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ABSTRACT Accessibility to industrial processes and direct obtaining of the desired services are the
major facilities of Industrial Internet of Things (IIoT). IIoT covers crucial aspects of smart systems,
such as automation, keenly intellective setups, asset management, and user-industry collaboration. These
user-industry setups are facilitated by modern era network technologies, which also include an immense
dependence on drones as one of the on-demand components for amending the quality and maximizing
the coverage. However, these kinds of network formations require precise operations of drones and their
perpetual assessment. The existing studies have highlighted these issues but fail to provide the behavior as
well as the vulnerability evaluations of drones enabled IIoT. In addition, the existing studies are unable to
provide statewise verification of drones and do not recognize anomaly drones based on their behavior over
varying properties. Furthermore, the existing solutions lack facilities for including security policies which
help in assessing the vulnerabilities with a higher accuracy. This paper fills this gap by using a novel N -
layered hierarchical context-aware aspect-oriented Petri net model that not only evaluates the drone behavior
but also assesses it for potential vulnerabilities by the utilization of security policies. Statewise verification
is performed for the proposed model along with a simulation study, which designates its paramountcy in
providing low-complex and low-overhead-based solution with a detection rate higher than 95% and accuracy
as high as 99.9%. The proposed approach increases the probability of selecting a correct drone by 81.71%
even in the case of a high number of failures.

INDEX TERMS Behavior modeling, drones, HCAPN, IIoT, vulnerability assessment.

I. INTRODUCTION
Industrial Internet of Things (IIoT) aims at connecting a large
number of devices and sensors together while leveraging
on the existing IoT technologies. IIoT facilitates the mutual
exchange of information between the users and the industrial
equipment for service provisioning and cost-effective solu-
tions to user problems [1]. IIoT can be used for support-
ing different kinds of applications such as smart farming,
smart city, smart parking systems, smart houses and smart
factory [2]–[4]. All these applications focus on high-quality
links between the user-side IoT, sensors and intermediate
service providers, and demand reliability and security against
different types of cyber attacks [5]–[9].

These networks are driven by communication protocols
and policies for secure and effective transmissions. With the

modernization of the network technologies, IIoT has also
paved a way for using drones as one of the supporting enti-
ties for communication between the devices. Drones pro-
vide extensible support for connectivity through their on-
demand links, which can be configured and operated as
per the requirements of the networks [10]–[12]. One of the
exemplary illustrations of such a scenario is shown in Fig. 1.
Drones not only reduce the complexity of connectivity but
also manage the load through effective resource allocation
strategies [13]–[15].

In spite of huge market gains and technical support, there
are certain issues related to the use of drones in the IIoT
environment. From physical layer security to certification of
devices, every component in such an environment requires
continuous monitoring and tracking for potential vulnera-
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FIGURE 1. An illustration of the network scenario and problem statement.

bilities [16]. It is desired to have secure architecture and
communication protocols which can cover all the necessary
equipment and the drone enabled system without any alter-
ations. Securing drone to drone links and drone to infras-
tructure links are other requirements of drone-enabled IIoT.
The approaches emphasizing on such setups must provide a
trustworthy communication while supporting on-demand and
low-complex vulnerability assessment. Reliability of network
entities and detection of changes in their features are the two
other aspects of secure and efficient drone-enabled IIoT [17].
Besides, there is a need for an efficient and scalable solution
which can form on-demand intrusion detection systems by
simplification of its principles into identification rules.

The existing studies [17]–[22] have highlighted the
requirements of behavior and vulnerability assessment to
form a reliable and safe network. However, the majority of
the existing solutions, which focus on the behavioral aspect
of drones, fail to consider security policies which are must
for vulnerability identification. In addition, there is a lack of
threat modeling, dynamic-adaptation to failures and evalua-
tion criteria in the existing studies, which needs to be resolved
through effective strategies. State-wise evaluations are other
missing aspects of the existing solutions, and the ones which
focus on such a requirement are unable to resolve dependen-
cies at low-complexity. Type of network, its metrics and the
parameter of evaluation also play a crucial role in behavioral
and vulnerability assessment of networked drones, however,
the existing solutions fixate on limiting factors such as false
positives, false negatives and communication links, which are
certainly not enough for the evaluation of large-scale cyber-
physical systems. Even the closely related study in [23],
which primarily focuses on similar requirements, is unable to
handle the complexities associated with the communication
aspects of drones.

This paper considers the drone-enabled communication
between the user-side IoT and IIoT for direct handling of the
user requests by the intended equipment of a particular indus-
try. In order to provide trustworthy and secure communica-
tions, this article aims at assessing the behaviour of drones
and dynamically identifying any potential vulnerability,

which may lead to critical attacks in near future. The pro-
posed approach uses N-layered Hierarchical Context-Aware
Aspect-Oriented Petri Net (HCAPN) modeling which helps
in formally verifying the drone-enabled IIoT through an
easy to deploy strategy. The proposed solution supports the
dynamic assessment of drone behaviour as well as the imple-
mentation of the security policies to identify any potential
threats amongst the drones.

The rest of the article is structured as follows: Section II
provides problem statement and highlights of our contri-
bution. Section III gives an insight of the related works.
Section IV defines the network setup and conditions for
behaviour modeling. Section V presents the proposed
approach along with the novel HCAPN modeling for
behaviour and vulnerability assessment. Section VI provides
performance evaluations. Finally, Section VII concludes the
article with a future scope.

II. PROBLEM STATEMENT AND OUR CONTRIBUTION
Information in IIoT is sensitive and relies on the strength
of connectivity among the end-users, the core and the IoT
devices associated with each industry. The networks which
are primarily supported by drones for connectivity with the
core must ensure that each of the existing connections is
free from any vulnerability. Further, it is required that the
network devices are able to distinguish between the behav-
iors of drones and should be able to identify the legitimate
aerial nodes for transmissions. Failure to do so may result in
different types of threats, which may expose the operations
of the entire network. Apart from these major assessments,
the other crucial challenge is the selection of an approach,
which can help to identify bad and good behaviour aerial
nodes and also identify any occurrences of vulnerabilities and
threats. In addition, the approach should also be able to verify
its own correctness to make sure that its own operations are
unaffected from the insider threats, which may violate its rule
for falsification of the procedures used for evaluations. These
three major concerns can be further mapped to the following
requirements:

• R1: The approach should be able to identify whether an
associated drone is legitimate or not.

• R2: The approach should be scalable and should be
able to handle the additional load as well as support for
multiple drones.

• R3: The vulnerability assessment should be predictive
and must ensure a high degree of accuracy while esti-
mating the results.

• R4: The approach should be able to justify the selection
of drones with a control on behaviour monitoring.

• R5: The operations of the approach must follow low-
complexity mechanism while monitoring the behaviour
and assessing the potential vulnerabilities in the net-
work.

• R6: The anomaly drone should be marked and this infor-
mation should be shared with all.
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TABLE 1. A comparative evaluation of existing works.

• R7: The approach should also provide a state-wise veri-
fication of its procedures and identification process.

All of the above requirements are attainable through the
proposed solution based on HCAPN modeling.

III. RELATED WORKS
There have been limited works [17]–[22], to the best of
authors’ knowledge, on the behaviour and vulnerability
assessment of drones-enabled networks especially focusing
an IIoT environment. Despite that, there are certain solu-
tions which can be used for such a requirement as discussed
in Table 1.

