that w̃i(k) is a 2 × 1
random vector with a covariance matrix, as follows:

Qw
i = E

{
w̃i(k)w̃T

i (k)
}
=

 σ 2
ω̄µi

0

0 σ 2
ω̄
lmin
hi

 (30)

In the LQG regulator design, the output measurement must
be considered, which is written as a linear function with state

[
B2
i AiB2

i · · · AL
i B

2
i

]
=


1 1− αi (1− αi)2 · · · (1− αi)L

0 −αi −2αi + αi2 · · · (1− αi)L − 1
...

...
...

. . .
...

0 −αi −2αi + αi2 · · · (1− αi)L − 1

 (26)
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FIGURE 3. Closed-loop control system of distributed power allocation.

vector x̃i(k) as

yi(k) = Cix̃i(k)+ vi(k) (31)

where the coefficient matrixCi is assumed to be a unit matrix
and the measurement noise vi(k) with the covariance matrix
Rv
i = E

{
vi(k)viT (k)

}
is independent of w̃i(k).

Our power allocation based on the LQG regulator is
such that we find a controller ui∗(k) that can minimize
the stochastic quadratic cost function (29) subject to the
state-space constraint (28). Moreover, this solution is in the
form of measurement state feedback ui∗(k) = −Kix̃i(k),
where Ki is the state feedback gain calculated based on
the LQR solution [31]. The state variable used here can be
replaced by the estimate x̂i(k) from the relevant Kalman filter.
The simplest way to obtain an LQG regulator is to calculate a
stable state controller with the assumption that N approaches
infinity for one calculation ofKi. This solution is often called
the infinite domain solution.

With the initial predicted value x̂i(0) = 0 and PKi (0) =
E
{
x̃i(0)x̃Ti (0)

}
, ui∗(k) is calculated by iteration for all k > 0,

with

Ki =

[
ri +

(
B̃2
i

)T
PiB̃2

i

]−1(
B̃2
i

)T
PiÃi (32)

ui∗(k) = −Kix̂i(k) (33)

Li = ÃT
i P

K
i Ci

T
[
Rv
i + CiPKi Ci

T
]−1

(34)

where x̂i(k) is defined as (35), as shown at the bottom of
the next page, Pi and PKi (k + 1) are calculated by using the
discrete-time algebra Riccati equation (36), as shown at the
bottom of the next page, and its recursive form (37), as shown
at the bottom of the next page, respectively. Specifically,
the former runs forward in time to calculate the optimal con-
trol gainKi, while the latter runs backward in time to estimate
the instant value of the state vector. Therefore, a closed-loop
distributed power control scheme, with ui∗(k) added to (13)
to adjust the target-SINR for the CRN, is given as

p̄i(k + 1) = p̄i(k)+ αi
[
γ̄ ∗i (k − 1)+ ui∗(k − 1)− γ̄i(k)

]
= p̄i(k)+ αi

[
γ̄ ∗i (k − 1)− γ̄i(k)

]
+ αiui∗(k − 1)

(38)

The corresponding closed-loop controlled system diagram
is given in Fig. 3.

From (38), we can find that the control algorithm has
a time delay of one sample. From Fig. 3, we also know
that there is another kind of time delay in the closed-loop
control system [32]. Briefly speaking, it takes some time
before a calculated power is actually used and its effect is
observed by others. Additional delays are caused by the fact
that power update commands are allowed to be transmitted
only at certain instances in time. In addition, the measuring
procedure also takes time, and the measurement results are
sent to the power control algorithm at certain instances in
time. In total, we can divide the whole delay d into two
delays: forward delay d1, which includes the sample delay,
and feedback delay d2, with d = d1 + d2. Although the most
recently computed output power levels are not immediately
reflected in the measurements, resulting in delayed feedback
information, these power levels can still be used to adjust the
measurements accordingly. To simplify the controller design,
we use the approach proposed in [32] to compensate for the
time delay, i.e.,

^
γ i(k) = γ̄i(k)+ p̄i(k)− p̄i(k − d) (39)

is introduced to measure the target-SINR. Other compensa-
tion methods for the time delay can also be adopted, such
as reconstruction of an augmented state-space model with a
new state vector X = [ x̃Ti (k) ui(k − d) · · · ui(k − 1) ]T and
the design of an optimal controller [33].

Using (38), we can realize the power allocation for an SU in
the given CRN. However, we should note that there are some
concerns regarding this original proposed control algorithm:
(i) It is established on the basis of the hypothesis that each
SU can satisfy its own minimal communication requirement
if γ̄i(k) reaches γ̄ ∗i (k). (ii) The interference affecting the
PU can sometimes be greater than the IT threshold because
of the existence of exogenous input w̃i(k) and the measure-
ment noise vi(k). (iii) The control parameters do not change
with the communication situation in time. To address these
considerations, we modify the above control algorithm and
obtain an improved power control scheme.
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IV. TIME-VARYING CONTROLLER WITH ADAPTIVE
WEIGHT AND SAFETY MARGIN
SWITCHING SCHEME
In this section, we introduce the adaptive weight and safety
margin switching scheme for the IT threshold. Both are devel-
oped to enhance the QoS of communication.

