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ABSTRACT In this paper, we propose a smart campus care and guiding framework with deep learning-based
face recognition, called DeepGuiding, for students through Internet of Things technologies. The Deep-
Guiding framework can construct the dedicated video trajectory of a campus student, where the recorded
video for each student can be automatically classified to achieve efficient footprint review as necessary.
In addition, DeepGuiding can provide time-efficient indoor and outdoor guiding in a campus to quickly
reach places, meet friends, and find students. To the best of our knowledge, DeepGuiding is the first
campus care and guiding system which provides the following features: 1) it achieves the seamless outdoor
and indoor navigation between buildings in a campus; 2) it keeps additional construction cost low by
utilizing existing surveillance cameras in a campus; and 3) it reduces the total searching time for finding
a specific event/target in a campus by alleviating time-consuming labor overhead to review a huge amount
of video data. An Android-based prototype using iBeacon indoor localization and global positioning system
outdoor positioning with surveillance cameras is implemented to verify the feasibility and superiority
of our DeepGuiding framework. The Experimental results show that DeepGuiding outperforms existing
face recognition methods and can achieve high recognition accuracy for students not close to surveillance

cameras.

INDEX TERMS Face detection, face recognition, indoor positioning, Internet of Things, mobile device.

I. INTRODUCTION

The rapid development of mobile communication and Inter-
net of Things (IoT) technologies has made smart environ-
ments possible, such as smart building [1], community [2],
city [3], etc. The increasing number of connected mobile
devices can be used to collect and distribute environmental
information through built-in sensors. In addition, the inter-
connected IoT objects can communicate and cooperate with
connected mobile devices over the Internet, where objects
can be simple tag and iBeacon nodes, complex sensors and
actuators, and physical items and appliances with Bluetooth,
LTE/4G, RFID, Wi-Fi, or ZigBee network interfaces. The
global positioning system (GPS) is usually adopted in out-
door location-based services [4]; however, because GPS sig-
nals are blocked by building structures, the non-GPS systems
using RFID [5], iBeacon [6], or Wi-Fi [7] signals have to

be used for indoor object and individual positioning [8], [9].
Mobile devices utilizing indoor positioning have been
used to develop innovative applications and systems for
individual-based path planning [10], group-based emergency
evacuation [11], and microlocation-based geofencing [12].

On the other hand, recent studies for smart campuses of
academic, industrial, and medical institutions have been pro-
posed on a basis of 10T technologies [13]-[19]. The applica-
tions and services of IoT-enabled smart campuses have many
benefits over traditional and digital campuses. For students
and faculty, smart campuses can provide an environment to
deliver interactive and creative services to the campus com-
munity. In addition, campus operating effectiveness can be
enhanced for time and cost saving. Furthermore, comprehen-
sive campus surveillance and real-time incident warning can
be realized to improve campus safety [13].

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

43956

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 6, 2018

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0001-5453-9675

L.-W. Chen et al.: Smart Campus Care and Guiding With Dedicated Video Footprinting Through IoT Technologies

IEEE Access

Reference [14] used IoT communications to develop a
room automation module with digital control in appliance
access for energy saving. Reference [15] implemented an
energy management system for energy-efficient campus
buildings. The energy management system consists of wire-
less sensors and microcontrollers connecting to data readers
and actuators for sensing room temperature and reacting
upon corresponding heaters. Reference [16] focused on the
analysis and optimization of integrating data from the existing
energy and building management systems in a campus-scale
IoT infrastructure. Optimizing the control of resources in a
multi-building campus can improve energy saving and envi-
ronmental sustainability by reducing energy use and waste as
well as greenhouse gas emissions.