Birnbaum et al. [23] proposed a monitoring system for
UAVs. The authors used behaviour profiling to find behav-
ioral anomaly by tracking the real-time behaviour and flight
of multiple UAVs. The captured behaviors are compared
with the initial behavioral model. This approach is based
on the critical matching and derivation of behaviour rules,
which can affect the operations if mapped incorrectly. Fur-
ther, the model is highly complex and its implementation
to the different application area, especially communication
setups, is a concern. Rodriguez-Fernandez et al. [22] empha-
sized the behavioral modeling in UAV operation with the
help of Double Chain Markov Models (DCMMs). This sys-
tem includes process flow, predictability, and interpretability
through DCMMs. The authors combine two higher order
Markov chains into the same model to improve the predictive
capabilities of the system.

Mitchell and Chen [17] proposed a specification-based
IDS based on the behaviour rules. This scheme operates to
find the attacker-type on the basis of false negative rates and
false positive rates. In this scheme, the behaviour rule sets
are derived from the UAV threat model. Although this is an
effective solution, it fails to support the dynamic evaluations
because of high resultant states. In addition, the approach
operates on the strict satisfaction of all the rules, which some-
times are the adjustments of the drones during their flight.
Such evaluations may result in ambiguous results.

Wang et al. [27] proposed a framework for mission-
aware vulnerability assessment of the Cyber-Physical Sys-
tems (CPS). This framework provides profiling relation-
ships among all CPS components by using a bottom-up
approach. From their work, it is evident that the discovery of
mission-critical components is a massive challenge to resolve
in the cyber-physical world. The vulnerability assessment of
UAVs is a complex task and it consists of the identification

of threats to the mission. Hartmann and Steup [25] proposed
an approach for a UAV specific risk assessment based on the
component model of UAVs. The UAV components- commu-
nication system, data storage and sensor system are analyzed
on the basis of existing vulnerabilities.

Wang et al. [26] proposed a vulnerability assessment
method for IIoT. The proposed method relies on the forma-
tion of an attack graph. The attack risks are measured by a
vulnerability scoring system. This method contributes to the
vulnerability assessment model, vulnerability quantification
method and a vulnerability algorithm based onmaximum loss
stream. In addition, the authors focused on the factors influ-
encing the attack behaviour and relationship between network
nodes. It is concluded that critical failures are responsible
for the cancellation of the flight mission or an emergency
landing.

Gonçalves et al. [24] formulated a safety assessment model
for UAV by using Petri Nets (PNs). This model provides
better reliability and safety of UAV operations and protection
under failure conditions. However, it does not consider the
vulnerability and security assessments, which are crucial for
secure operations of IIoT.

IV. NETWORK SETUP
The proposed behaviour and vulnerability assessment solu-
tion supports IIoT that uses drones as its key communicating
entity. Fig. 1 shows an exemplary illustration of the network
scenario and requirements of more drones for load balancing,
and Table 2 gives the summary of notations used in the system
modeling. The network comprises a core which serves two
sets of Mobile Edge Computing (MEC) (MEC-1 and MEC-
2). MEC-1 includes the end-users, while MEC-2 serves the
IIoT. The network components include a set of end-devices
in MEC-1 denoted by a set E . Sets of Access Points (APs),
denoted by A1 and A2, support connectivity to end-user and
IIoT, respectively. The network uses multiple drones, denoted
by a set D, for connectivity between the core and A2. The
devices beyond A2, which operate in the periphery of an
industry are collectively considered through a set C. The key
aspect of the work proposed in this paper is to analyze the
behaviour of drones and to ensure that passes between the
elements of set D and the elements of set A2 are free from
vulnerabilities and potential threats.1 Optionally, D can be
divided into two sets, D1 and D2 for user-side and industry

1This paper assumes that the drones are sufficiently equipped for handling
heavy payload for connecting core to the APs.
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TABLE 2. Summary of symbols and their descriptions.

side connectivity, respectively. These services help to connect
users to the dedicated industry. The model can be formulated
in the selection of an available drone considering that out of

|D| number of drones, |D′| number of drones may fail. The
system is further extended such that if there is a s number
of subsets, then each subset can have at least one or more
drone failures. For this, let ηx be the number of drones in the
xth subset, such that

∑s
x=1 ηx = |D|, and λ be the average

number of failures for each subset, such that λ = 1
s

∑s
x=1 Fx ,

where Fx is the number of failures in xth subset. From this,
the number of subsets without failure can be calculated as
1 − λ∑s

x=1 ηx
. This entire condition can be obtained over the

Bernoulli constant ψ , which is the number of failures below
which the network cannot sustain such that the probability
that a defected or failed drone gets selected at a given instance
is expressed as:

P (η, λ, ψ) =
η!

ψ ! (η − ψ)!

(
λ

η

)ψ (
1−

λ

η

)η−ψ
,

η =

s∑
x=1

ηx . (1)

For the total instances, t , the average probability of select-
ing a correct drone can be calculated as:

Pavg = 1−
1
t

t∑
i=1

P (η, λ, ψ) . (2)

This is the observed value, however, the prediction using
it is difficult to attain as the failures are unpredictable and
discrete events. In addition, the predictions can be performed
by continuously observing the system. Let τA be the time
taken by the drone to cover an assigned area and it is assumed
that the signal quality remains unaffected in the assigned
zone for each drone. Now, considering such a deployment,
the failure can lead to three possibilities. First is that the
traffic will be shifted to neighboring drone, which has to
cover multiple areas that may affect the quality of the signal.
The second includes sending more drones to a place that can
result in overheads due to waiting, and the third one can
be the combination of first and second perspectives, which
may cause lesser overheads. These can be understood through
the following formulations. Let τF be the time after which
a failure is encountered, then for shifting the traffic to a
neighboring drone as per the first condition, the time after
which the connectivity is regained is given as:

τconnect = τF + τLoS + τSW , (3)

and the useful time is calculated as:

τuseful = τF + τO − (τLoS + τSW )︸ ︷︷ ︸
positioning overheads

, (4)

where τLoS is the time consumed in attaining Line of Sight
(LoS), τSW is the time for service switching, and τO is the
active time after the occurrence of failure. Now, for the second
condition, (3) and (4) changes to

τconnect = τF + τNF + τSW , (5)
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and

τuseful = τF + τO − (τNF + τSW )︸ ︷︷ ︸
allocation overheads

, (6)

where τNF is the flyby time of the new drone to the desired
location. The applicability of the third case is subject to a
condition of the time difference, i.e., if τNF >> τLoS , then the
third case will be operated by selecting the first and second
case in a sequential manner. By the time, a new drone arrives
at the desired location, the load is balanced with the help of
existing drones, and the services can be shifted with lesser
delays. The only overhead in this scenario is because of the
dual service switching, which is affordable comparedwith the
excessive waiting time. However, τNF << τLoS , then only
option 2 is followed provided that delay due to τNF is at a
minimum.

In any of the above case, let τregain be the time to regain the
connectivity, such that

τregain = τLoS |τNF + nτSW , (7)

where n is the number of times the services are switchedwhile
reconnecting the drones. Following this, it can be identified
that a certain amount of resources deplete during this regain-
ing period, which can be calculated as:

Rp = Roe−γ τregain , (8)

where Ro is the initial resources before the occurrence of a
failure, and 1

γ
is the mean lifetime of the drone with the given

resources and consumption rate. If the network has to attain
a rate of ϑ

µ
at all the instances, such that per second resource

consumption is given by Rps, then for entire duration, Rp ≥

Rps at a given t , where t ≤ τregain. If this condition remains
unsatisfied, the network is at failure as it cannot afford the
desired rate for the given amount of resources.

