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ABSTRACT This paper proposes a novel multi-agent bargaining learning (MABL) for the distributed energy
hub economic dispatch (EHED) of multiple energy carrier systems (MECS). Distributed EHED is developed
by extending the conventional economic dispatch (ED) into MECS in a distributed manner, in which each
energy hub is regarded as a learning agent for self-scheduling. The classical Q-learning with associative
memory is employed for knowledge learning of each agent, while the non-uniform mutation operator is
adopted for handling the continuous control variables. To maximize the total payoff of all the energy hubs,
the bargaining game is presented for achieving an effective coordination between the buyer agents and a
seller agent, where the slack energy hub is designed as the seller agent and the others are the buyer agents.
MABL has been thoroughly evaluated for the distributed EHED on a high-complex 39-hub MECS with
29 energy hub structures and 76 energy production units. Case studies verify the superior performance of
MABL for the distributed EHED compared with six centralized heuristic optimization algorithms.

INDEX TERMS Multi-agent bargaining learning, distributed energy hub economic dispatch, multiple energy
carrier systems, knowledge learning, bargaining game.

I. INTRODUCTION
In recent years, multiple energy carrier systems (MECS) has
intrigued many scholars as it is an inventible solution for the
future energy network [1], which will lead to a high energy
utilizing efficiency, a low CO2 emission, a high operation
economy and flexibility [2]. Accordingly, an attendant energy
hub, i.e., a functional unit where multiple energy carriers [3]
are converted, stored, and dissipated, is employed for achiev-
ing the interaction between different energy carriers.

Based on this intuition, a novel energy hub economic
dispatch (EHED) was developed in [4], which aims to min-
imize the operation cost by optimizing the energy inputs
of all the energy hubs to balance different types of energy
demands (i.e., electricity, heat, cool, and compressed air)
while satisfying various operation constraints. Consequently,
EHED is essentially an extension version of the conventional
economic dispatch (ED), however, it is more difficult to
handle the highly nonlinear, non-convex, non-smooth, non-
differential, and high-dimensional EHED with more equality
and inequality constraints. To tackle this issue, the heuristic
optimization algorithms are commonly considered as priority

techniques since they are highly independent on the math-
ematical model, compared with the conventional gradient-
based algorithms (e.g., interior-point method [5]), which
usually obtain a local optimum for the highly nonlinear and
non-convex optimization.

To obtain a high-quality optimal solution with a lower
objective function for EHED, a self-adoptive learning with
time varying acceleration coefficient-gravitational search
algorithm (SAL-TVAC-GSA) was proposed in [4] by design-
ing three fundamental modifications based on the original
GSA, which has been proven excellent performance on solu-
tion quality and computation efficiency compared that of
GSA [6], enhanced GSA (EGSA) [6], particle swarm opti-
mization (PSO) [7], and genetic algorithm (GA) [8]. No doubt
it can be effectively addressed by other heuristic optimiza-
tion algorithms, e.g., artificial bee colony (ABC) [9] and
differential evolution (DE) [10]. Nevertheless, most of these
algorithms essentially belong to the centralized optimization
algorithms, which easily leads to a high computation burden
and poor performance with a low-quality optimal solution
as the scale and complexity of MECS increases [11], while
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it is also difficult to satisfy the demand of high privacy and
security [12].

Generally speaking, the distributed optimization algo-
rithms can effectively handle these problems. In [13], an
event-triggered communication-based method was presented
for distributed ED. Based on the consensus theory, a dis-
tributed primal-dual dynamic multiagent system [14] was
proposed for dynamical ED. Moreover, a bargaining-based
alternating direction method of multipliers (ADMM) [15]
was designed for distributed EHED. However, all of them
are only available for convex and smooth ED, which cannot
address the non-convex, non-smooth ED. On the other hand,
the distributed heuristic optimization algorithms, including
cooperative co-evolutionary differential evolution [16], dis-
tributed PSO [17], distributed multi-step Q(λ) learning [18],
and so on, are more suitable for the distributed EHED, but
all of them can only search a local optimal solution in most
cases.