Reference [17] proposed a model for future IoT-based
healthcare systems, which consists of wearable sensors,
short-range and long-range communications, cloud-based
storage, and machine learning. In particular, IoT-based
healthcare systems are facing security, privacy, wearability,
and low-power operation challenges. In the field of loT-based
healthcare systems, it is critical to develop machine learning
for medical data diagnosis and to provide secure encryption
with lightweight computing for cloud storage. Reference [18]
presented a series of services implemented in the buildings
of a smart campus for energy efficiency. The implemented
services include indoor localization estimation, building
energy consumption prediction, and comfort provisioning
and energy saving optimization. The interaction decisions
between occupants and automated devices are made by the
implemented system to keep comfort conditions while saving
energy. Reference [19] designed a hybrid naming scheme to
name contents and devices for the IoT-based smart campus
environment. In the designed scheme, the name assigned to a
specific content is based on content features consisting of IoT
application prefix, hierarchical, flat-hash, and attribute com-
ponents. In addition to addressing and naming, scalability and
security can be provided to campus contents and [oT devices.
However, the current studies in the literature do not explore
the dedicated video footprint of a student who needs special
care in a smart campus. In addition, the fastest guiding path to
the current location of the special-care student is not provided
in an instant manner.

In this work, we design a smart campus care and guiding
framework with deep learning based face recognition, called
DeepGuiding, for students through IoT technologies, which
integrates GPS outdoor localization and iBeacon indoor posi-
tioning with surveillance cameras, as shown in Fig. 1. The
DeepGuiding system can automatically classify the recorded
video clips for each student according to his/her face and thus
can efficiently achieve video footprint review for a particular
student. In addition, DeepGuiding can provide time-efficient
indoor and outdoor guiding in a campus to quickly find a
place to be reached, a friend to be met, and a student to be
cared. In particular, DeepGuiding alleviates time-consuming
labor overhead to find a specific event/target in a huge amount
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FIGURE 1. System architecture of DeepGuiding.

of video data and thus can significantly reduce total searching
time in a campus as necessary.

To the best of our knowledge, DeepGuiding is the first
campus care and guiding system which provides the follow-
ing features: 1) it achieves the seamless outdoor and indoor
navigation between buildings in a campus, 2) it keeps addi-
tional construction cost low by utilizing existing surveillance
cameras in a campus, and 3) it reduces the total searching time
for finding a specific event/target in a campus by automat-
ically classifying the recorded video clips for each student.
An Android-based prototype is implemented by commercial
iBeacon nodes and built-in GPS receivers with surveillance
cameras to verify the feasibility and superiority of our Deep-
Guiding system. Experimental results show that DeepGuid-
ing outperforms existing face recognition methods and can
achieve high recognition accuracy for students not close to
surveillance cameras.

The rest of this paper is organized as follows. Section II
defines our smart campus care and guiding problem.
Section III proposes our framework to solve this prob-
lem. Section IV shows the system implementation of our
framework. Experimental results are discussed in Section V.
Finally, Section VI concludes the paper.

Il. SYSTEM MODEL

Fig. 1 shows the system architecture of DeepGuiding. On the
campus side, face positioning units (FPUs) are installed to
record videos and recognize the faces of students in outdoor
and indoor areas. The FPU is consisting of a Wi-Fi/4G net-
work interface to access the Internet, a surveillance camera
to record students’ videos, a database to map image pixels to
actual locations, and a microprocessor to recognize face iden-
tifiers. In addition, for certain areas that are not monitored
by FPUs (due to limited construction budget), iBeacon nodes
are deployed to provide position information in those areas
without FPUs installed. In particular, the recorded videos of
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students have to automatically classified and stored in dedi-
cated directories according to the recognized face identifiers
in these videos. Thus, teachers and guardians can perform the
quick video footprint review of a target student for special
care Or emergency.