It is assumed that the core part of the network has a signif-
icant amount of energy and memory for the entire duration of
the network, whereas the drones may be isolated because of
high depletion rate. Thus, it becomes necessary to consider
the energy and memory requirements of the network and at
any given instance,

E (t)
r 6< E (t)

a , and M(t)
r 6<M(t)

a , (9)

where E (t)
r and M(t)

r are the energy and the memory require-
ments of the network, and E (t)

a and M(t)
a are their available

values, respectively. For the previously given conditions on
Rp, the variables can be replaced by formulations in (9) for
making it an energy or memory dominant system. Along
with these conditions, the network is subject to deviation
constraints, according to which:

min

√√√√ 1
α1

α1∑
i=1

(
Ki −K

)2
−

√√√√ 1
α2

α2∑
i=1

(
Ki −K

)2 ,
α1 ≤ τuseful, α2 ≤ τregain, (10)

where K can either be operated for Er or Mr or both. The
above deviation helps to understand resource consumption
behaviour of the drones as well as the network.

The behaviour modeling of drones in the given IIoT
setup is subject to different metrics which play a cru-
cial role in sustaining communications between the end
users and its dedicated responsible industry. In this paper,
the behaviour modeling is mathematically derived by provid-
ing governing conditions for a total of fifteenmetrics, namely,
Area under maneuvering Am, |D|, location (x, y, z) w.r.t. to
a reference (0,0,0), Signal-to-Interference-plus-Noise Ratio
(SINR), received power (ρR), direction of movement (2)
w.r.t. reference point, speed (v), Rp, τA, Er , Mr , response
time (τR), offloading delay (OR), flying altitude (H ), and
absent duration (τAB). In the given system model, the inter-
ference observed by a jth drone from η − 1 drones and other
communicating network entities can be expressed as:

SINR =
TpGH−δ

η∑
i=1,i 6=j

|A1|+|A2|∑
k=1

|E |+|C|∑
q=1

TpGH−δ + No

, (11)

where Tp is the transmission power, G denotes the antenna
characteristics, δ is the path loss exponent, andNo is the noise.
The model can be extended for LoS and NLoS (Non-Line
of Sight) mode by considering a separate path loss exponent
for each of them denoted by δLoS and δNLoS . Using these,
the received power for a jth drone for its distance from a
defined point of reference can be calculated as:

ρ
(LoS)
R = P(LoS)r − 10δLoS log

(
Hj
do

)
+ ε

(LoS)
j , (12)

and

ρ
(NLoS)
R = P(NLoS)r − 10δNLoS log

(
Hj
do

)
+ ε

(NLoS)
j , (13)

where P(NLoS)r and P(NLoS)r are the initial powers received at
a distance do w.r.t. reference point, and ε(LoS) and ε(NLoS) are
the random variables for received signal strength in LoS and
NLoS scenarios, respectively. Note that OR is similar to the
time spent in switching the services across the drones, and
can be expressed as the offloading delay [28]. However, it is
the responsibility of the system to make sure that offload-
ing delays are well below the limits. In the given network,
offloading delay [28] can be expressed as:

OR =
W

β log
(
1+ Z Tp

) , (14)

where W is the number of channels, Z is the channel coeffi-
cient, and β is the system bandwidth. These network eval-
uations and the previously described metrics are used to
formulate behaviour problem by considering the constraints
in Table 3. In this table, τm is the time consumed in per-
forming a maneuver and r is the radius of the area under
consideration.

The above conditions for the behaviour assessments are
used in making policies and definitions. These formulations
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FIGURE 2. Behaviour Triplet (T = 〈κ,B,DBκ 〉) hierarchy.

TABLE 3. Conditions for behavioral modeling.

are inspired by detection theory [29] with a modification
that identification of correct behaviour is marked as hit irre-
spective of the nature of detection. Formally, this can be
understood from the following definition:
Definition 1: The behaviour of a system can be expressed

as a triplet T = 〈κ,B,DBκ 〉, where κ is the responsiveness
of the system w.r.t. behaviour rules, B is the behaviour index,
and DBκ is the decision marked by the system on the given
conditions.
Explanation: The above definition can be explained by

considering four outputs for the behaviour index, Bcorrect ,
Bincorrect , Bmisleading, and Bunidentified , where Bcorrect is
marked if the rules suggest that a given entity is work-
ing appropriately, Bincorrect is marked if the entity is work-
ing inappropriately as per the rules. Note that both these
indexes are legitimate outputs and must be treated as ‘‘Hit’’
if compared with detection theory. Bmisleading is similar
to the false alarms of detection theory and Bunidentified is
the failure to decide on the basis of given rules. These
behaviour indexes are identified for three values of κ- κhit ,
κmiss, and κfalse, such that κhit = {Bcorrect ,Bincorrect },
κmiss = {Bunidentified }, κfalse = {Bmisleading}. Based on
these, the triplet is completed by taking a decision for each

of these mappings, such that three observations are made
for DBκ - D(marked,correct)

Bκ , D(marked,incorrect)
Bκ , and D(unmarked)

Bκ .
D(marked,correct)
Bκ andD(marked,incorrect)

Bκ showwhether the given
entity behaves correctly or incorrectly, andD(unmarked)

Bκ shows
that the system misses to decide on the basis of given rules.
The details of the defined triplet can be followed from Fig. 2.
Further, the false alarms are ignored by these decision vari-
ables and treated as unmarked for the final output. Now,
on the basis of D(marked,correct)

Bκ and D(marked,incorrect)
Bκ , the sys-

tem can be modeled into time-based hypothetical Maximum
a Posteriori Testing (MAP) based on detection theory [29].
For this, let P1,L−1 and P2,L−1 be the priori probabilities for
L number of states denoting outcomes, D(marked,correct)

Bκ and
D(marked,incorrect)
Bκ , respectively, while operational for the total

useful time, where

P1,L−1 =
CS,(L−1)

CT
, (15)

and

P2,L−1 =
CUS,(L−1)

CT
. (16)

Here, CS denotes the behavioral conditions that are in favor of
performance, CUS denotes the unfavorable conditions, CT are
the total conditions. The value of these metrics are obtained
from Table 3. Now, from the definition of MAP,

C(1)R,L =
P (CL |CS) · P1,L−1

P (CL |CS) · P1,L−1 + P (CL |CUS) · P2,L−1
, (17)

and

C(2)R,L =
P (CL |CUS) · P2,L−1

P (CL |CS) · P1,L−1 + P (CL |CUS) . · P2,L−1
, (18)

where C(1)R,L and C
(2)
R,L are the outputs to make a choice between

D(marked,correct)
Bκ andD(marked,incorrect)

Bκ dependingwhether C(1)R,L

(> or ≤) C(2)R,L . Here, CL is the observational value of a
behaviour at the Lth state and can be operated over the
probability CUS,L

CT . In general, the condition C on the given

parameters can be written as
(
A(DBκ )O

′

m ∧ |D|(DBκ )O
′

∧

(x, y, z)(DBκ )O
′

∧ SINR(DBκ )O
′

∧ ρ
(DBκ )O

′

R ∧ 2(DBκ )O
′

∧

v(DBκ )O
′

∧ R(DBκ )O
′

p ∧ τ
(DBκ )O

′

A ∧ E (DBκ )O
′

r ∧ M(DBκ )O
′

r

∧ τ
(DBκ )O

′

R ∧ O(DBκ )O
′

R ∧ H (DBκ )O
′

∧ τ
(DBκ )O

′

AB

)
for all
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FIGURE 3. An illustration of a 4-layer HCAPN with passes.

mandatory and
(
A(DBκ )O

′

m ∨ |D|(DBκ )O
′

∨ (x, y, z)(DBκ )O
′

∨

SINR(DBκ )O
′

∨ ρ
(DBκ )O

′

R ∨2(DBκ )O
′

∨ v(DBκ )O
′

∨R(DBκ )O
′

p

∨ τ
(DBκ )O

′

A ∨ E (DBκ )O
′

r ∨M(DBκ )O
′

r ∨ τ
(DBκ )O

′

R ∨O(DBκ )O
′

R

∨ H (DBκ )O
′

∨ τ
(DBκ )O

′

AB

)
for limited parameters. Here, O′

denotes the output for the given behaviour, i.e., marked-
correct or marked-incorrect. The above modeling can be used
for checking false positives or false negatives and difficulty
in judgment can be plotted to understand the behaviour of the
system.

