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ABSTRACT The feasibility and popularity of mobile healthcare are currently increasing. The advancement
of modern technologies, such as wireless communication, data processing, the Internet of Things, cloud, and
edge computing, makes mobile healthcare simpler than before. In addition, the deep learning approach brings
arevolution in the machine learning domain. In this paper, we investigate a voice pathology detection system
using deep learning on the mobile healthcare framework. A mobile multimedia healthcare framework is also
designed. In the voice pathology detection system, voices are captured using smart mobile devices. Voice
signals are processed before being fed to a convolutional neural network (CNN). We use a transfer learning
technique to use the existing robust CNN models. In particular, the VGG-16 and CaffeNet models are
investigated in the paper. The Saarbrucken voice disorder database is used in the experiments. Experimental
results show that the voice pathology detection accuracy reaches up to 97.5% using the transfer learning of
CNN models.

INDEX TERMS Mobile multimedia healthcare, voice pathology detection, deep learning, Saarbrucken voice

database.

I. INTRODUCTION

The healthcare industry is not only for making money but
also for providing basic to high-end health services to people.
Remote healthcare or tele-healthcare is needed nowadays.
The need arises because of several reasons: (i) specialist doc-
tors are scarce, (i) commuting to remote areas is sometimes
difficult, (iii) peak-hour traffic jam in the urban area may
prohibit going to the hospital, (iv) patients are unwilling to
visit the doctors for the follow-up, and (v) patients have busy
schedule. Therefore, research on remote healthcare or mobile
healthcare has increased in recent years.

A mobile healthcare framework needs several components,
such as sensors that can collect data from patients, portable
processing units, short- and long-range wireless communi-
cation, and edge and/or cloud servers. In addition to these
components, registered doctors and caregivers along with
dedicated vehicles are necessary to speed up the service. The
immense development in wireless communication technolo-
gies and computing processing power has enabled mobile
healthcare to provide fast, low-cost, comfortable, and hassle-
free services. The mobile healthcare industry is projected
to have revenue of over billions of US dollars in the next
couple of years [1]. However, mobile healthcare is yet to

obtain wide patient acceptance due to trust, privacy, and
security issues. Nevertheless, sophisticated and outstanding
developments in technologies related to accuracy, privacy,
and security increase its patient acceptance [2], [3].

Many telemedicine or mobile healthcare frameworks have
been proposed in literature. Some of them target the infras-
tructure improvement of the framework [4], [5], others
focus on edge and cloud computing [6], [7], and the rest
focuses on computing and accuracy [8]-[10]. The infras-
tructure is mainly related to the arrangement of the Internet
of Things (IoT), software defined networks, and the use of
radio and wide access networks. Cloud and edge comput-
ing deal with access to servers, authentication and security,
data processing, seamless distribution of jobs, coordination
between clients and stakeholders, and processing acceleration
by arranging edge caches before transmitting signals to cloud
servers.

This study aims to improve the accuracy of the health-
care system by using machine learning techniques. Accurate
processing and classification of signals are important tasks.
Conventionally, many patients do not trust the outcome of
an automated system unless it is interpreted by a specialist
physician, which we also agree.
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FIGURE 1. lllustration of a smart healthcare system [26].

Medical assessment has two types: manual and auto-
matic. Each of these assessments has pros and cons. The
manual assessment needs (i) the physical presence of
the doctor, (ii) invasive sensors, such as endoscopy, and
(iii) costly medical devices. The assessment outcome varies
depending on the judgment and experience of the doctor.
The automatic assessment needs (i) a good algorithm that
can correctly identify the nature of the signal, (ii) high-
speed processing, and (iii) a small number of transmission
errors. The outcome of the assessment must be screened
by an experienced doctor for the final judgment. A total
of 85% of aged US citizens prefer to have treatment at home
if adequate facility is available [25]. Smart cities are being
developed these days to facilitate the healthcare needs of
citizens and residents. Figure 1 shows an infrastructure of a
smart city [26].