On the student side, a smart handheld unit (SHU) is carried
by a campus student to receive his/her current position and
guiding information from the DeepGuiding server. The SHU
is consisting of a Wi-Fi/4G network interface for Internet
access and a microprocessor for video footprint backtracking
and guiding path planning in the campus. In addition, teachers
and guardians can use a personal computer or a mobile device
to find the campus footprint of a student who needs special
care. With a proper number of surveillance cameras installed
at campus spaces to monitor critical areas, the video foot-
print of students could be completely recorded and automat-
ically classified. With a sufficient number of iBeacon nodes
deployed in the areas not covered by FPUs (i.e., no footprint
video), the up-to-date position information can be provided to
students, teachers, and guardians for campus guiding and spe-
cial care. The goal is to achieve seamless and rapid outdoor
and indoor navigation for students and teachers in a campus
by addressing the following four research issues:

1) Fast Campus Guiding: How do we instantly obtain the
up-to-date positions in both outdoor and indoor cam-
pus spaces and plan the fastest path from the current
location to the destination in a seamless manner?

2) Accurate Face Detection: How do we precisely detect
the faces in the live videos of surveillance cameras
based on continuous detected frames and detection
window sizes?

3) Deep Face Recognition: How do we correctly rec-
ognize the identifiers of detected faces not close to
surveillance cameras by exploring deep learning based
face recognition?

4) Individual Video Classification: How do we automati-
cally classify and store the recorded videos of students
in dedicated directories according to the recognized
face identifiers in surveillance videos?

Ill. SMART CAMPUS CARE AND GUIDING

Fig. 2 shows the positioning flowchart of DeepGuiding.
Campus students use the DeepGuiding App to login to the
DeepGuiding server with their registered user accounts. For
DeepGuiding users, there are three manners (with different
positioning errors) to obtain the up-to-date positions. The first
manner is when GPS satellite signals are available (usually
in outdoor spaces), the GPS location is used as the current
position of the SHU and transmitted to the DeepGuiding
server. The second manner is when iBeacon node signals are
available (usually in indoor spaces), the SHU transmits the
received iBeacon ID (with the strongest signal strength) to the
DeepGuiding server and the actual location associated with
the iBeacon ID is replied to the SHU as the current position.
The last manner is when a FPU detects and recognizes the
face of a DeepGuiding user, the actual location (mapped
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FIGURE 2. Positioning flowchart of DeepGuiding.

from the coordinate of the recognized face) is transmitted to
the DeepGuiding server and forwarded to the SHU of the
DeepGuiding user as the current position. Note that when
two or more locations are simultaneously obtained through
GPS, iBeacon, and FPU positioning, the priority of FPU
locations is the highest (because its positioning error is the
lowest), whereas that of GPS locations is the lowest (because
its positioning error is the highest) [8].

The following are the steps of FPU positioning. First,
a FPU monitors arriving students in the surveillance area.
When one or more students approach the FPU, the videos
of these students are recorded by the FPU. Second, the faces
of all students in the recorded videos are detected and rec-
ognized using the Fisherface-based face recognition [20],
as shown in Fig. 3. Third, the center pixel of each face on
the video is mapped to the actual location in the surveil-
lance area. Next, the mapped location and associated user
account of each student are transmitted to the DeepGuiding

Database
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FIGURE 3. Fisherface-based face recognition in DeepGuiding.

VOLUME 6, 2018



L.-W. Chen et al.: Smart Campus Care and Guiding With Dedicated Video Footprinting Through IoT Technologies

IEEE Access

server. Finally, the DeepGuiding server sends the location
message to the corresponding SHU based on the associ-
ated user account, where the location message contains the
mapped position of the recognized face. When the corre-
sponding SHU receives the location message, it can use the
received up-to-date position to enable location-based services
in smart campuses, such as individual-based path planning,
group-based emergency evacuation, microlocation-based
geofencing, etc.