V. PROPOSED APPROACH
This paper uses the behaviour modeling presented in the
previous section for defining the operational rules which
help to determine the operational capabilities of a system,
especially drones-enabled IIoT. The proposed approach is
based on the formation of an N-layered HCAPN which is
inspired by Aspect-Oriented PNs, Hierarchical PNs and Cul-
tured PNs [30]–[34], and initially presented as an ideology
for secure localization in Sharma et al. [35].2 This paper
considers an altogether different definition of ‘‘hierarchy’’,
which is discussed in the next section.

2The previously presented version discusses the applicability of HCAPN
and does not provide any details on its mechanisms and flow.

A. HIERARCHICAL CONTEXT-AWARE ASPECT-ORIENTED
PETRI NETS (HCAPN)
HCAPN functions similar to a regular PN and uses similar
rules but with a changed ideology, definition, and workflow.
At first, this paper formally introduces the concept of HCAPN
followed by its mathematical representations, flow, and ver-
ifications. Then, these are used for analyzing the behaviour
and assessing the vulnerability of the considered network
model. The terminologies and definitions are provided below:

• Hierarchy: In the formulated HCAPN, the hierarchy
is defined as overlapping layered architecture attained
by merging of the N number of context-aware aspect-
oriented PNs into a single PNmodel. Further, the formu-
lated PN is unbounded in terms of merging but bounded
in terms of rules of a general PN. The merging can
have a maximum of V

2 (V − 1) extra arcs between the
places and the transitions, where V is the total num-
ber of vertices (places and transitions) in N number
of context-aware aspect-oriented PNs. These extra arcs
are termed as passes. Note that existing Hierarchical
PNs follow a parent-child model, where a sequential
procedure is used for merging and is likely to result in
a low-complex structure but with limited applications.
However, unbounded passing in the HCAPN provides a
high degree of freedom and a wide range of applications
that too at low-complexity and lower overheads. Figure 3
presents an exemplary illustration of 4-layer HCAPN
with four different types of passes. These passes help to
determine the flow as well as manage the connectivity
between the PNs by following an unbounded hierarchy.
The details of these passes are as follows:

1) Indirect Mapping: For a given HCAPN, if new
transitions or places are introduced while pass-
ing contextual information, the type of passing is
termed as indirect mapping.

2) Direct Mapping: For a given HCAPN, if the exist-
ing transitions are connected to the existing places
and vice versa, the type of passing is termed as
direct mapping.

3) Substituted Mapping: For a given HCAPN, if the
merging results in a new place as a formal or infor-
mal output, the type of passing is termed as substi-
tuted mapping.

4) Non-substituted Mapping: For a given HCAPN,
if the merging is performed with the existing out-
put place, the type of passing is termed as non-
substituted mapping.

• Context-Awareness: Contextual awareness is defined
on the basis of the number of passes available in an
HCAPN, which is a resultant of merging of two or more
PNs, and the number of passes that are actually available
for usability to get the desired output. The contextual-
awareness is achieved based on the inputs from the pre-
vious state, place or transition depending on the nature
of passes used for modeling a given system. Also, this
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helps to maintain the state information for the entire PN
model. In the proposed HCAPN, the context is passed
as information alongside the tokens through parame-
ters used for defining a particular system. In general
HCAPN, the contextual-awareness is obtained through
the following parameters:

1) Complexity and operational overheads: This refers
to keeping a check on the operational cost of the
designed HCAPN and managing a particular pass
on the basis of the level of complexity it can cause
on a particular place or transition. A particular pass
is used only for reducing the operational cost of the
HCAPN while producing an output.

2) Delay: It is required that a newly included pass
should not cause an excessive delay while firing
in a particular direction. The delay can be caused
due to excessive dependence on the previous entity,
which requires many computations for generating
an output for a pass.

3) Reliability: It is to be ensured that HCAPN must
be reliable in generating aspects for each of the
newly generated arcs without causing any redun-
dancy or overlapping. Mutual consents are other
factors to be achieved in HCAPN as this helps to
attain reliable connectivity between the places and
transitions of two or more PNs.

4) Reachability: Inclusion of new passes may cause
a loop in the model, which may affect the oper-
ations of the entire system. Thus, it is necessary
that context-awareness is supported in terms of
reachability, which can be observed through the
firing of all transitions and non-negative values of
tokens in case of time-dependent operations.

5) Dependability: While merging two or more PNs,
it is likely to observe a dependency between
two or more places or transitions, however, it is
required that irrespective of the dependencies,
the model should be operable through unbounded
control leading to a correct output.

6) Detection rate: The context in HCAPN should
also support detection of freshly induced or active
passes which can reduce the complexity and opera-
tional cost of the system. The detection rate of any
place or transition for new rules leading to fresh
passes must be high. In addition, the detection
of inaccurate context should also be identified in
HCAPN with high accuracy and zero tolerance.

• Aspect-Oriented: Aspect-oriented feature in HCAPN
is inspired by the properties defined by Xu and
Nygard [30]. This feature helps to accommodate the
concepts of aspect-oriented programming in the devel-
oped unbounded hierarchical PNs. The aspects help to
define the roles on the basis of properties and context
formed over the available parameters of any system. This
helps to maintain the flow of model towards the intended

direction while fixating on a place, which will provide
the final output.

B. DEFINITION AND RULES
The proposed behaviour and vulnerability assessment
approach depends on the accurate formation of HCAPN for
detecting any false entity in the network. Thus, it is required to
formally introduce the HCAPN and its rules as given below:
Definition 2: The developed HCAPN can be defined math-

ematically as H = (P,T,A,Q,E,C,S,L,O), where P
denotes the set of places, T denotes the set of transitions,
A denotes the set of arcs between P and T, Q is the set of
number of passes between layers, E is the set of the types
of passes that connect places and transitions, C denotes the
set of context on each A, S denotes the set having aspect for
each layer, L denotes the number of layers and the subset
Us = (P,T,A,C,S), such that L = N , and O denotes the
set of output places.

1) RULE OF PASSES
The number of passes in HCAPN governs the flow of the
model and affects the reachability of the system. An incorrect
number of passes may result in a loop, which causes over-
heads and lots of resources get wasted without producing any
desirable output.

Rule V-B.1.1: In a givenH = (P,T,A,Q,E,C,S,L,O),
if |Q| ≤ |P| + |T|, the number of possible intermediate
routes increases by V

2 (V − 1), which will cause excessive
overheads and huge delay in producing an output. Even if
only places or transitions are mapped through the passes, i.e.
|Q| = |P| or |Q| = |T|, the maximum passes may result in a
similar number of conflicts.