Among many healthcare facilities, we choose voice pathol-
ogy detection in this study. Around 7.6% of adult peo-
ple in the United States suffer from voice pathology [11].
Spasmodic dysphonia, which is caused by an involuntary
movement of muscles in the larynx, is a common voice
pathology. This type of voice pathology is common among
people who use their voice excessively, such as singers, teach-
ers, and lawyers [12]. Voice pathology is more common in
women than in men [11].

The treatment of voice pathology needs to start as soon
as possible after its detection; otherwise; the voice problem
will be permanent. Automatic voice pathology detection is
a non-invasive method, in which the detection is done using
the voice signals of the patients only. The voice signals can
be captured by a microphone, a smart phone, or any voice
recorder. A sustained voice of the sound /a/ is normally used
to evaluate voice pathology because it has high amplitude and
is comfortable for the patients to utter [13].
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First, a mobile healthcare framework is designed in this
study. Then, a voice pathology detection system is introduced
in the framework. The system uses the conventional neu-
ral network (CNN) model as the state-of-the-art technique.
Several CNN models are investigated using transfer learning.
This study contributes to literature by (i) integrating the CNN
models in the voice detection system, (ii) using the system in
a mobile healthcare framework, and (iii) utilizing cepstrum
derivatives before the CNN models.

The rest of the paper is organized as follows. Section II
provides a brief literature review on voice pathology detection
system. Section III describes the framework and the pro-
posed system. Section IV discusses the experimental results.
Finally, Section V elaborates the conclusions of the study.

Il. SELECTED WORK ON VOICE PATHOLOGY DETECTION
Voice pathology detection has been rarely investigated. In the
late 1960s, voice quality was measured by shimmer, jitter, and
harmonic to noise ratio [14]. These measurements were ini-
tially derived to assess voice quality during transmission. The
features of voice pathology can be classified into three types:
imported from the speech recognition applications [15], [16],
solely dedicated for the voice pathology detection [17], [18],
and a combination between the previous two [19], [20].

The speech features that are normally used in voice pathol-
ogy detection include Mel-frequency cepstral coefficie-
nts (MFCC), linear predictive cepstral coefficients (LPCC),
and pitch frequency. The MFCC can simulate the hearing
mechanism of humans, whereas the LPCC can simulate the
voice/speech production mechanism of humans.

The specific features that are dedicated to voice pathology
detection include shimmer, jitter, harmonic-to-noise ratio,
glottal noise ratio, and vocal tract tube fluctuation [21].
Some of these measurements need a good estimation of the
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pitch period; however, finding the pitch period is a challeng-
ing task. These features alone also cannot detect the voice
pathology in mild condition [20].

Some features are chosen from other domains, such as
multimedia indexing and image processing. These features
include MPEG-7 audio features [20], interlaced derivative
patterns (IDP) [13], and co-occurrence matrix. The MPEG-7
features were initially developed for multimedia indexing,
and they were then used in other applications, such as envi-
ronment recognition and voice pathology detection. The IDP
features were first proposed for face recognition applications,
and they were then incorporated in facial emotion recogni-
tion, speech recognition, and voice pathology detection. The
co-occurrence matrix is a popular image texture classification
matrix, which was later used in many different applications.

A research community needs a good database for analysis.
Among several voice pathology databases, the Massachusetts
Eye and Ear Infirmary (MEEI) database [22] is the most
common; however, it is a commercial database and suffers
from some limitations [16]. The limitations include different
recording environments of normal and pathological voices,
various sampling frequencies of the voice signals, and an
imbalanced number of samples between normal and patho-
logical voices. The second database is the Saarbrucken voice
disorder (SVD) database, which is publicly available via the
Internet [23]. The database contains not only voice samples
but also electroglottographic (EGG) signals. The signals con-
tain the information of the glottis movement during voice
phonation. Another database is the Arabic voice pathology
database (AVPD), which was recently developed at King
Saud University, Riyadh [24]. The database contains samples
of sustained vowels, words, and paragraphs. All the speakers
were native to Arabic language.