In a communication system, the essential measure of
QoS is the SINR related to all performance indexes, such
as the data transmission rate, BER, etc. Here, we denote the
data transmission rate as a Shannon capacity-like expression.
Moreover, we introduce a lower bound and an upper bound
of the SINR to ensure acceptable transmission, defined as
γmin
i and γmax

i , respectively. Then, according to [19], the rela-
tionship among the data transmission rate, the instantaneous
SINR and the threshold of the SINR can be formulated as

Ri =


0, γi < γi

min

WB log2(1+ γi), γi
min
≤ γi ≤ γi

max

WB log2(1+ γi
max), γi > γi

max

(40)

where WB is the transmission bandwidth.
From the definition of (40), we know that Ri monotonically

increases with γi when it is in
[
γmin
i , γmax

i

]
, the communica-

tion breaks off when γi < γi
min, and the increase in the SINR

is meaningless after the instantaneous SINR surpasses the
required maximum γi

max. Based on this property, we should
keep the instantaneous SINRwithin the reasonable region and
larger than the acceptable minimum γi

min. Clearly, any user
will be dropped if its instantaneous SINR still cannot reach
the minimum value after utilizing all control effort.

In Section III, the proposed power controller with a
fixed parameter is based on the hypothesis that γ ∗i (k) is
larger than γimin. Considering the concern discussed above
regarding the variation of the communication environment
and communication QoS, we propose an adaptive operation
within

[
γ̄min
i , γ̄max

i

]
and the corresponding decibel values

of γmin
i and γmax

i , and we define γ̄mid
i as the mid-value

in
[
γ̄min
i , γ̄max

i

]
.

A. WEIGHT PARAMETER ADJUSTMENT
In Section III, we briefly discussed the function of weights in
the control results. However, the emphasis on the tracking of
the IT threshold should not be dominant all the time. In fact,
it can be appropriately relaxed when the performance of the

SU is satisfactory. For this reason, we adjust the weights in
real time according to the actual situation of the CRN. In the
optimal control theory, obtaining a suitable adaptive weight
depends on the nature and the behavior of the system, which
can significantly improve the system performance. Therefore,
we introduce an adaptive weight for ρlmin

i (k) to better control
the transmit power of each SU. Here, we set ρssi (k) = 1 and
ri(k) = 1 and only adaptively update ρlmin

i (k) by

ρ
lmin
i (k + 1) = max

{
ε, ρ

lmin
i (k)+ `

[
γ̄mid
i − γ̄ ∗i (k)

]}
(41)

where the small constant ε is used to ensure that ρlmin
i (k) to

track the IT threshold; ` is the update step-size, which is
used to keep the variation of ρlmin

i (k) at a reasonable order
of magnitude between two time slots. Specifically, in (41),
we define the mid-SINR of the ith SU γ̄mid

i as a standard for
the communication performance to guarantee nominal work
of the SU, as previously discussed. When the evolved target-
SINR is beyond γ̄mid

i , ρlmin
i (k) is reduced to relax the use

of spectral resources by the SU. In contrast, an increase of
ρ
lmin
i (k) will result in the use of more spectral resources by

the SU to achieve better communication performance without
influencing the PU. This operation can limit the obtained
target-SINR such that it is not far away from the mid-SINR.
With this adaptive weight, the control gain in each time slot
is calculated. We still use an infinite domain solution for the
calculation ofKi (k) with the updated weight ρ

lmin
i (k) in each

time slot. The control gain can be modified from (32) by (42),
as shown at the bottom of the this page, with the time-varying

parameter Qi(k) =
[
ρssi 0
0 ρ

lmin
i (k)

]
. Then, the parameter of

a backwards-time Riccati recursion is determined according
to (43), as shown at the bottom of the this page.

Although this power allocation method can protect the
PU from interference caused by the SU to a certain extent,
we still hope to find a protection mechanism for the PU from
the perspective of the interference, for example, the channel
fluctuation.