Over the years, multi-agent reinforcement learning
(MARL) has attracted extensive investigations and real-world
applications due to its distributed nature of the multi-agent
solution [19], in which each agent can maximize its payoff
by competing or cooperating with other agents, e.g., a deep
communication for obtaining a high-quality optimal solution
of the multi-agent system (MAS). Motivated from this ben-
efit, a novel MARL was developed for an optimal reactive
power dispatch by combining the consensus theory with the
distributed Q-learning [20]. Besides, a game theory based
hierarchical correlated Q-learning was designed for multi-
layer optimal generation command dispatch [21] and reactive
power optimization [22], respectively. All of these algorithms
can achieve a satisfactory optimal solution, but ineluctably
suffer from three flaws, as follows:

• Slow convergence rate: each agent will consume a large
amount of computation time to acquire the optimal
Q-value matrix, especially for the equilibrium com-
putation [23], e.g., the Nash equilibria computation
is polynomial parity arguments on directed graphs
(PPAD)-hard [24].

• Curse of dimension: the joint action space will increase
exponentially with the growing controllable vari-
ables [25], thus they are incapable of solving EHED in
a large-scale MECS.

• Weak disposal ability for the continuous controllable
variables: action space needs to be discretized into a
finite number of cells for each controllable variable, thus
the control accuracy will be contradictory with the com-
putation time [26], i.e., the higher the control accuracy,
the longer computation time and vice versa.

In order to resolve these problems, this paper proposes a
novelMARL calledmulti-agent bargaining learning (MABL)
for rapidly searching a high-quality optimal solution of dis-
tributed EHED.

The remaining of this paper is organized as follows. The
mathematical model of distributed EHED is presented in

Section II. Section III provides the basic principle of MABL.
The detailed design of MABL for distributed EHED is given
in Section IV. Simulation results and conclusion are given in
Section V and Section VI, respectively.

II. MATHEMATICAL MODEL OF DISTRIBUTED EHED
A. GENERAL MODEL OF ENERGY HUB
As illustrated in Fig. 1, energy hub can be treated as an inter-
face between energy infrastructures and loads [27], which
usually consists of connection devices (e.g., transformer),
converters (e.g., combined heat and power (CHP) units),
and storage devices. In practice, CHP units, combined heat,
cool, and power (CHCP) units, big building complexes, small
isolated systems, and so on, can be regarded as different
energy hubs [28]. For a general energy hub, the relationmodel
between the output energy carriers and the input energy car-
riers can be written as follows [29]:

Eout
α

Eout
β

...

Eout
ζ


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α
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β

...

E in
ζ


︸ ︷︷ ︸

Ein

(1)

where the subscripts {α, β, . . . , ζ} represents various energy
carriers, including electricity, gas, heat, and so on; Eout,
Ein denote the vectors of energy outputs and energy inputs,
respectively; and C is the coupling matrix, in which each
element (e.g., Cαα) denotes the coupling factor.

FIGURE 1. A general model of energy hub.

Note that the coupling matrix C is completely determined
by the specific configuration of the corresponding energy
hub, while each coupling factor C is equal to the product of
the dispatch factor v and the converter efficiency η, i.e., C =
vη [30]. For an energy hub with multiple devices, the dispatch
factors represent the distribution ratios of an input energy
carrier to these devices, which can be considered as the con-
trollable variables, while the converter efficiency is usually
perceived as a constant.