An IDP-based voice pathology detection system was pro-
posed in [13]. The system achieved 99.4%, 93.2%, and 91.5%
accuracies in the MEEI, SVD, and AVPD databases, respec-
tively. The system was also evaluated in cross-database cases,
in which accuracies between 78% and 88% were obtained
using different combination of databases in the training and
testing.

A comparison of voice pathology detection accuracies
using sustained vowels and running speech was made in [15].
The signal features were obtained by analyzing the spectrum
of the signal. The results showed that the accuracy using
the sustained vowel was better than that using the running
speech. Notably, the running speech is more commonly used
than the sustained vowel.

Godino-Llorente et al. used Gaussian mixture models and
MFCC features to detect voice pathology [16]. Their system
achieved 0.988 area under curve using the MEEI database.
Glottal noise measures were used to detect voice pathology
in [17]. These measures were the improvement of the typical
harmonic-to-noise ratio and suitable for the voice assessment.

The co-occurrence matrix-based system was proposed
in [18]. In the system, the inputs were voice and EGG signals.
GMMs were used as the classifier. The classifier probabilities
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from the two types of inputs were fused by a Bayesian sum
rule. Using the SVD database, the system achieved 99.87%
accuracy. Different fusion strategies were investigated for
voice pathology detection in [28]. Specifically, score- and
audio-level fusions were compared. The audio-level fusion
produced better result than the score-level fusion. In the SVD
database, the accuracy was around 81%. A personalized fre-
quency estimation-based voice pathology classification was
proposed in [34].

A voice pathology detection system based on a vocal tract
irregularity measure was proposed in [21]. A support vector
machine (SVM)-based classifier was used in the system.
The system gained 99.22% and 94.7% accuracies with the
MEEI and SVD databases, respectively. A preliminary study
of voice pathology detection using a deep learning model
was conducted in [29]. A CNN model combined with a
long short-term memory network was used. Using the SVD
database, the authors obtained 68.08% accuracy. Correlation
features between different frequency regions were investi-
gated in [31]. The results showed that the accuracy using sev-
eral band-limited signals was better than the accuracy using
the full-band signal. Another deep learning-based system was
developed in [33], in which the accuracy was 99.32% using
the MEEI database. In this system, the input was the cepstrum
vector of the voice signal.

The voice pathology detection system in a tele-
healthcare framework was used in some works. In [30],
Muhammad et al. integrated the IoT and cloud computing for
a voice pathology detection framework. A local binary pat-
tern for feature extraction and an extreme learning machine
for classification were used in the study. An accuracy of
98.1% was achieved using the SVD database. Local features
together with GMM-based classifiers were used in a smart
city paradigm in [32]. Voice and EGG signals were the inputs.
An accuracy of 94.2% was achieved using the SVD database.
Another disease prediction system based on the IoT and cloud
with fuzzy logic was proposed in [37]; however, this study
was solely for voice pathology detection.

Ill. MATERIAL AND METHOD

A. FRAMEWORK

Figure 2 illustrates the proposed mobile multimedia health-
care framework. The framework consists of several compo-
nents. Mobile smart sensors are present to capture signals
from the patients. These sensors are accessible via short-
range wireless networks or Bluetooth. The captured signals
can be transmitted to the local machine, which then transmit
these signals to the cloud. The cloud has a cloud manager,
which manages the data flow in and out of the cloud; and an
authentication and privacy manager, which authenticates the
signals that are coming from the registered users and those
that are going to the registered doctors and caregivers. Servers
are also present in the cloud for deep learning processing.
A storage for storing all the medical records is present as well.
The communication between the local machine and the cloud
is done by a radio access network. An optimal scheduling
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FIGURE 3. Voice signal processing in the proposed system.

can be embedded to assign the servers appropriately and
seamlessly.