Rule V-B.1.2: From the definitions and previous remarks,
it is clear that the number of passes drives the flow inHCAPN,
thus, it is necessary to formulate the number of passes in
HCAPN for its smooth operations. The number of passes can
be given for bounded and unbounded hierarchy in HCAPN.
The number of passes for a bounded HCAPN is given by(∑
|Pa| −

∑
|Pb| + 1

)
(|L| − 1), where |Pa| and |Pb| are the

number of places in two joining PNs. The similar formulation
can be operated for the number of transitions also. Similarly,
the number of passes for unbounded HCAPN is given by(∑
|Pa| −

∑
|Pb| + 1

)
|L|
2 (|L| − 1).

2) RULE OF PLACES
The number of places in an HCAPN is governed by the
number of layers combined to generate a final PN. However,
the number of places also affects the output of the HCAPN.
Thus, there are certain rules of places which are to be fol-
lowed for accurate formation of HCAPN as given below:

Rule V-B.2.1: The layers can be combined by following
any type of passes out of the proposed four combinations.
However, HCAPN cannot have any new intermediate places
between the combining layers of two or more PNs. Only tran-
sitions can be introduced that too for the ‘‘indirect mapping’’
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FIGURE 4. A complete overview of HCAPN for the defined network model along with its context, aspect and flow during behaviour and vulnerability
assessment.

TABLE 4. The details of context used by the proposed HCAPN model.

of passes. This helps to prevent any loop-back failures in the
model as well as prevents the failures due to non-reachability
and excessive overheads. Thus, except for newly introduced
output places, the total number of places and transitions in a
final HCAPN is given as |P| + |T| + |T′|, where |T′| is the

set of newly introduced transitions for mapping intermediate
places of two or more PNs.

Rule V-B.2.2: The second condition is applicable for out-
put nodes only and it denotes the number of output places that
can be available in the final HCAPN. According to this rule,
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FIGURE 5. A complete overview of HCAPN for behaviour and vulnerability assessment along with the details of transitions, places and
security policies.

for bounded HCAPN, the number of output places can be
given by |L|+(|L| − 1). For unboundedHCAPN, the number
of output places becomes |L| + |L|2 (|L| − 1). From both
the rules, the final rule of combination can be formulated
according to which, the number of places and transitions in
bounded and unbounded HCAPN can be given as|H| = |P|+
|T|+|T′|+|L|+(|L| − 1)−|L|,= |P|+|T|+|T′|+(|L| − 1) ,
and |H| = |P| + |T| + |T′| + |L| + |L|2 (|L| − 1) − |L|,=
|P| + |T| + |T′| + |L|2 (|L| − 1), respectively.

C. BEHAVIOUR AND VULNERABILITY ASSESSMENT
WITH HCAPN
The proposed approach helps to assess the behaviour and
identify any potential vulnerability in a drone enabled IIoT.
This reduces the probability of the network to undergo any
attack in the lateral stage of their operations. The proposed
approach relies on forming a novel HCAPN model which
serves as a state evaluator as well as a dynamic assessment
tool for different entities involved in communications. How-
ever, at the present stage, the evaluations are presented only
for the drone layer which connects the core of the network
to the APs that serve the IIoT. Following this, a complete

HCAPN model is presented in Fig. 4 with details of context
in Table 4. The figure contains seven aspects formed out of the
layered view of the entire network. The drone aspect (layer 5)
is operated by another PNwhich forms an individual HCAPN
with it by using the behaviour conditions. Once the network
is initiated, the context from the drones is passed to the PN of
behaviour conditions, which checks for any false instances
while evaluating the triplet (T = 〈κ,B,DBκ 〉). This triplet
can be operated through ‘‘AND’’ clause or ‘‘OR’’ clause
depending on the requirements and relaxations induced in
a network. The ‘‘AND’’ clause is strict and can identify a
misbehavior in a single instance, whereas for ‘‘OR’’ clause
the outputs at the final stage are further evaluated while
matching the flying conditions imposed on the drones at the
start of the network.

1) HCAPN VERIFICATION
It is to be noted that the proposed HCAPN model allows
dynamically adjustment of the rules, which supports continu-
ous and dedicated evaluation of the network metrics. In gen-
eral state verifiers, the number of states may be as high as 2V ,
which cause excessive overheads, however, in the HCAPN,
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the behaviour PN operates parallel in all the involved entities
allowing verification with complexity less than equal to that
of forming a graph. Such an evaluation resolves the overall
complexity of the proposed approach and makes it a compe-
tent solution.

Once behaviour conditions are set, the input and the output
of this PN are operated with security policies, which take into
account the present state and provides a decision that helps
to finalize the identification of a legitimate and a vulnerable
drone as shown in Fig. 5. From this figure, it can be noticed
that there are six major security policies for drones that
support the vulnerability identification. These conditions are
fed in form of argument to the function that calls the security
policy PN. The security policy PN is fired through a single
transition and violation of any one of these policies results
in the identification of a potentially vulnerable drone. The
only overhead apart from the graph formation involved in
this entire behaviour modeling and vulnerability assessment
is that of the matching algorithm, which can be neglected
considering the importance of such a system. It is further to be
marked that the proposed HCAPN can simultaneously oper-
ate in both the directions allowing 2-way verification through
single PN. These verifications can further be classified as a
centralized mechanism that takes place at the core and all the
instructions are passed from the core to the drones or as a
distribution mechanism where every drone is responsible for
transmissions with the legitimate drone.

The success of all the operations depends on the accuracy
of HCAPN formation and correct flow of context across the
network. The proposed HCAPN is verified for its correctness
by following the earlier described rule of places and rule of
passes along with conflict evaluation properties of a general
PN. Further, the reachability is accessed while evaluating
the dependency of a transition on such a place that cannot
immediately pass the required context for making a decision.

2) N-STATE FLOW VERIFICATION
The proposed HCAPN can identify any vulnerability by sav-
ing

(
F
2 (F − 1)

)
− 2 states as only input and output places

are operated with the security policies along with behaviour
assessment, where F is the number of behaviour conditions.
Irrespective of the value of F , vulnerability assessment is
performed just by consuming two times firing of a transition,
which reduces the computational complexity of the overall
system. In order to understand the operational flow of the
proposed HCAPN, two exemplary HCAPNs are presented
in Figs. 6 and 7. The figures show that only layer-1 is a
complexity causing stage, which is negligible as it is based
on an individual entity, whereas the inner aspects operate
only once and are used for all the individual IoT as well
as IIoT. These generalizations show that the architecture of
the network is responsible for the complexity of HCAPN.
Further, the number of entities in each layer also causes a
lesser impact as evaluations are not dependent on the sequen-
tial flow. In addition, the proposed HCAPN can also be used

FIGURE 6. An exemplary illustration of combinatorial PNs for different
entities of the defined network model using a single IoT device.

for balancing the network load and identifying the shortest
path between the users and its intended handler in IIoT.
The number of layers does impact the performance of the
HCAPN as the number of passes increases the dependency
on the previous layer for successful operations. However, for
the passes between the entities, the ones with the relevant
context are fired immediately providing a support for fast
processing. Thus, to effectively utilize the HCAPN, it is
required to handle the race-conditions between the places of
different layers, which are not in the scope of this article and
will be presented in our future reports. Irrespective of that,
the proposed HCAPN allows effective assessment of drone
behaviour as well as identification of potential vulnerabilities
through security policies.3 All the processes explained in the
proposed section while considering the system modeling are
provided in Algorithm 1. The algorithm helps to understand
the flow and alterations which can be dynamicallymadewith-
out disturbing the regular operations of the network. Further,
the algorithm also helps to understand the crucial points in
the proposed solution, where different checkpoints can be
marked for obtaining intermediate as well as the final results.
Note that choice of communication patterns and protocols are
not considered at this part of our work and shall be presented
in future reports.