B. DISTRIBUTED EHED
1) OBJECTIVE FUNCTION
To maximize the economic benefits of MECS, both the total
energy costs fC and the total energy losses fL are taken as two
basic objective functions for distributed EHED, respectively.
In order tominimize the total energy costs and the total energy
losses simultaneously, they can be transformed into a single

VOLUME 6, 2018 39565



X. Zhang et al.: MABL for Distributed EHED

objective function fI, as follows [4]:

min fC(x) =
M∑
m=1

f mC (xm), fL(x) =
M∑
m=1

f mL (xm),

fI(x) = fC(x)

1+
fL(x)∑

p∈P
Epdemand

 (2)

where x is the vector of the controllable variables of an
entire system, including the energy production of each input
energy carrier and each dispatch factor; xm is the vector of the
controllable variables for themth energy hub; the subscriptm
and the superscript p represent themth energy hub and the pth
energy carrier, respectively;M is the number of energy hubs;
P denotes the set of energy carriers, i.e., P={α, β, . . . , ζ};
Epdemanddenotes the energy demand of the pth output energy
carrier of MECS; f mC and f mL represent the energy cost and the
energy loss of the mth energy hub, respectively, which can be
calculated as [4], [31]

f mC (xm) =
∑
p∈P

npm∑
j=1

(
apmj

(
Ep,inmj

)2
+ bpmjE

p,in
mj + c

p
mj

)

+

nem∑
j=1

∣∣∣demj sin (eemj (Ee,in
mj,min − E

e,in
mj

))∣∣∣ (3)

f mL (xm) =
∑
p∈P

(
Ep,inm − Ep,outm

)
(4)

where npm is the number of energy sources associated with
the pth input energy carrier for the mth energy hub; nem
is the number of electrical generators with the valve-point
effects of the mth energy hub; apmj, b

p
mj, and c

p
mj are the cost

coefficients of the jth energy source; demj and e
e
mj are the cost

coefficients of the additional rectified sinusoidal component
by considering the value-point effects of the electrical gener-
ators; Ep,inmj is the input energy production of the jth energy

source; Ee,in
mj,min is the minimum energy production of the jth

electrical generator; Ep,inm and Ep,outm are the energy input and
energy output of the pth input energy carrier for the mth
energy hub, respectively.

2) CONSTRAINTS
In general, the renewable energy resources, e.g., solar or wind
energy, are usually operated at the maximum power points
(MPPs) at different weather conditions in a thermal power
dominated system. Hence, no renewable energy resource is
not considered for set points optimizations in this paper.

In the pursuit of different economic objective functions
in (9), each energy hub needs to satisfy various constraints for
an optimal operation, including energy balance constraints,
capacity limits of all energy sources, prohibited operation
zones (POZ) constraints of conventional thermal genera-
tors for faults prevention [32], and dispatch factor limits,

as follows:

Epdemand =

M∑
m=1

Ep,outm , p ∈ P (5)

Ep,inmj,min ≤ Ep,inmj ≤ E
p,in
mj,max, p ∈ P;

m = 1, 2, . . . , M; j = 1, 2, . . . , npm (6)

Ee,in
mj,min ≤ E

e,in
mj ≤ E

e,in
mj,min _1

or Ee,in
mj,max _(z−1) ≤ E

e,in
mj ≤ E

e,in
mj,min _z,

z = 2, . . . ,Z e
mj

or Ee,in
mj,max _z ≤ E

e,in
mj ≤ E

e,in
mj,max

m = 1, 2, . . . ,M; j = 1, 2, . . . , nem

(7)

where Ee,in
mj,min _z and E

e,in
mj,max _z are the low bound and upper

bound of the zth POZ of jth electrical generator for the mth
energy hub, respectively; and Z e

mj is the POZ number of jth
electrical generator for the mth energy hub.

III. MULTI-AGENT BARGAINING LEARNING
A. BARGAINING GAME
In a basic two-player bargaining game, the seller agent will
firstly make an offer to the buyer agent, if the offer is accepted
by the buyer agent, then an bargaining equilibrium (i.e.,
the strategy of the offer) can be determined, otherwise, the
bargaining role will be shifted to be on the buyer agent in the
next period until they reach an agreement on the offer [33].
Enlighted by this game, a novel cooperative one-seller and n-
buyer bargaining game is proposed for achieving an efficient
coordination between different players.

FIGURE 2. Principle of one-seller and n-buyer bargaining game.