B. SWITCHING OF SAFETY MARGIN FOR IT THRESHOLD
Since the actual channel has some uncertainties, the designed
power control scheme based on the channel parameter esti-
mation cannot always guarantee that the actual interference

x̂i(k) = Ãix̂i(k − 1)+ B̃2
i ui(k − 1)+ Li(yi(k − 1)− Cix̂i(k − 1)) (35)

Pi = Qi + ÃT
i PiÃi − ÃT

i PiB̃
2
i [ri +

(
B̃2
i

)T
PiB̃2

i ]
−1
(
B̃2
i

)T
PiÃi (36)

PKi (k + 1) = ÃiPKi (k)Ã
T
i +Qw

i − ÃiPKi (k)Ci
T
[
Rv
i + CiPKi (k)Ci

T
]−1

CiPKi (k)Ã
T
i (37)

Ki(k) =
[
ri(k)+

(
B̃2
i

)T
Pi(k + 1)B̃2

i

]−1(
B̃2
i

)T
Pi(k + 1)Ãi (42)

Pi(k) = Qi(k)+ ÃT
i Pi(k + 1)Ãi − ÃT

i Pi(k + 1)B̃2
i [ri(k) +

(
B̃2
i

)T
Pi(k + 1)B̃2

i

]−1(
B̃2
i

)T
Pi(k + 1)Ãi (43)
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FIGURE 4. Closed-loop system of distributed power control based on LQG regulator with adaptive weight and switching scheme.

affecting the PU does not exceed the IT threshold. To further
increase the possibility that the actual interference is below
the IT threshold, we introduce a positive safety margin δi for
the IT threshold. Then, the actual IT threshold is replaced by

Î lavg = Ī lavg − δi (44)

Clearly, each SU will use Î lavg as a reference parameter to
control the transmit power; thus, we should properly choose
the margin δi.
As mentioned before, the required target-SINR in the

interval from γ̄min
i to γ̄max

i can satisfy the communication
requirement. Moreover, there is a connection between the
SINR performance of the SU and the degree of interference
with respect to the PU. To keep each SU from not allocat-
ing too much power after its performance is determined to
be satisfactory, we should increase δi when γ̄ ∗i (k) is higher
than γ̄max

i . This implies that we reduce the interference for
both SUs and PUs. In contrast, when γ̄ ∗i (k) is lower than γ̄

min
i ,

we should reduce δi to allocate more power to the SU to
ensure better use of the spectrum resources.

According to the discussion above, we propose a switch
scheme for updating δi. We assume that one unit change of δi
is 1δi, where 0 ≤ δi ≤ Z1δi and Z is an integer given in
advance according to the communication environment. This
means that δi increases consecutively no more than Z times
if the initial δi is zero. Then, the switching of δi for the
IT threshold is performed as follows:

δi=


δi −1δi, γ̄ ∗i (k)<γ̄

min
i and 0 <δi ≤ Z1δi

δi +1δi, γ̄ ∗i (k) ≥ γ̄
max
i and 0 ≤ δi<Z1δi

δi, others

(45)

Note that any SU will be dropped if its communication
performance is still not satisfactory when the corresponding
safety margin reduces to zero.

In summary, each SU can control its transmit power
according to the proposed algorithm using either the adaptive
weight or via safety margin switching or both. To better
understand our proposed distributed power allocation algo-
rithm with the adaptive weight and safety margin switching,
we present the entire closed-loop system in Fig. 4.

V. ANALYSIS OF THE PROPOSED ALGORITHM
In this section, we will conduct the analysis of the proposed
algorithm in terms of the signal overhead, network stability,
computational complexity and admission control.

A. SIGNAL OVERHEAD
In our power allocation scheme, we use the available informa-
tion of the traditional power control algorithms for the tradi-
tional mobile communication networks, and we also require
additional information. Specifically, in each time slot, when
SUs update their transmit power, each SU needs to know the
information regarding the difference between the IT thresh-
old and the instantaneous interference from ε̄li provided by
the PU l. Therefore, our power allocation scheme needs a
bit more signaling overhead than required in the traditional
networks. This extra overhead is inevitable in CR systems,
as the SU cannot achieve power control by itself without any
help from the primary network and without disturbing the
nominal communication of the PUs. For this reason, some
approaches to transmit information from the primary network
to each SU have been addressed. The authors of [24] propose
setting the detection point in the primary network, which
requires measuring the interference affecting PUs caused by
SUs in real time and then sending the result as feedback to
the SUs. In [34], the authors use the limited channel feedback
technology to send the relevant primary network information.

When a PU transmits user information, the interference and
the IT threshold can separately be transferred to each SU,
or the difference between the interference and the IT thresh-
old can be directly transmitted. Note that variation of the
average IT threshold occurs only when the number of users in
the secondary network changes, while the interference affect-
ing the PU changes at every moment. Therefore, PUs are
required to send as feedback both the real-time interference
from the SUs in every time slot and the current average
temperature threshold only when the number of SUs in the
network changes. Undoubtedly, a PU can also choose to
directly send feedback regarding the difference between the
current IT threshold and the instantaneous interference affect-
ing SUs. In practical applications, this information needs to

39188 VOLUME 6, 2018



S. Zhang, X. Zhao: Distributed Power Allocation Based on LQG Regulator With Adaptive Weight and Switching Scheme

be quantified and transmitted via a feedback channel. We can
determine which form of feedback information is appropriate
according to the actual network situation.