VI. PERFORMANCE EVALUATIONS
The proposed approach is evaluated for its capacity to identify
the behaviour of drones used for supporting communications
between the core and the IIoT. The evaluations are intended
towards the identification of vulnerable drones which can

3The security policies are vendor/service provider specific. At present,
a generalized set of security policies is used to form a PN as shown in Fig. 5.
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FIGURE 7. N-State flow verification for the proposed scenario using a subset of HCAPN.

Algorithm 1 Behaviour and Vulnerability Marking
1: Input: System model, behaviour conditions, security

policies
2: Output: Behaviour and vulnerability markings
3: while (Transmission!=NULL) do
4: if (New_Entity==TRUE && Modifications==TRUE)

then
5: Initiate the network
6: Decide on centralized, distributive or both mode of

HCAPN
7: Formulate behaviour model and ensure security

policies as PN
8: Set (T = 〈κ,B,DBκ 〉)
9: Check for entities and formulate PN
10: Combine PNs to form HCAPN
11: else
12: Validate HCAPN, security policy PN and behaviour

PN
13: Fetch values and fill (T = 〈κ,B,DBκ 〉) using

behaviour PN
14: Merge HCAPN and behaviour PN
15: Load security PN
16: Operate transitions and keep tracking
17: if (Transitions_Firing== TRUE) then
18: Continue marking and select nodes for transmis-

sions
19: else
20: Mark and correct HCAPN
21: Validate and continue
22: end if
23: end if
24: Maintain logs
25: end while
26: Update network, keep track and store results

harm the network as well as can be the potential threats.
Behaviour conditions and security policies help to attain such
a requirement through HCAPN. The results are attained by
formulating the entire system through Petri.Net Simulator4

4https://github.com/larics/Petri.Net, last accessed April 2018.

TABLE 5. Parameter configurations.

along with numerical evaluations as input to the system. The
values of parameters used for analyzing the proposed solution
are provided in Table 5.

The network is operated with 20 drones which facilitate
data as an intermediate entity and the system model plays its
role while operating parallel to the general operations of the
drone. The HCAPN formed helps to determine the legitimate
drones which can be selected for transmissions and also helps
to identify drones which have a potential vulnerability that
can lead to a certain type of threat. To present this, the entire
network of drones is considered as the region of interest
and all the drones are operated in four sets. All these sets
are evaluated for behaviour conditions through HCAPN and
the final decision is taken on the detection of a drone as
shown in Table 6.5 From this table, the role of each behaviour
condition and the probabilistic model can be followed, and it
can be noticed that for the given 10 states for all the drones,
the drone with ID-6 is marked as a potential anomaly in
its second state. This information is passed to all other drones

5The results are presented for two sets only. Note that only 1 set has
vulnerable drones.
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TABLE 6. State-wise results for two different sets of drones out of four sets through behaviour modeling over HCAPN using ‘‘∨’’ operations.

FIGURE 8. Average probability of selecting a correct drone with a
variation in the number of failures and the available number of legitimate
drones.

and communicationwith it is stopped and it is ensured that the
network remains aloof from the potential threats of the drone
with ID-6. Using these results each drone can be traced for the
entire duration depending on the time stamps. The accuracy
and detection rate attain 100% results on strict conditions.
However, in ambiguous scenarios, the accuracy of the model
is between 90% to 99.9% with an error of ±1% and the
detection rate higher than 95% for four sets of drones.

In addition to the above behavioral and vulnerability
assessments, evaluations are performed on the overall track-
ing behaviour of the system using the defined configurations.
At first, the results are presented for analyzing the average
probability of selecting a correct drone w.r.t. the variations in
the number of failures and the number of legitimate drones
as shown in Fig. 8. The results show that the probability of
continuing with the given setup increases as the number of
correct drones increases, and the number of failures impose
a direct impact on the network. Using these probabilistic
values, the HCAPN accommodate for updated policies while

FIGURE 9. Resource (Energy and Memory) extension rate with a variation
in the time to regain the connectivity.

FIGURE 10. Network offloading delay with a variation in the number of
channels and the transmit power.

involving more drones to support transmissions. The results
show that in the presence of vulnerable drones, the probability
of selecting a correct drone increases by 81.71% along with
an increase in correctly performing drones.
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TABLE 7. Behaviour dominance from resources in HCAPN.

In the second part, the evaluations are performed to analyze
the resource variation to fit in the lifetime module of the
proposed system setup. The results are presented for the
energy and memory utilization of 20 drones while regaining
connectivity when an attacker or a vulnerable drone is identi-
fied as shown in Fig. 9. The results suggest that the energy
range of the system varies between 413.50 and 421.85 J,
whereas the memory varies between 470.47 and 479.97 MB
for connection regaining period depending on the flyby time
and the LoS attaining time of the new and the existing drones.
The variation in energy and memory consumption over the
defined configurations for two different conditions in (6) is
of the order of 1.98% only. These suggest that at a given rate,
the network is able to sustain the load due to the excessive
requirements of the energy and memory resources.

The delay in identification of the vulnerable drone and
selection of the next drone to support the transmission has
considerable effects on the performance of the system. A net-
work operating with HCAPN must not cause excessive over-
heads as thismay violate the operational conditions of the net-
work. Thus, it is important that the defined operations should
be operated within the stipulated duration. Results in Fig. 10
suggest that mean offloading delay caused by the proposed
approach are in the order of 0.13s, 0.12s, 0.10s, 0.09s while
varying the transmit power and the number of channels on
each drone. The higher number of channels andmore transmit
power causes a lower offloading delay while the scenarios
with a lower value for any of these two parameters causes
higher delays. But, even the highest values observed in the
evaluations are negligible which justifies the efficiency of the
system in providing quick decidability on the behaviour of
drones.

Results presented in Fig. 11 and Table 7 suggest the oscil-
lations and the dominance of the conditions in assessing the
behaviour as well as the potential vulnerability amongst the
given number of drones. From these results, it can noticed that
conditions, 2, τA, τR, Er ,Mr and v play the decisive role in
marking a drone as abnormal (incorrect) or normal (correct)
during its operations.

Note that for 15 conditions, the PN for behavioral mod-
eling in HCAPN operates only for four extra instances to
take a final decision, which shows the low-complex nature
of the proposed approach. With an average response time
of 0.11 s between each place, the complexity of operations
is presented for places, layers and the number of passes on
the overall system to perform self-verification for the end to

FIGURE 11. The oscillations for 15 behavioral conditions operated for
each of the drones while forming the complete HCAPN. The states include
outputs of P-In and P-Out. The diagrams help to understand the periodic
token content of each behavioral condition for the input parameters of a
single drone.

end connectivity, as shown in Fig. 12. The results show that
the overall time for verification of HCAPN is very low even
for a high number of layers, which presents its significance
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FIGURE 12. Operational complexity of verification procedures for the
entire HCAPN with a varying number of places and transitions.

in assessing the behaviour and vulnerability of networks with
different sets and number of entities.