As shown in Fig. 2, the one-seller and n-buyer bargaining
game contains two bargaining process at each round, as

1) The seller agent firstly issues an current optimal joint
action strategy x∗ = (x∗1 , . . . , x

∗
i , . . . , x

∗
n) of the offers to

all the buyer agents, which can be determined by compar-
ing different bargaining strategies from the buyer agents,
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as follows:

x∗k = argmax[U1(xb1,k−1, x
other
1,k−1), . . . ,Ui(x

b
i,k−1, x

other
i,k−1), . . . ,

Un(xbn,k−1, x
other
n,k−1),Us(xbk−1),Us(x∗k−1)] (8)

where the subscript k denotes the kth iteration; x∗k is the opti-
mal joint action strategy at the kth iteration; xbi,k−1 is the
bargaining action strategy of the ith buyer agent; xotheri,k−1 is the
the optimal joint action strategy of all the buyer agents except
the ith buyer agent at the (k − 1) iteration; xbk−1 is the joint
bargaining action strategy; Ui is the utility function of the ith
buyer agent, i = 1, 2, . . . , n; n is the number of buyer agents;
and Us is the utility function of the seller agent.
2) If all the buyer agents accept that, the bargaining game

is over, otherwise, the buyer agent will search a more optimal
action strategy xbi to the seller agent if the following condition
can be satisfied, as{

Ui(xbi,k , x
other
i,k ) ≥ Us(x∗k ), i = 1, 2, . . . , n

or Us(xbk ) ≥ Us(x∗k )
(9)

Note that all the utility functions in (16) and (9) represent
the total payoff of all the agents, in which each buyer agent
can only optimize its own action strategy to increase the total
payoff. After a series of bargaining game between the seller
agent and the buyer agents according to (16) and (9), a high-
quality bargaining equilibrium with a high total payoff of
all the agents can be acquired. Hence, the key of bargaining
game is to search a more optimal action strategy xbi for each
buyer agent, which will be handled by the proposed learning
method.

B. KNOWLEDGE LEARNING
As one of the most commonly used reinforcement learn-
ing, Q-learning is a model-free learning through continuous
interactions with the environment [34], which can develop
the knowledge for each action strategy at each state via
a reward mechanism. Hence, it is adopted for knowledge
learning of each buyer agent. To effectively avoid the curse
of dimension and accelerate the learning rate of conventional
learning, the associative memory is used for knowledge stor-
age [35], while a cooperative swarm with multiple intelligent
individuals is employed for implementing the exploration
and exploitation in the environment, as illustrated in Fig. 3.
Therefore, the knowledge matrices of each buyer agent can
be updated as [35]

Qk+1ih

(
skjih, a

kj
ih

)
= Qkih

(
skjih, a

kj
ih

)
+ α1Qkih

1Qkih = Rjih
(
skjih, s

k+1,j
ih , akjih

)
+ γ max

aih∈Aih
Qkih

(
sk+1,jih , aih

)
−Qkih

(
skjih, a

kj
ih

)
h = 1, 2, . . . , ni; j = 1, 2, . . . , J

(10)

where Qih is the knowledge matrix of the hth controllable
variable for the ith buyer agent; 1Q is the knowledge incre-
ment; α is the knowledge learning factor; γ is the discount
factor; (skjih, a

kj
ih) represents the state-action pair executed by

FIGURE 3. Principle of knowledge learning with a cooperative swarm.

the jth individual for the controllable variable xih; R(sk , sk+1,
ak ) is the reward function of a transition from state sk to sk+1

used under a selected action ak ; aih represents any alternative
action strategies; Aih is the action space of xih; ni is the
number of controllable variables for the ith buyer agent; and
J is the population size of the cooperative swarm.