B. SYSTEM STABILITY
When we put the state-space models of all SUs together,
the whole dynamic system of the CRN can be expressed
as in (46), as shown at the bottom of this page, where

x̃i(k) =
[
ε̄ssi (k), ε̄

lmin
i (k)

]T
and w̃i(k) =

[
ω̄i(k), q̄

lmin
i (k)

]T
,

i ∈ M for each co-channel link. The entries of the
corresponding matrices Ãi, B̃1

i and B̃1
i for i ∈ M

are the same as those in (28). For the block diago-
nal decoupled system in (46), every subsystem for each
co-channel link is equivalent to an independent
system [19], [35]. The decentralized structure makes this
decoupling possible because the influence of the co-channel
is modeled as a steady first-order Markov random model
via (10), as addressed in Section II. Since the network can
be decomposed into M co-channel subsystems, the stability
of the overall system is equal to that of each individual
one. Thus, we can analyze the stability of the state-space
model (28) to evaluate the entire stability of the CRN.

We briefly discuss the stability of (28). According to the
control theory, we can deduce that (28) is internally stable if
for the closed-loop system

x̃i(k + 1) =
(
Ãi − B̃2

iKi

)
x̃i(k) (47)

with zero input, the pair
(
Ãi, B̃2

i

)
is controllable, x̃i(k) is

detectable, and Qi(k) is symmetric positive definite [36].
It is obvious that (47) is internally stable since these con-
ditions are all satisfied. External stability, also called input-
output stability, means that a bounded input always produces
a bounded output. For a linear system, if its closed-loop
system is controllable and observable, the external stability
can be deduced by internal stability. In our control system,
all the conditions mentioned above are available, thus we can
conclude that system (46) is stable [19]. In general, the state

feedback control structure of the proposed algorithm ensures
the stability of the closed-loop system.

C. COMPUTATIONAL COMPLEXITY
It is worth mentioning that the complexity of our power
allocation algorithm is very low compared to the algorithms
based on optimization theory. In particular, for the static
LQG control solution, the state feedback gain of infinite
domain solutions Ki is calculated only one time due to the
parameters being known. At the same time, all the matrices
involved in the calculation have dimensions of 2 × 2, and
these matrices, which need to be inversed, are converted
into scalars. For the adaptive LQG power control scheme,
the state feedback gain Ki is calculated in each time slot
for the time-varying weight; this calculation is similar to the
static LQG control solution. The difference is that Ki needs
to be calculated at every moment.

D. ADMISSION CONTROL
To make the power control feasible, some central admission
control should be added to the network to adjust the num-
ber of access users. This central admission control approach
does not conform to the concept of our proposed distributed
solutions. However, a distributed admission control is more
suitable than the central one. In our scheme, we directly use
the admission control method addressed in [19], where the
user, who uses the maximum transmit power or for whom the
interference affecting the PUs is above the IT threshold, fails
to achieve the lowest acceptable SINR and thus automatically
ends the communication.

VI. SIMULATION RESULTS
In this section, we present simulations to illustrate the perfor-
mance of the proposed distributed power allocation scheme.
We first consider a small-scale CRN for easy analysis of
the overall performance. Then, we conduct simulations with
more users to show the superiority of our power alloca-
tion based on LQG control compared with the conventional
approaches. Note that our simulations are run only at the



x̃1(k + 1)
...

x̃i(k + 1)
...

x̃M (k + 1)

 =


Ã1 0 · · · · · · 0

0
. . .

...
... Ãi

...
...

. . . 0
0 · · · · · · 0 ÃM





x̃1(k)
...

x̃i(k)
...

x̃M (k)

+


B̃1
1 0 · · · · · · 0

0
. . .

...
... B̃1

i

...
...

. . . 0
0 · · · · · · 0 B̃1

M





w̃1(k)
...

w̃i(k)
...

w̃M (k)



+



B̃2
1 0 · · · · · · 0

0
. . .

...
... B̃2

2

...
...

. . . 0
0 · · · · · · 0 B̃2

M





u1(k)
...

ui(k)
...

uM (k)

 (46)
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frame level for the allocated transmit power and the interfer-
ence without consideration of modulation and coding.

In each simulation scenario, we consider only the path
loss and shadowing for all links regardless of fast fading,
with the assumption that the period of power update is large
enough for fast fading to occur, as mentioned in Section II.
Thus, the coherent channel gain Gij is assumed to follow a
lognormal distribution

Gij = G0

(
dij
d0

)−η
10

ψdB
10 (48)

where G0 =

(
λ

4πd0

)2
is a constant that depends on the

antenna characteristics and the average channel attenuation,
dij is the distance from the transmitter j to the receiver i, d0 is
a reference distance for the far-field antenna, η is the path loss
exponent, which, depending on the physical environment,
is set between 2 and 6, andψdB is a Gaussian distribution ran-
dom variable with zero-mean and variance σ 2

ψdB
. The corre-

lation between shadowing and distance can be characterized
as

R (vTs) = σ 2
ψdB

a (49)

As discussed in Section II, a = exp
(
−
vTs
Xs

)
, where the

velocity v of each user approaches zero, resulting inR (vTs) =
σ 2
ψdB

. These parameters can be obtained by approximating
either the analytical or empirical model. In our simulations,
we choose a carrier frequency fc of 3 GHz (λ = c

fc
and

c = 3 × 108m/s), d0 of 10 m, η of 4, R (vTs) = σ 2
ψdB

of
3.65 and a transmission bandwidth W of 1 MHz.