VII. CONCLUSION
This paper proposes a novel N-layered Hierarchical Context-
Aware Aspect-Oriented Petri Net (HCAPN) model which
helps to evaluate the drone behaviour and identifies any
potential vulnerability by the utilization of security policies.
The proposed HCAPNmodel ensures identification of drones
which may violate the operational conditions of the network
andmay expose the entire network to different types of cyber-
threats. The evaluations suggest that the proposed approach
provides low-complex and low-overheads based behavioral
and vulnerability assessment model with a detection rate
higher than 95% and accuracy as high as 99.9%. The pro-
posed approach also increases the probability of selecting a
correct drone by 81.71% even in the case of a high number
of failures. In addition, the results are presented for resource
(memory and energy) extensions while connecting end users
to IIoT devices, network offloading delays, state-wise outputs
for all the drones, and oscillations of HCAPN behaviour con-
ditions. From the methodology and results, it is evident the
proposed approach can be used as a benchmark for assessing
networks which involve drones as a crucial entity.

In future, the proposed approach will be extended for direct
inclusion of security aspects with the HCAPN model and
focus will be given to the automation and the inclusion of
communication procedures.

REFERENCES
[1] C. Zhu, J. J. P. C. Rodrigues, V. C. M. Leung, L. Shu, and L. T. Yang,

‘‘Trust-based communication for the industrial Internet of Things,’’ IEEE
Commun. Mag., vol. 56, no. 2, pp. 16–22, Feb. 2018.

[2] X. Li, D. Li, J. Wan, C. Liu, and M. Imran, ‘‘Adaptive transmission
optimization in SDN-based industrial Internet of Things with edge com-
puting,’’ IEEE Internet Things J., vol. 5, no. 3, pp. 1351–1360, Jun. 2018.

[3] B. M. Lee and H. Yang, ‘‘Massive MIMO for industrial Internet of Things
in cyber-physical systems,’’ IEEE Trans. Ind. Informat., vol. 14, no. 6,
pp. 2641–2652, Jun. 2018.

[4] L. Lyu, C. Chen, S. Zhu, and X. Guan, ‘‘5G enabled codesign of energy-
efficient transmission and estimation for industrial IoT systems,’’ IEEE
Trans. Ind. Informat., vol. 14, no. 6, pp. 2690–2704, Jun. 2018.

[5] J. Li et al., ‘‘Secure distributed deduplication systems with improved reli-
ability,’’ IEEE Trans. Comput., vol. 64, no. 12, pp. 3569–3579, Dec. 2015.

[6] Z. Huang, S. Liu, X. Mao, K. Chen, and J. Li, ‘‘Insight of the protection
for data security under selective opening attacks,’’ Inf. Sci., vols. 412–413,
pp. 223–241, Oct. 2017.

[7] V. Sharma and R. Kumar, ‘‘Teredo tunneling-based secure transmission
between UAVs and ground ad hoc networks,’’ Int. J. Commun. Syst.,
vol. 30, no. 7, p. e3144, 2017.

[8] Q. Do, B. Martini, and K.-K. R. Choo, ‘‘A data exfiltration and remote
exploitation attack on consumer 3D printers,’’ IEEE Trans. Inf. Forensics
Security, vol. 11, no. 10, pp. 2174–2186, Oct. 2016.

[9] N. D. W. Cahyani, B. Martini, K.-K. R. Choo, and A. Al-Azhar, ‘‘Forensic
data acquisition from cloud-of-things devices: Windows smartphones as a
case study,’’Concurrency Comput., Pract. Exper., vol. 29, no. 14, p. e3855,
2017.

[10] V. Sharma, I. You, G. Pau, M. Collotta, J. D. Lim, and J. N. Kim,
‘‘LoRaWAN-based energy-efficient surveillance by drones for intelligent
transportation systems,’’ Energies, vol. 11, no. 3, p. 573, 2018.

[11] J. P. G. Sterbenz, ‘‘Drones in the smart city and IoT: Protocols, resilience,
benefits, and risks,’’ in Proc. 2nd Workshop Micro Aerial Vehicle Netw.,
Syst., Appl. Civilian Use, 2016, p. 3.

[12] N. H. Motlagh, M. Bagaa, and T. Taleb, ‘‘UAV-based IoT platform:
A crowd surveillance use case,’’ IEEE Commun. Mag., vol. 55, no. 2,
pp. 128–134, Feb. 2017.

[13] V. Dey, V. Pudi, A. Chattopadhyay, and Y. Elovici, ‘‘Security vulnerabili-
ties of unmanned aerial vehicles and countermeasures: An experimental
study,’’ in Proc. 17th Int. Conf. Embedded Syst. (VLSID) VLSI Design,
Jan. 2018, pp. 398–403.

[14] V. Sharma, F. Song, I. You, and H.-C. Chao, ‘‘Efficient management and
fast handovers in software defined wireless networks using UAVs,’’ IEEE
Netw., vol. 31, no. 6, pp. 78–85, Nov./Dec. 2017.

[15] V. Sharma, R. Kumar, and R. Kaur, ‘‘UAV-assisted content-based sensor
search in IoTs,’’ Electron. Lett., vol. 53, no. 11, pp. 724–726, May 2017.

[16] Y. He, Y. Peng, S. Wang, D. Liu, and P. H. W. Leong, ‘‘A structured sparse
subspace learning algorithm for anomaly detection in UAV flight data,’’
IEEE Trans. Instrum. Meas., vol. 67, no. 1, pp. 90–100, Jan. 2018.

[17] R. Mitchell and I.-R. Chen, ‘‘Adaptive intrusion detection of malicious
unmanned air vehicles using behavior rule specifications,’’ IEEE Trans.
Syst., Man, Cybern., Syst., vol. 44, no. 5, pp. 593–604, May 2014.

[18] R. N. Akram et al., ‘‘Security, privacy and safety evaluation of dynamic
and static fleets of drones,’’ in Proc. IEEE/AIAA 36th Digit. Avionics Syst.
Conf. (DASC), Sep. 2017, pp. 1–12.

[19] H. N. Saha et al., ‘‘A cloud based autonomous multipurpose system
with self-communicating bots and swarm of drones,’’ in Proc. 8th Annu.
Comput. Commun. Workshop Conf. (CCWC), Jan. 2018, pp. 649–653.

[20] F. Aznar, M. Pujol, R. Rizo, and C. Rizo, ‘‘Modelling multi-rotor UAVs
swarm deployment using virtual pheromones,’’ PLoS ONE, vol. 13, no. 1,
p. e0190692, 2018.

[21] I. You, V. Sharma, M. Atiquzzaman, and K.-K. R. Choo, ‘‘GDTN:
Genome-based delay tolerant network formation in heterogeneous 5G
using inter-UA collaboration,’’ PLoS ONE, vol. 11, no. 12, p. e0167913,
2016.

[22] V. Rodriguez-Fernandez, A. Gonzalez-Pardo, and D. Camacho, ‘‘Mod-
elling behaviour in UAV operations using higher order double chain
Markov models,’’ IEEE Comput. Intell. Mag., vol. 12, no. 4, pp. 28–37,
Nov. 2017.

[23] Z. Birnbaum, A. Dolgikh, V. Skormin, E. O’Brien, D. Müller, and
C. Stracquodaine, ‘‘Unmanned aerial vehicle security using behavioral
profiling,’’ inProc. Int. Conf. Unmanned Aircraft Syst. (ICUAS), Jun. 2015,
pp. 1310–1319.

[24] P. Gonçalves, J. Sobral, and L. A. Ferreira, ‘‘Unmanned aerial vehicle
safety assessment modelling through Petri nets,’’ Rel. Eng. Syst. Safety,
vol. 167, pp. 383–393, Nov. 2017.