However, on a basis of our experimental results, the face
recognition accuracy is significantly reduced when students
are not close to surveillance cameras. To improve the recog-
nition accuracy of students’ faces, we explore convolutional
neural networks (CNN) to design a deep learning based
face recognition approach with similar execution time to the
Fisherface-based face recognition. The CNN is a class of
deep artificial neural networks (ANN) consisting of an input
layer, multiple hidden layers, and an output layer, as shown
in Fig. 4. An ANN is a collection of connected artificial
neurons (i.e., circles in Fig. 4) similar to biological neurons in
a human brain, where each artificial neuron has its activation
function, weight, and bias. The input is fed to the input layer
and a linear transformation is done on the input by the weights
and biases of the artificial neurons, whereas a non-linear
transformation is performed by the activation function. The
weights and biases of the artificial neurons can be updated
through back-propagation based on the error between the
actual value and output value, as shown in Fig. 5.

Hidden Layer

Input Layer

Output Layer

Input

FIGURE 4. Layers of artificial neural networks.

A signal can be transmitted from one artificial neuron to
another artificial neuron through the connection (i.e., lines
in Fig. 4) between them. The artificial neuron can process
the received signal and an activated artificial neuron can
signal other connected artificial neurons. The adopted acti-
vation function decides whether an artificial neuron is acti-
vated or not, where the activation function is the non-linear
transformation and the transformed output is the input for the
next layer of artificial neurons. Three most commonly used
activation functions including Sigmoid, Tanh, and ReLU in
an ANN are

fx) = Tte (1)
2
fx) = m -1, (2)
and
f(x) = max(0, x), 3)
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FIGURE 6. Our CNN architecture for face recognition.

respectively. Sigmoid activation function has an S shape rang-
ing from O to 1, whereas Tanh activation function is similar
to Sigmoid activation function but ranging from -1 to 1.
ReLU activation function converts the input to zero if the
input is negative, where the zero-input neuron is not activated.
By using ReLU activation function, only a few non-zero-
input neurons are activated at a time, which can efficiently
reduce the computation time of hidden layers.

In particular, the hidden layers of a CNN include convo-
lutional layers, pooling layers, fully connected layers, and
normalization layers. Convolutional layers perform a con-
volution operation to emulate the neuron response as visual
stimuli occurs, and the convoluted result is used as the input
of the next layer. Pooling layers are used to combine the
outputs of a neuron group as the input of a single neuron in
the next layer. For instance, the maximum value is adopted
by the MaxPooling layer from each group neuron of the
previous layer, whereas the average value is adopted by the
AvgPooling layer from each group neuron of the previous
layer. Through fully connected layers, every artificial neuron
in the previous layer can be connected to every artificial
neuron in the next layer. Normalization layers are used to
highlight the target values and suppress their values that are
significantly below the original values.

To achieve high accuracy while keeping execution time
low, our CNN architecture for face recognition is designed to
consist of three convolutional layers (extracting fine-grained
features), one flatten layer (converting 2-dimensional matrix
to 1-dimensional output), three fully connected layers (calcu-
lating the probability of matching face identifiers), and one
normalization layer (using the Softmax function), as shown
in Fig. 6. For local feature extraction, convolution filtering,
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FIGURE 7. Convolution filter.

ReLU activation function, and MaxPooling reduction are
used to convert the input face image to its feature matrix.
As shown in Fig. 7, for example, suppose that the input is
an 4x4 image, the convolution filter is a 3x3 matrix, and
the stride length is 1. A 2x2 feature matrix can be obtained
by taking the sum of products of the 3x3 filter matrix and
each 3x3 sub-image moving with stride 1 in the input image
(i.e., top-left, top-right, bottom-left, and bottom-right sub-
squares with red lines in Fig. 7). Next, ReLU activation
function is used to obtain one of two extreme values, zero
for negative input and the original value for non-negative
input. Finally, MaxPooling reduction is used to extract the
maximum value of surrounding pixels as local features for
reducing computation time, as shown in Fig. 8.

2 3 3 4
1 2 2 3 a
Down-Pooling
2 5 1 1 —
6 3
3 6 3 2

FIGURE 8. MaxPooling reduction.