Let us consider a small-scale CRN in which 2 PU-RXs
and 3 SU-RXs are fixed and served by 1 PBS and
3 corresponding SU-TXs, respectively, in an area of
1000 m × 1000 m, as illustrated in Fig. 5(a), and a large-
scale CRN in which 10 PU-RXs and 100 SU-RXs are
fixed and served by 1 PBS and 100 corresponding SU-TXs,
respectively, in an area of 10000 m × 10000 m, as illus-
trated in Fig. 5(b). The generalized background noise at each
SU-RX is randomly generated among (0, 1 × 10−8)W . The
IT threshold of each PU is also taken randomly from
an interval, where we take it from (0, 1 × 10−9)W and
(0, 1 × 10−8)W in the first two parts and in the last part
respectively. In these communication environments, each

FIGURE 5. Placement of users. (a) Small-scale CRN. (b) Large-scale CRN.

SU-TX adjusts its transmit power by the proposed algorithm
with a time delay of one sample.

A. ALGORITHM CONVERGENCE
Wefirst verify the convergence of the algorithmwith constant
CSI where the channel gains do not change in the process
of power control and without considering any measurement
error and adaptive operations. Note that the LQG control
becomes LQR control if we do not consider these factors.
Thus, we set ρssi (k) = 1, ρlmin

i (k) = 5 and ri(k) = 1. On the
basis of these settings, the influence of standard target-SINR
TPC gain αi on IT threshold tracking and SINR tracking
is shown in Fig. 6 and Fig. 7, respectively. From the two
figures, we find that the ultimate interference power and
SINR of each SU are the same no matter what the value of
αi is. However, different αi results in different convergence
rates, and larger αi results in quicker convergence. Moreover,
we cannot pursue only the convergence speed even though a
high αi will result in a large power increment in each time
slot, which raises the interference from the SU to the PU
above the average IT threshold (Ave-Ith). We can also see the

FIGURE 6. IT threshold tracking versus difference αi for each SU.

FIGURE 7. SINR tracking versus difference αi for each SU.
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overshoot (the excessive interference affecting PU) in Fig. 6
when αi = 0.88. This means that αi should be appropriately
selected according to the practical communication situation.
It is clear that this temporary excessive interference occurs
only in the first few time slots, while the interference power
affecting the PU is not larger than the average IT threshold
after several transition time slots.

B. PERFORMANCE OF THE PROPOSED ALGORITHMS
WITH TIME-VARYING CSI
We give the time response of the closed-loop power control
system for time-varying CSI to illustrate the effectiveness of
our power allocation algorithm based on the LQG regulator.
As shown in Section II, the channel gain of each link at the
decibel scale is formulated as a first-order Markov process of
the white Gaussian fluctuation with zero-mean and a variance
of 0.02. We also assume that the measurement error of the
state variables is the white Gaussian sequence with zero-
mean and a variance of 1. We give the response curves of the
closed-loop power control systemwith the LQR and the LQG
regulator in Fig. 8. To demonstrate the steady-state response,
we extend the number of control time slots to 100.

From Fig. 8, we see that the control performance with
the LQR is worse than that with the LQG regulator for the
stochastic channel in three aspects, namely, power evolution,
interference tracking and target-SINR tracking. Specifically,
looking at the evolution of the transmit power, the tracking
of the average IT threshold or the tracking of the target-
SINR, we find that the response of the LQR varies greatly
compared with that of the LQG regulator because as the
channel state evolves over time, the LQG regulator has strong
robustness with respect to the actual channel variation. How-
ever, the values corresponding to the LQR fluctuate around
those corresponding to the LQG regulator, showing that the
proposed algorithm has robustness whether or not we carry
out Kalman estimation.