Once the detection is performed in the cloud server,
the cloud manager sends the decision and some samples of the
voice signal to a registered doctor. The doctor double checks
the decision by analyzing the voice signals and provides
his or her feedback to the cloud. The cloud manager then
notifies the patient about the decision and informs a registered
caregiver for the care of the patient if needed. The entire
framework is non-invasive in nature and is thus comfortable
for the patient.

B. PROPOSED SYSTEM
Figure 3 shows the proposed voice pathology detection sys-
tem using the deep learning approach. The input to the system
is the voice signal from the patient, and the output is a
decision whether the patient has normal or pathological voice.
The voice signal is 1 s long. If the input is more than 1 s,
then it is cut from the middle to make it a signal of 1 s
long. The signal is divided into overlapping frames of 40 ms,
in which the overlapping is 20 ms. The frame length of 40 ms
is a good balance between capturing the pitch periods and
smoothing out the voice breaks. If the length is very long, then
the voice breaks or the noises that cause irregular opening and
closing of the vocal folds fade away. If the frame length is
short, then the sustained effect and the pitch period are lost.
A fast Fourier transform is applied to the framed signal
to convert the signal into a frequency-domain signal. After
concatenating all the frequency-domain representations of
the frames, we obtain a spectrogram. The spectrogram can
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be treated as an image. A total of 20 bandpass filters are
applied to the spectrogram. The filters are octave-scaled
centered. The octave scale usually performs better than the
Mel-scale in voice pathology detection [31]. First- and
second-order time derivatives are applied to the output of
the octave spectrogram. After this operation, we obtain three
image-like patterns, namely, octave spectrogram and its first-
and second-order derivatives. The three image-like patterns
are the input of the CNN models.

In the proposed system, we investigated two CNN models:
the VGG16 Net [36], [38] and the CaffeNet [39].

The VGG16 Net is a very deep CNN model, which con-
tains five blocks of convolution (see Figure 4). In the first
block, there are two convolutional layers of size 3 x 3 and the
number of filters per layer is 64. The second block has also
two layers (128 filters per layer). The next three blocks have
three layers each of size 3 x 3. The number of filters per layer
are 256, 512, and 512, respectively. There are pooling layers
after each convolution block. The last block is followed by
two layers of fully-connected neural networks, and a softmax
layer.

The architecture of the CaffeNet is shown in Figure 5.
There are five convolutional layers and three max pooling
layers. The first two and the fifth convolutional layers are
followed by the max pooling layers. In the figure, the size of
the convolution filters and the number of filters are shown.
For example, the first convolution layer filters are of size
11 x 11, and the number of filters is 96. After the last max
pooling layer, there are two fully-connected neural networks
and a softmax layer.
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FIGURE 5. Architecture of CaffeNet.

In the proposed voice pathology detection system,
the octave spectrogram and its first- and second-order time
derivatives are the input to the VGG16 Net or the CaffeNet.
The inputs are resized to fit the corresponding models. In this
case, we resized the inputs to 227 x 227. Both the VGG16 Net
and the CaffeNet are trained with a large number of images,
and hence these models are robust to many applications. The
number of samples in the voice pathology databases is very
small, and, therefore, we cannot use these models for the
training from scratch. Rather, we use the transfer learning and
the fine-tune approaches to get the benefit of these robust
models [40], [41]. Many applications, especially where the
number of samples is limited, have successfully adopted the
transfer learning and the fine tuning.

In the proposed system, we replace the final softmax layer
of the original CNN models by another softmax layer of
two neurons because we have two classes: normal voice and
pathological voice. The initial parameters of the models are
unchanged except the softmax layer, where random weights
are assigned. After we replace the softmax layer, we fine-tune
the model parameters using the training samples of the voice
pathology database.