In the designed CNN model, 3x3, 2x2, and 2x2 filter
matrices are used to extract 32, 64, and 128 features in
the first, second, and third convolution layers, respectively.
In addition, the input and output of the second convolution
layer are the output (i.e., the least fine-grained features)
of the first convolution layer and the input (i.e., the more
fine-grained features) of the third convolution layer, respec-
tively. Suppose that the output (i.e., the most fine-grained
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features) of the third convolution layer is n x n matrix. The
flatten layer is used to convert 2-dimensional n X n matrix to
1-dimensional n? output values as follow.

Mij — Mi_1yxn+j» @

fori = 1,2,...,nandj = 1,2,...,n. Next, the fully-
connected layers are used to calculate the probability of the
input face image matching to each possible face identifier.
In addition, the dropout function is used to randomly close
25% artificial neurons to avoid overfitting. Finally, the Soft-
max function is used to convert a K-dimensional real-value
vector z to a K-dimensional real-value vector o (z) as follow,
where K is the number of possible face identifiers, each
element value in o (z) is between 0 and 1, and the sum of all
element values in o (z) is equal to 1.
ey 5

@)= T )
forj = 1,2,..., K. The face identifier with the largest ele-
ment value in o (z) (which has to be greater than a predefined
threshold) is selected as the recognized result of the input
face image; otherwise, there is no recognized identifier for
the input face image.

IV. SYSTEM IMPLEMENTATION
We have developed a prototype of DeepGuiding [21] using
the built-in IEEE 802.11 interfaces of notebook computers
and Android mobile devices connecting to a campus IEEE
802.11 access point with Internet access as the network
interfaces of FPUs and SHUs, respectively. When campus
students register to use the DeepGuiding App for the first
time, their faces have to register to the DeepGuiding server
associating with user accounts. A few front view and side
view face photos have to be taken through the DeepGuiding
App and sent to the DeepGuiding server for constructing the
database of face recognition and video classification. The
SAILS SDK [22] that supports the vector-typed and rotatable
map with different render styles is adopted to implement the
campus guiding in the Feng Chia University. In addition to
iBeacon ID localization, the SAILS SDK can use the signals
of Wi-Fi access points for indoor positioning. Furthermore,
the SAILS SDK can improve the localization accuracy of
Wi-Fi/iBeacon signals by fusing the accelerometer, compass,
and gyro inertial sensors of mobile devices. Note that we
further design and implement deep learning based face recog-
nition in the prototype.

The FPU is implemented by a notebook computer with
a video camera of 1920 x 1080 resolution, which is run-
ning on Windows 10 operating system and communicat-
ing with the DeepGuiding server through a campus IEEE
802.11 access point. In addition, iBeacon iB07-C2450 nodes
(using the Bluetooth 4.0 chip of TI CC2541 [23]) powered by
the coin battery of CR2450 are used in the non-FPU-deployed
areas. The Eclipse JAVA integrated development environment
is used to develop the graphical user interface and inte-
grate with the Open Source Computer Vision (OpenCV [24])

VOLUME 6, 2018



L.-W. Chen et al.: Smart Campus Care and Guiding With Dedicated Video Footprinting Through IoT Technologies

IEEE Access

and Google TensorFlow [25] libraries to implement face
detection/recognition and video recording, classification, and
streaming. The SHU is implemented by an Android mobile
device that communicates with the DeepGuiding server
through the built-in IEEE 802.11 interface and campus access
point.

Fig. 9 and Fig. 10 show the graphical user interfaces of
the DeepGuiding App and Website, respectively. The func-
tions of the DeepGuiding App are including My Position,
Live Scene, My Video, Student Care, Tracking Platform, and
School Guide, as shown in Fig. 9(a). The dedicated video
footprint of a student can be quickly reviewed if special events
occur to the student, as shown in Fig. 9(b). The guiding path
with the shortest distance can be planned between students in
different buildings, as shown in Fig. 9(c). The rescue action
and path planning can be performed if teachers/guardians
find certain emergency event in either live video stream-
ing or video footprint review, as shown in Fig. 9(d). On the
other hand, the DeepGuiding Website is developed for teach-
ers/guardians to perform video clip management and video
data analysis through personal computers/tablets, as shown
in Fig. 10.