C. PERFORMANCE COMPARISON OF DIFFERENT
ALGORITHMS
Now, we compare the performance of our proposed algorithm
with that of typical power allocation algorithms for CRNs,
namely, the distributed optimization algorithm (referred to
as ConOpt algorithm) and TPC-PP and ITPC-PP algorithms
in [26]. In ConOpt algorithm, the objective is to maximize
the total data transmission rate of SUs with the IT con-
straint on each PU and the maximum transmit power con-
straint. However, the chosen feasible region for this problem
makes the IT constraint dominant and the maximum transmit
power constraint weaker. Similar to our proposed scheme,
TPC-PP and ITPC-PP algorithms are also designed on the
basis of TPC algorithm, where each SU employs TPC
algorithm as long as the total interference power at each
PU-RX is below a given IT threshold. Otherwise, they will
reduce the transmit power in proportion to a ratio calculated
according to the relationship between the given threshold and
the total interference power at PU-RX. In particular, for our

communication scenario, the ratio used by TPC-PP algorithm
can be expressed as

βi (k) = min
l

{
I lth∑

i∈M hli (k) pi (k)

}
, l ∈ L (50)

And the ratio used by ITPC-PP algorithm can be written as

β̃i (k)=

βi (k) , if βi (k)≥1

βi (k)
(∣∣∣I lmin

th − I
lmin

∣∣∣ I lmin−I
lmin
i

h
lmin
i

)
, others

(51)

where I lmin =
∑

i∈M hlmin
i (k) pi (k) and I lmin

i = hlmin
i (k)

pi (k). From (50) and (51), we can find that ITPC-PP algo-
rithm considers the interference level of PUs from each
SU further comparing with that of TPC-PP algorithm.

We compare the performances of these algorithms for
the small-scale CRN given in Fig. 5(a) and the large-scale
CRN shown in Fig. 5(b) in consideration of both constant
CSI and time-varying CSI. In the former case, the channel
gains do not change in the power control process and the
measurement error of the required information is also not
considered. In the time-varying CSI case, each channel gain
changes following the previous description in (48), and the
measurement error of the required information is consid-
ered. The average performance comparison, conducted via
1000 Monte Carlo experiments using randomly generated
large-scale CRN snapshots, is also given. We compare the
interference for each PU, the outage ratio of PUs and SUs, and
the total data transmission rates of SUs respectively. In the
simulations, the outage ratio of PUs is defined as the ratio
of the number of PUs whose IT threshold is broken to the
total number of PUs. The outage ratio of SUs is defined as
the ratio of the number of SUs whose instantaneous SINR
is lower than the fixed target-SINR to the total number of
active SUs.

Note that the outage ratio used is the mean of the ratios
of the last 15 time slots for the fixed 0 dB target-SINR in
the following first two parts. The total data transmission rate
is the sum of the data transmission rates of all SUs, defined
as (40).

1) SMALL-SCALE CRN WITH CONSTANT CSI
First, we present the performance of these algorithms for
constant CSI which is an ideal situation always considered
in the analysis of the previous power allocation algorithms.
In this case, we compare LQR algorithm with ConOpt,
TPC-PP and ITPC-PP algorithms.

Fig. 9 illustrates the interference to the 1st PU and the
2nd PU,where Ith1 and Ith2 are the IT thresholds of the 1st PU
and the 2nd PU, respectively. From Fig. 9, we observe that,
in this ideal situation, all algorithms can keep the IT threshold
of each PU as they are all designed under the IT constraint.
Fig. 9 also shows that the interference from SUs to each
PU is almost the same for ConOpt algorithm since this algo-
rithm considers all PUs equally. In contrast, this interference
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FIGURE 8. Performance comparison of different algorithms with time-varying CSI. (a) by LQR control. (b) by LQG
control. (c) by LQR control. (d) by LQG control. (e) by LQR control. (f) by LQG control.

produced by TPC-PP algorithm, ITPC-PP algorithm and our
proposed algorithm is more serious for the 2nd PU, as these
three algorithms pay more attention to the most vulnera-
ble PU. As shown in Fig. 9, for the 2nd PU, the resulting
interference of either TPC-PP or ITPC-PP algorithms is larger
than that of our algorithm, and it even reaches the IT threshold
of the 2nd PU, which implies the conservativeness of the
average IT constraint used. Meanwhile, the use of the average
IT constraint makes the interference affecting any PU not

very high. In addition, we note that the results of TPC-PP
algorithm and ITPC-PP algorithm are almost the same since
βi (k) ≥ 1 always holds in this case. From (50) and (51),
we can see that the two algorithms execute different control
laws only when βi (k) < 1.
Fig. 10 shows the outage ratios for PUs and SUs. We can

see that ConOpt algorithm, TPC-PP algorithm, TPC-PP algo-
rithm and our algorithm do not allow the communication
interruption of PU, which means that the four algorithms are
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FIGURE 9. Total interference from SUs to PU for different algorithms.

FIGURE 10. Outage ratio of PUs and SUs for different algorithms.

effective to protect PUs in the ideal situation. We find that
the outage ratio of SUs by our algorithm is almost the same
as that by ConOpt algorithm and lower than those by both
TPC-PP and ITPC-PP algorithms when we guarantee a zero
outage ratio for PUs.