[25] K. Hartmann and C. Steup, ‘‘The vulnerability of UAVs to cyber attacks—
An approach to the risk assessment,’’ in Proc. 5th Int. Conf. Cyber Con-
flict (CyCon), Jun. 2013, pp. 1–23.

[26] H. Wang, Z. Chen, J. Zhao, X. Di, and D. Liu, ‘‘A vulnerability assess-
ment method in industrial Internet of Things based on attack graph and
maximum flow,’’ IEEE Access, vol. 6, pp. 8599–8609, 2018.

[27] X. Wang, M. Davis, J. Zhang, and V. Saunders, ‘‘Mission-aware vul-
nerability assessment for cyber-physical systems,’’ in Proc. IEEE Trust-
com/BigDataSE/ISPA, vol. 1, Aug. 2015, pp. 1148–1153.

43382 VOLUME 6, 2018



V. Sharma et al.: Behavior and Vulnerability Assessment of Drones Enabled IIoT

[28] S. Barbarossa, P. Di Lorenzo, and S. Sardellitti, ‘‘Computation offloading
strategies based on energy minimization under computational rate con-
straints,’’ in Proc. Eur. Conf. Netw. Commun. (EuCNC), Jun. 2014, pp. 1–5.

[29] T. A. Schonhoff and A. A. Giordano,Detection and Estimation Theory and
Its Applications. London, U.K.: Pearson College Division, 2006.

[30] D. Xu and K. E. Nygard, ‘‘Threat-driven modeling and verification of
secure software using aspect-oriented Petri nets,’’ IEEE Trans. Softw. Eng.,
vol. 32, no. 4, pp. 265–278, Apr. 2006.

[31] M. Mascheroni, ‘‘Hypernets: A class of hierarchical Petri nets,’’
Ph.D. dissertation, Facoltà Scienze Matematiche, Fisiche Naturali, Dept.
Inform. Sistemistica Comunicazione, Univ. Milano-Bicocca, Milan, Italy,
2010.

[32] K. Jensen, ‘‘Coloured Petri nets,’’ in Proc. IEE Colloq. Discrete Event
Syst., New Challenge Intell. Control Syst., 1993, pp. 1–5.

[33] P. Huber, K. Jensen, and R. M. Shapiro, ‘‘Hierarchies in coloured Petri
nets,’’ in Proc. Int. Conf. Appl. Theory Petri Nets. Bonn, Germany:
Springer, 1989, pp. 313–341.

[34] R. Fehling, ‘‘A concept of hierarchical Petri nets with building blocks,’’ in
Proc. Int. Conf. Appl. Theory Petri Nets. Gjern, Denmark: Springer, 1991,
pp. 148–168.

[35] V. Sharma, D. N. K. Jayakody, I. You, R. Kumar, and J. Li, ‘‘Secure
and efficient context-aware localization of drones in urban scenarios,’’
IEEE Commun. Mag., vol. 56, no. 4, pp. 120–128, Apr. 2018, doi:
10.1109/MCOM.2018.1700434.

VISHAL SHARMA (S’13–M’17) received the
B.Tech. degree from Punjab Technical University
in 2012 and the Ph.D. degree in computer science
and engineering from Thapar University in 2016.
In 2016, he was a Lecturer with Thapar University.
From 2016 to 2017, he was a joint Post-Doctoral
Researcher with the MobiSec Lab, Department
of Information Security Engineering, Soonchun-
hyang University, South Korea, and Soongsil Uni-
versity, South Korea. He is currently a Research

Assistant Professor with the Department of Information Security Engi-
neering, Soonchunhyang University. He has authored and co-authored over
60 journal/conference articles and book chapters. His areas of research and
interests are 5G networks, UAVs, estimation theory, and artificial intelli-
gence. He was a TPC Member of ITNAC-IEEE. TCBD’17. He is serving as
a TPC Member of ICCMIT’18, CoCoNet’18, and ITNAC-IEEE TCBD’18.
He serves as the Program Committee Member for the Journal of Wireless
Mobile Networks, Ubiquitous Computing, and Dependable Applications. He
is a Professional Member of ACM. He is the past Chair of the ACM Student
Chapter-TU Patiala. He was a PC Member of MIST’16. He received three
best paper awards from the IEEE International Conference on Communica-
tion, Management and Information Technology, Warsaw, Poland, in 2017,
CISC-S’17, South Korea, in 2017, and IoTaas, Taiwan, in 2017. He was
the Track Chair of MobiSec’16 and AIMS-FSS’16. He was a Reviewer of
MIST’17. He serves as a reviewer for various IEEE TRANSACTIONS and other
journals.

GAURAV CHOUDHARY received theB.Tech. degree
in computer science and engineering from
Rajasthan Technical University in 2014 and the
master’s degree in cybersecurity from the Sardar
Patel University of Police, Security and Crimi-
nal Justice in 2017. He is currently pursuing the
Ph.D. degree with the Department of Information
Security Engineering, Soonchunhyang University,
Asan, South Korea. His areas of research and
interests are UAVs, mobile and Internet security,

Internet of Things security, network security, and cryptography.

YONGHO KO received the B.S. degree in infor-
mation security engineering from Soonchunhyang
University, Asan, South Korea, where he is cur-
rently pursuing the joint master-Ph.D. degree with
the Department of Information Security Engineer-
ing. His current research interests include mobile
Internet security, Internet of Things security, and
formal security analysis.

ILSUN YOU (SM’13) received the M.S. and Ph.D.
degrees in computer science from Dankook Uni-
versity, Seoul, South Korea, in 1997 and 2002,
respectively, and the Ph.D. degree from Kyushu
University, Japan, in 2012. From 1997 to 2004, he
was a Research Engineer with Thin Multimedia,
Inc., Internet Security Co., Ltd., and Hanjo Engi-
neering Co., Ltd.. He is currently anAssociate Pro-
fessor with the Department of Information Secu-
rity Engineering, Soonchunhyang University. His

main research interests include Internet security, authentication, access con-
trol, and formal security analysis. He is a fellow of the IET. He has served or is
currently serving as the main Organizer of international conferences and
workshops, such as MobiWorld, MIST, SeCIHD, AsiaARES, and so forth.
He is the Editor-in-Chief of the Journal of Wireless Mobile Networks,
Ubiquitous Computing, and Dependable Applications. He is on the Edito-
rial Board of Information Sciences, the Journal of Network and Computer
Applications, the International Journal of Ad Hoc and Ubiquitous Com-
puting, Computing and Informatics, the Journal of High Speed Networks,
Intelligent Automation & Soft Computing, and Security and Communication
Networks.

VOLUME 6, 2018 43383


	INTRODUCTION
	PROBLEM STATEMENT AND OUR CONTRIBUTION
	RELATED WORKS
	NETWORK SETUP
	PROPOSED APPROACH
	HIERARCHICAL CONTEXT-AWARE ASPECT-ORIENTED PETRI NETS (HCAPN)
	DEFINITION AND RULES
	RULE OF PASSES
	RULE OF PLACES

	BEHAVIOUR AND VULNERABILITY ASSESSMENT WITH HCAPN
	HCAPN VERIFICATION
	N-STATE FLOW VERIFICATION


	PERFORMANCE EVALUATIONS
	CONCLUSION
	REFERENCES
	Biographies
	VISHAL SHARMA
	GAURAV CHOUDHARY
	YONGHO KO
	ILSUN YOU