The learning rate of the new softmax layer is set to a higher
value than that of other layers. This is because the weights of
other layers are already pre-trained and the model changes
slowly with the new training data. On the other hand, the new
softmax layer needs to learn fast because the weights are
assigned randomly. The step size to change the learning rate is
set to a small value because the weights are already optimized
for a large number of data and needs only a small change with
the new data.
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The weights of the softmax layer were initialized using
random numbers with zero mean Gaussian distribution and
the standard deviation of 0.01. The training parameters of the
model were set as follows: learning rate = 0.001, momen-
tum = 0.9, weight decay = 0.0005. The weights were opti-
mized by using a stochastic gradient decent algorithm with
a batch size of 40 samples. 50% dropout was applied in the
fully-connected layers.

Once the CNN model was fine-tuned, we removed the soft-
max layer. The last fully-connected layer before the softmax
layer was fed into an SVM classifier. The SVM is a pow-
erful binary classifier and is proved to be efficient in many
applications such as image classification, object recognition,
speech recognition, speaker recognition, and environment
recognition [42]. In the SVM classification, a kernel function
projects the input data space into a high dimensional space so
that a hyperplane can separate the samples of two classes. The
objective of the SVM is to find an optimal hyperplane that
can maximize the separation between support vectors of two
classes. There are two parameters in the SVM: kernel func-
tion parameter (in our case, we used the radial basis function
for its good generalization capability) and the optimization
parameter. We tried different values of these parameters using
an extensive grid search, and finally settled to kernel param-
eter = 0.1 and optimization parameter = 0.09 because they
gave the best results.

C. DATABASE

There are several databases to do research on voice pathology
detection. In our experiments, we used the SVD database [23]
and the MEEI database [22]. The SVD database is a publicly
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available database and it contains voice samples of three
sustained vowels /a/, /i/, /u/ at four different pitch intonations:
high, mid, low, and normal. We used /a/ uttered at normal
pitch condition. The MEEI database contains sustained /a/
voice samples. There are two different sampling frequencies;
we downsampled 50 kHz to 25 kHz to have all the samples
the same sample frequency. We chose three voice pathologies
which are common to these databases. The pathologies are
vocal fold cyst, vocal fold polyp, and vocal fold (unilateral)
paralysis. In addition to these, we also used the normal voice
samples. The number of samples in each database is shown
in Table 1.

TABLE 1. Number of samples in the databases. (M = male, F = female).

Database Cyst Polyp Paralysis Normal

M F M F M F M F
MEEI 6 4 8 7 38 32 21 32
SVD 5 1 19 25 [ 121 | 73 137 125

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Several experiments were conducted using the SVD database
and the MEEI database. The experiment cases were as
follows:

(1) Training with the MEEI database and testing with the
SVD database.

(ii) Training with SVD database and testing with the MEEI
database.

(iii) Training and testing with the SVD database. In this
case, only files with sustained vowel /a/ produced at nor-
mal and people older than 15 are used. 1616 (743 males
and 873 females) samples belong to pathological speakers
and 686 (259 males and 427 females) to normal speakers.
We divided the dataset into two subsets. In one experiment,
we used one subset for the training and the other for the
testing. In another experiment, the training and the testing
subsets were interchanged. Finally, we averaged the results
of these two experiments.

TABLE 2. Performance of the proposed system using the VGG16 net.

Experiment
case

(i) Training: | 73.3 75.4 71.7
MEEI,

Testing: SVD
(1) Training: | 94.5 95.4 93.2
SVD;
Testing:
MEEI
(1) Training: | 93.5 94.8 92.4
SVD;

Testing: SVD

% Accuracy % Sensitivity | % Specificity

Table 2 shows the accuracy, the sensitivity, and the speci-
ficity of the proposed system using the VGG16 Net and the
SVM. In the case (i) experiment (training with the MEEI
and the testing with the SVD), the system achieved 73.3%
accuracy, 75.4% sensitivity, and 71.7% specificity. In the

VOLUME 6, 2018

case (ii) experiment (training with the SVD and the testing
with the MEEI), the system obtained 94.5% accuracy, 95.4%
sensitivity, and 93.2% specificity. Finally, in the case (iii)
experiment (training and testing with the SVD), the system
got 93.5% accuracy, 94.8% sensitivity, and 92.4% specificity.
From the experimental results we observe that the system
did not achieve good accuracy in the case (i) experiment.
As the MEEI database has several issues (mentioned earlier),
the system was not trained well with the MEEI database.