The total data transmission rate of SUs is given in Fig. 11.
It shows that the total data transmission rate of ConOpt
algorithm is the highest among these algorithms. The reason
is that it takes the total data transmission rate of SUs as the
optimization objective under the condition that the commu-
nication of PU cannot be broken. From this figure, we also
find that the proposed LQR algorithm cannot achieve such a
high transmission rate, while it can give reliable protection to
PUs and performs similarly as ConOpt algorithm and better
than TPC-PP and ITPC-PP algorithms. Moreover, the total
data transmission rates of TPC-PP algorithm and ITPC-PP
algorithm are still the same since the IT threshold of each
PU is never broken in the control process to hold βi (k) ≥ 1.

2) SMALL-SCALE CRN WITH TIME-VARYING CSI
For the time-varying CSI in the period of data packet trans-
mission, SUs use the LQG regulator to control power in
our proposed scheme. To conduct the simulation we take
the corresponding robust versions of ConOpt, TPC-PP and

FIGURE 11. Total transmission rate of SUs for different algorithms.

ITPC-PP algorithms, called WorstCase, TPC-PP-W and
ITPC-PP-W respectively. These robust algorithms are all
based on the robust optimization theory [10], [11], [26],
where a worst percentage of uncertainty Pδ is assumed to
deal with all factors that are unsatisfactory but inevitable,
such as the fluctuation of channel gain, the measurement
error of the required signal and the influence caused by
time delay of the feedback information in the power control
process. In fact, a high worst percentage of uncertainty can
reduce the sensitivity of a power allocation algorithm to these
undesirable factors but enhance the conservativeness of the
algorithm. In the following simulations, we use three typical
worst percentages of uncertainty, namely 0.05, 0.1 and 0.2,
by which the corresponding simulation results are illustrated
in Fig. 12, Fig. 13 and Fig. 14 respectively.

FIGURE 12. Total interference from SUs to PU for different algorithms.

As shown in Fig. 12, due to the existence of the channel
variation and the measurement error, there are interfer-
ence fluctuations for all algorithms. Except for our algo-
rithm, the interferences affecting PUs, especially PU2, from
all other algorithms exceed the corresponding IT thresh-
old more times. Although the corresponding robust versions
of ConOpt, TPC-PP and ITPC-PP algorithms outperform
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FIGURE 13. Outage radio of PUs and SUs for different algorithms.
(a) Outage radio. (b) Outage radio verse uncertainty percentage.

the original versions in this matter, they still have much
more stronger interference to PUs than our algorithm with
LQG regulator which has only slightly higher interference
affecting the 1st PU in the first few control transient slots.
After this period, the interference becomes smooth com-
pared with those of other algorithms due to the control pro-
cess, and the interference affecting PUs is always below the
IT threshold.

In order to demonstrate the superiority of our proposed
scheme and the effect of different worst percentages of the
uncertainty used, we give the bar graphs of outage radio of
PUs and SUs for different algorithms and different worst
percentages of uncertainty in Fig. 13.

Fig. 13(a) presents the outage radio of PUs and SUs for
different algorithms in the power control process, where
the worst percentage of uncertainty adopted by WorstCase,
TPC-PP-W and ITPC-PP-W algorithms is 0.1. In the process,
we find that only our LQG algorithm can guarantee zero out-
age ratio of PUs. On the contrary, the other algorithms disturb
PUsmore or less. Additionally, it not only protects the normal
communication of PUs but also obtains similar outage ratio
of SUs as ConOpt and WorstCase algorithms. Although the

WorstCase, TPC-PP-W and ITPC-PP-W algorithms take 0.1
worst percentage of uncertainty to protect PUs, their outage
ratios of PUs are still over zero. In addition, from Fig. 13(a),
we also obverse that ITPC-PP algorithm and its robust ver-
sion, ITPC-PP-W algorithm, can obtain a better outage ratio
of SUs than that of TPC-PP and TPC-PP-W algorithms
respectively, which is consistent with the results in [26].
We also find that the outage ratio of PUs of ITPC-PP-W
algorithm is lower than that of ITPC-PP algorithm, but
its outage ratio of SUs is higher compared with that
of ITPC-PP algorithm. The reason is that outage ratios of PUs
and SUs are in contradiction to each other.

We use Fig. 13(b) to describe the effect of different worst
percentages of uncertainty. As addressed in [10] and [11],
the original non-robust algorithm is equivalent to the robust
algorithm with zero worst percentage of uncertainty, we give
the comparison of WorstCase, TPC-PP-W and ITPC-PP-W
algorithms with Pδ = 0, Pδ = 0.05, Pδ = 0.1 and
Pδ = 0.2 respectively. As described above, a high worst
percentage of uncertainty will introduce strong conserva-
tiveness. Thus, for these algorithms, the higher the worst
percentage of uncertainty they use, the lower the outage ratio
of PUs they get or the larger the outage ratio of SUs they
obtain. In general, the protection for PUs using the robust
algorithm depends on the priori knowledge regarding to the
worst percentage of uncertainty. However, because of the
randomness of the channel fluctuation and the measurement
error of the required information, the significant tendency in
the simulation is obvious but slightly variable; such as the
outage ratio of SUs obtained by TPC-PP-W algorithm with
0.1 percentage of uncertainty is little lower than that of other
uncertainties.