B My position
& Live scene
2 My video

H Student care

Tracking
platform

M School guide 22

we @
sroavcast &)
comx Q)

FIGURE 10. DeepGuiding Website for teachers/guardians.

For indoor demonstration, several Android-based mobile
devices with different mini dolls (and different human face
photos) are used to simulate student moving in a monitored
campus. The Android-based mobile device is used to obtain
the position information from GPS, iBeacon, and FPU and
to display the current position and associated identifier of
the mini doll in the DeepGuiding App. The correctness of
positioning results and classified videos can be verified by
checking the received positions and live video streaming on
the mobile device’s screen, respectively. In addition, the spe-
cific emergency message for help can be sent to the mobile
device of a specified teacher/guardian. The guiding path from
the location of the specified teacher/guardian to the current
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position of the student can be immediately displayed on the
mobile device’s screen for quick rescue.

V. EXPERIMENTATIONS

In this section, to achieve accurate face detection and recog-
nition results for video footprint review in DeepGuiding,
we first select a feasible configuration for face detection
based on the detection accuracy, false positive rate, and exe-
cution time under different numbers of continuous detected
frames (i.e., a face is considered to be successfully detected
only if the face is continuously detected in a predefined
number of successive frames). Next, we find a suitable size of
face detection windows used to scan the whole video frame
for increasing detection success rates and reducing false pos-
itive rates. Finally, we compare face recognition accuracy
and execution time using Fisher-based and CNN-based face
recognition in bright (i.e., high lightness), dark (i.e., low
lightness), and normal (intermediate lightness) indoor envi-
ronments. The open face database of PICS [26] is adopted in
DeepGuiding. Each experimentation is repeated 10 times by
realistic trial and the average value is taken.

Fig. 11, Fig. 12, and Fig. 13 show performance compar-
isons of face detection using different numbers of continuous
detected frames in three indoor environments with high, low,
and intermediate lightness, respectively. We measure the face
detection accuracy, false positive rate, and execution time for
the distances of 0.5, 1, 1.5, ..., and 5 meters between the
individual and surveillance camera through a notebook com-
puter with Windows 10 operating system (Model: ASUS Zen-
Book UX330, CPU: Intel i7-7500U 2.7GHz, RAM: 8GB).
From Fig. 11, Fig. 12, and Fig. 13, it can be observed that
the accuracy of face detection significantly decreases (with
similar execution time) as the distance between the individual
and surveillance camera is greater than 3 meters. More impor-
tantly, although using a small number of continuous detected
frames can detect more faces not close to the surveillance
camera, it causes a high false positive rate. So we have to
trade the detection accuracy off against false positive rates.
Fig. 14 shows the average detection accuracy, false positive
rate, and execution time of face detection in bright, dark,
normal environments. It can be seen that using 3 continuous
detected frames has very low false positive rates (especially in
bright and normal environments) while keeping its detection
accuracy and execution time competitive to other numbers
of continuous detected frames. Therefore, to balance the
detection accuracy and false positive rates of DeepGuiding,
we set the number of continuous detected frames as 3 for face
detection in the following experimentations.

On the other hand, Fig. 15, Fig. 16, and Fig. 17 show
detection accuracy, false positive rate, and execution time
comparisons of face detection using different sizes of face
detection windows in bright, dark, and normal indoor envi-
ronments, respectively. We can observe that the detection
accuracy is drastically dropping as the detection windows size
is larger than 20 (i.e., 20x20 square). In contrast, the false
positive rates of face detection are very similar among using
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FIGURE 11. Comparisons of different numbers of continuous detected frames in the bright environment with high lightness. (a) Detection accuracy. (b)