TABLE 3. Performance of the proposed system using the CaffeNet.

Experiment
case

(i) Training: | 75.1 76.4 78.7
MEEI,

Testing: SVD
(1) Training: | 94.1 95.7 93.8
SVD;
Testing:
MEEI
(i) Training: | 93.9 94.8 92.8
SVD;

Testing: SVD

% Accuracy % Sensitivity | % Specificity

Table 3 shows the accuracy, the sensitivity, and the speci-
ficity of the proposed system using the CaffeNet and the
SVM. Similar trend as in Table 2 is observed in the results
of Table 3. The accuracies in the case (i), the case (ii), and
the case (iii) experiments were 75.1%, 94.1%, and 93.9%,
respectively. If we compare the results between Table 2 and
Table 3, we find that the system achieved slightly better
results with the CaffeNet than with the VGG16 Net. As the
CaffeNet is shallower than the VGG16 Net and the voice
samples are not too large, the CaffeNet fits better than the
VGG16 Net into the system.

100
90

80

60
50
40

Proposed with  Proposed with ~ System in[13] System in [43]
VGGl6 CaffeNet

Accuracy (%)
-]
[=}

mCase (i) mCase (ii)

FIGURE 6. Comparison of accuracies obtained by different systems in
case (i) and case (ii) experiments.

Figure 6 shows a comparison of accuracies between differ-
ent available systems in the case (i) and the case (ii) experi-
ments. Two systems in [13] and [43] were considered because
these two systems used the same voice samples as with the
proposed system. The results of these two systems were taken
from the corresponding papers. From the results we can see
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FIGURE 7. Comparison of accuracies obtained by different systems in
case (iii) experiment.

that the proposed system either with the VGG16 Net or with
the CaffeNet outperformed the other two systems in both the
cases.

Figure 7 shows an accuracy comparison between the sys-
tems in the case (iii) experiment. From the figure we find
the proposed system achieved better results than other sys-
tems. The accuracies of the other systems were obtained
from the respective papers. It can be noted that the sys-
tems in [13], [43], and [44] did not use the CNN models
in their systems. Therefore, we can state that the use of the
CNN model can significantly enhance the performance of the
voice pathology detection system. We did not perform any
voice pathology classification because the number of samples
per pathology class were too small to fine-tune the CNN
models.

We used an Intel quad-core machine having 16 GB RAM
and NVIDIA 8 GB GPU. The fine-tuning of the CNN models
took approximately one hour, and the detection of a voice
sample during testing took an average of 1.5 seconds. This
timing is acceptable for a real-time voice pathology detection
in a mobile multimedia healthcare framework.

V. CONCLUSION

A mobile multimedia healthcare framework was designed.
The proposed voice pathology detection system was embed-
ded to the framework to constantly assess the voice condi-
tion of a patient. A deep learning in the form of the CNN
models was used in the system. Several popular CNN models
were investigated. In the experiments on the SVD database,
the system achieved 98.77% accuracy with the CaffeNet
CNN model followed by the SVM classifier. The result is
promising because it outperforms some of the previous results
reported in literature. We will perform cross-database exper-
iments in a future study.

The possible directions of future research are as follows.
The voice signal can be divided into several band-limited
signals, and parallel CNN models can be applied to these
band-limited signals. Then, a fusion strategy can be utilized
to fuse the deep-learned features from the CNN models.
Another direction is the use of different types of inputs, such
as voice and EGG signals, combined by deep fusion strategy.
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