In Fig. 14, we present the total data transmission rate of
SUs for above algorithm. This performance corresponding
to the LQG regulator is still between those of ConOpt algo-
rithm and TPC-PP and ITPC-PP algorithms including their
robust versions. The smoothness of the transmission rate of
the LQG regulator is nearly the same as that of WorstCase

FIGURE 14. Total transmission rate of SUs for different algorithms.
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algorithm but the protection for PUs is much better than
that of WorstCase algorithm, which is the most important
requirement in a CRN. From this figure, we also know that
ITPC-PP algorithm can get higher total transmission rate of
SUs than that of TPC-PP algorithm since it uses the control
law (51) to further deal with the interference level of PUs
from each SU.

3) LARGE-SCALE CRN WITH TIME-VARYING CSI
Now we consider a large-scale CRN in the simulations with
time-varying channel gain of each link. In this scenario,
we adopt the time-varying controller having an adaptive
weight and switching safety margin of the IT threshold
proposed in Section IV, with ε = 2, ` = 1 × 10−3

and ρlmin
i = 5 for each SU, 1δ = 1, the largest num-

ber of Z being 20, and the initial safety margin for each
SU being 5. In the following figures, we illustrate the
performance of different algorithms with different fixed
target-SINRs [−15,−5, 0, 5, 10, 20, 30] dB, where the fixed
target-SINR is the mid-value γ̄mid

i in
[
γ̄min
i , γ̄max

i

]
, with

γ̄max
i − γ̄min

i = 40 dB. In addition, the performance simula-
tions of the power allocation with the time-varying controller
are similar to those in Fig. 6 ∼Fig. 14.
Fig. 15 gives the outage ratios of both PUs and SUs for

different algorithms versus the fixed target-SINR in the large-
scale CRN as shown in Fig. 5(b). The results are the average
value of 1000 times experiments. We find that WorstCase,
TPC-PP-W and ITPC-PP-W algorithms with 0.1 worst per-
centage of uncertainty perform better than ConOpt, TPC-PP
and ITPC-PP algorithms respectively, but they cannot guar-
antee zero outage ratios for PU, and our proposed algorithm
performs the best. From Fig. 15, we also find that the outage
ratios of PU produced by ConOpt and WorstCase algorithms
do not change with the variation of the fixed target-SINR,
since they only maximize the current total data transmis-
sion rate without considering the lowest acceptable SINR.
Moreover, our algorithm has almost the same the outage ratio
of SUs as that of WorstCase algorithm.

FIGURE 15. Outage ratio for PUs and SUs versus fixed target-SINR for
different algorithms.

In Fig. 16, we present the average outage ratio versus
the fixed target-SINR from 1000 independent snapshots for
the large-scale CRN where the location of each user is ran-
domly generated and the worst percentage of uncertainty
used by WorstCase,TPC-PP-W and ITPC-PP-W algorithms
is 0.2. We find that our LQG regulator ensures a zero out-
age ratio no matter what the fixed target-SINR is for PUs,
but the other algorithms cannot. In addition, our scheme
has almost the same SU outage ratio as those of ConOpt
and WorstCase algorithms but lower than those of TPC-PP,
TPC-PP-W, ITPC-PP and ITPC-PP-W algorithms.

FIGURE 16. Average outage ratio for PUs and SUs versus fixed
target-SINR for different algorithms in a large-scale CRN.

VII. CONCLUSIONS
We propose a distributed closed-loop power allocation algo-
rithm and its improved version with adaptive weight adjust-
ment and a safety switching mechanism for CRNs, where
the power control problem is formulated by a state-space
description instead of using optimization approaches. This
proposed algorithm based on the dynamic description of the
problem can well guarantee a zero outage ratio for PUs and
an acceptable outage ratio and a total data transmission rate
for SUs when the channel gain varies. In addition, this power
control algorithm achieves the same signal overhead as those
of the previous power allocation algorithms while also having
a lower computational complexity for a time-varying channel.
Compared with the power allocation algorithms based on
convex optimization technology, this kind of power alloca-
tion is much more practical since the whole CRN is consid-
ered as a closed-loop system with a changing environment
and uncertainty. Based on the given simulation results from
different perspectives, we can conclude that the proposed
power allocation method has more advantages; thus, it will
be developed further for more complicated CRNs. Finally,
we believe that dynamic control for CRNs with dynamic
descriptions is more interesting and challenging since this
work can address many dynamic factors, such as a time-
varying channel, stochastic uncertainty, different estimation
errors, time delay, the random changing of users, different
QoS requirements, robustness against control parameters, etc.
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