False positive rate. (c) Execution time.
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FIGURE 12. Comparisons of different numbers of continuous detected frames in the dark environment with low lightness. (a) Detection accuracy. (b)

False positive rate. (c) Execution time.
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FIGURE 13. Comparisons of different numbers of continuous detected frames in the normal environment with intermediate lightness. (a) Detection

accuracy. (b) False positive rate. (c) Execution time.

the detection window sizes of 5, 10, ..., and 30. In addition,
the execution time using the face detection window less
than or equal to 20 only has a little increasing compared with
that using detection window sizes of 25 and 30. As shown
in Fig. 18, similar results are obtained for the average per-
formance in three indoor environments. To achieve high
detection accuracy and low false positive rates (with similar
execution time), the face detection window of 20 is used in
our experimentations.

Fig. 19 shows recognition accuracy and execution
time comparisons of face recognition using Fisher-based
and CNN-based face recognition in bright, dark, and
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normal environments. It can be observed that our designed
CNN-based method has much higher recognition accuracy
than the Fisher-based method in all environments with dif-
ferent lightness. In particular, even when the individual is
not close to the surveillance camera, the recognition accu-
racy of our CNN-based method is more than 90%, whereas
that of the Fisher-based method is only around 70% in the
worst case (i.e., the dark environment with low lightness).
On the other hand, the execution time of our CNN-based
method is similar to that of the Fisher-based method. In Deep-
Guiding, the number of hidden layers of the CNN model is
decreased to reduce the execution time of face recognition
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FIGURE 14. Comparisons of different numbers of continuous detected frames averagely in bright, dark, and normal environments. (a) Detection
accuracy. (b) False positive rate. (c) Execution time.
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FIGURE 15. Comparisons of different sizes of face detection windows in the bright environment with high lightness. (a) Detection accuracy. (b) False
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FIGURE 16. Comparisons of different sizes of face detection windows in the dark environment with low lightness. (a) Detection accuracy. (b) False

positive rate. (c) Execution time.

(as shown in 19b) while keeping the recognition success rate
high (as shown in Fig. Fig. 19a). In particular, through the
proper design of the CNN model, the accuracy of face recog-
nition can be significantly improved while slightly increasing
execution time (i.e., less than 10 ms).

In particular, for video footprint review using the tradi-
tional surveillance system and DeepGuiding, a 30-minute live
video is recorded and a specific event of wallet lost from a
target student occurs at 20-th minute. Three different users are
using the traditional surveillance system and DeepGuiding to
find the location of wallet lost for the target student. The video
clips without the target student are fast-forwarded with the
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TABLE 1. Comparisons of footprint review times using the traditional
surveillance system and DeepGuiding.

Method User 1 User2 User3 Average (min:sec)
Traditional 8:37 9:42 7:18 8:32
DeepGuiding 2:47 2:32 2:07 2:29

interval of five seconds in the traditional surveillance system.
Table 1 shows the comparisons of footprint review times
using the traditional surveillance system and DeepGuiding.
It can be observed that DeepGuiding can significantly reduce
the footprint review time from eight-and-a-half minutes to

43963



I E E E ACC@SS L.-W. Chen et al.: Smart Campus Care and Guiding With Dedicated Video Footprinting Through IoT Technologies

100 10 T T T T T T 140 T T T T T T T
Sy Detection window size of 5 —+— Detection window size of 5 —+—
20 T % “u 9 Detection window size of 10 - Detection window size of 10 -
\ 5 ﬂ Detection window size of 15 - 120 Detection window size of 15 -~
_. 80 8 Detection window size of 20 & 1 Detection window size of 20 &
X § Detection window size of 25 -G =+ 100 Detection window size of 25 --©-- |
x 70 3 v S 7 Detection window size of 30 —-&—- ] £ Detection window size of 30 —-4-—
3 \ . 2 £
e 60 : s 6 o
3 Y ) ¥ o ® E 80
g 50 £ 5 =
© . 2 / 2 60 g q
S 40 - g 4 L - = -
8 a0l Detection window size of 5 —+— 8 / 3 40 O e
8 Detection window size of 10 —X— L / ha TRTIATIA
20 - Detection window size of 15 - 2
Detection window size of 20 - AN / 20
10 - Detection window size of 25 --©-+ 1 S T
0 . Detection window size of 30 —-&-a-_ = g 0 AN T 0
0.5 1 1.5 2 25 3 35 4 45 5 0.5 1 1.5 2 25 3 3.5 4 45 5 0.5 1 1.5 2 25 3 35 4 45 5
Distance (m) Distance (m) Distance (m)
(@) (b) (©

FIGURE 17. Comparisons of different sizes of face detection windows in the normal environment with intermediate lightness. (a) Detection accuracy. (b)
False positive rate. (c) Execution time.
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FIGURE 18. Comparisons of different sizes of face detection windows averagely in bright, dark, and normal environments. (a) Detection accuracy. (b)
False positive rate. (c) Execution time.
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FIGURE 19. Comparisons of recognition accuracy and execution time using Fisher-based and CNN-based face recognition in bright, dark, and normal
environments. (a) Recognition accuracy. (b) Execution time.

two-and-a-half minutes in average, where the ratio of time where the cost of each item is based on the online price of
saving is about 70%. This is because only the video clips amazon.com. Table 2 shows the comparisons of hardware
in which the target student appears need to be reviewed in construction costs without and with using existing cameras
DeepGuiding, whereas all the video clips have to be carefully in the second floor of Information and Electrical Engineer-
checked in the traditional surveillance system. ing Building, Feng Chia University (as shown in Fig. 20).

On the other hand, for the hardware construction cost of It can be seen that 24 new cameras (i.e., green and red
DeepGuiding, we estimate the total costs with and without circles in Fig. 20) have to be installed without using existing

using existing surveillance cameras, respectively. The hard- surveillance cameras, whereas only 10 new cameras (i.e.,
ware construction cost consists of the surveillance camera, red circles in Fig. 20) need to be added with using exist-
video recorder, cable line, cable connector, and power line, ing surveillance cameras. The hardware construction costs
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TABLE 2. Comparisons of hardware construction costs without and with using existing cameras.

Item Surveillance Video Cable Cable Power Total
Camera Recorder Line Connector Line Cost
Price ($49.99/1pack) ($499/16¢ch) ($74.5/100feet) ($6.99/20pack) ($13.99/40feet) (U.S. Dallor)
($1099/32ch) ($9.99/40pack)  ($22.99/100feet)
Without Existing Cameras 24 x 49.99 = 1199.76 1099 74.5 x 13 =968.5 26.97 206.1 3500.33
With Existing Cameras 10 x 49.99 = 499.9 499 74.5 x 5=1372.5 9.99 105.95 1487.34

FIGURE 20. Existing surveillance cameras (i.e., 14 green circles) and
additional installed cameras (i.e., 10 red circles) for DeepGuidng in

the second floor of Information and Electrical Engineering Building, Feng
Chia University.

without and with using existing surveillance cameras are
3500 and 1487 U.S. dollars, respectively, where the ratio of
cost saving is about 58%.

VI. CONCLUSIONS

In this work, we design, implement, and evaluate a smart
campus care and guiding framework with deep learning based
face recognition for students through IoT technologies. The
proposed framework can efficiently alleviate the labor over-
head for reviewing a lot of recorded videos and significantly
reduce the searching time for finding a target student who
needs to be cared in a campus. In other words, adopting our
framework in campus care and guiding can both avoid desti-
nation location acquisition consuming time due to unfamiliar
environments and prevent teachers/guardians from watching
many unrelated video clips of non-target students recorded
by a large number of surveillance cameras. Furthermore,
experimental results conduced from the prototype of Deep-
Guiding framework show that our deep learning based face
recognition achieves high recognition accuracy while keeping
execution time low.
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