C. EXPLORATION AND EXPLOITATION
To achieve a high optimization accuracy, the exploration and
exploitation of each individual is divided into two processes.
For a controllable variable, each individual firstly choose
an action strategy (i.e., interval of optimization) based on
the corresponding knowledge matrix, then an accurate solu-
tion can be calculated by the non-uniform mutation opera-
tor [36] based on the local optimum of the corresponding
interval. Aiming at a proper trade-off between exploration
and exploitation, the ε-Greedy rule [37] is used for interval
selection, as

akjih =

arg max
aih∈Aih

Qkih(s
kj
ih, aih), if q0 ≤ ε

arand, otherwise
(11)

xkjih =

{
xd ,bestih +1(k, xd,ubih − xd ,bestih ), if rand(0, 1) < 0.5
xd ,bestih −1(k, xd ,bestih − xd,lbih ), otherwise

(12){
xd ,ubih = x lbih + a

kj
ih · (x

ub
ih − x

lb
ih )/|Aih|

xd,lbih = x lbih + (akjih − 1) · (xubih − x
lb
ih )/|Aih|

(13)

1(k, y)

= y ·
(
1− r (1−k/kmax)b

)
(14)

where q0 is a uniform random value from [0, 1]; ε is the
exploitation rate which represents the probability of exploita-

tion; arand denotes a random action (exploration); xd ,bestih is
the previous best optimal solution at the d th interval of the
hth controllable variable for the ith buyer agent, and d = akjih;
xd,ubih and xd,lbih are the upper and lower bounds of the d th
interval, respectively; xubih and x lbih are the upper and lower
bounds for the hth controllable variable, respectively;1(k, y)
is a decay function as the iteration k increases; r is a uniform
random value from [0, 1]; b is the system parameter which
determines the degree of non-uniformity; and kmax is the
maximal iteration number.
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MABL can escape from the local optimum via a proper
trade-off between exploration and exploitation in (11). In fact,
the exploration and exploitation represent the global search
and local search, respectively. Therefore, the exploration can
effectively escape from the local optimum,while the exploita-
tion can accelerate the convergence and improve the optimum
quality.

IV. DESIGN OF MABL FOR DISTRIBUTED EHED
A. DESIGN OF BARGARINING GAME
For the distributed EHED, each energy hub can be regarded
as a player of bargaining game. Moreover, any one energy
with the most diverse types of output energy carriers can be
selected as a slack energy hub (i.e., the seller agent), while
the others are regarded as different buyer agents. Note that
the seller agent is only responsible for determining the joint
action strategy by (8), in contrast, each buyer agent not only
needs to bargain according to (9) but also needs to search a
potential more optimal solution.

B. DESIGN OF STATE AND ACTION
For the distributed EHED, each energy hub consists of two
types of controllable variables, including the input energy
production of each energy source and the dispatch factor,
where the value range of each controllable variable can be
discretized into multiple the optimization intervals, i.e., the
action space Aih (i =1, 2,. . . , n; h = 1, 2, . . . , ni), while Aih
equals to the state space of the next controllable variables,
i.e., Si,h+1 = Aih. Besides, the state of the first controllable
variable for each energy hub can be determined according to
the current energy gap 1E between the energy outputs and
the energy demand, as follows:

ski1, if E in
i,min _v ≤ 1E < E in

i,max _v

1E =
∑
p∈p

Epdemand −

M∑
m=1&m6=i

∑
p∈p

Ēp,outm

E in
i,min _v =

∑
p∈P

npm∑
j=1

Ep,inmj,min + (v− 1)

·

(∑
p∈P

npm∑
j=1

Ep,inmj,max −
∑
p∈P

npm∑
j=1

Ep,inmj,max

)/
|Si1|

E in
i,max _v =

∑
p∈P

npm∑
j=1
+v

·

(∑
p∈P

npm∑
j=1

Ep,inmj,max −
∑
p∈P

npm∑
j=1

Ep,inmj,max

)/
|Si1|

v = 1, 2, . . . , |Si1|

(15)

where E in
i,min _v and E

in
i,max _v are the total low bound and upper

bound at the vth state of the ith energy hub, respectively; and
Ēp,outm is the current energy output of the pth input energy
carrier for the mth energy hub, which can be provided from
the seller agent based on the current optimal joint action
strategy.

C. DESIGN OF REWARD FUNCTION
The reward function R in (10) represents the feedback
from the environment after an exploration or exploitation,
which can directly influence the optimization performance of
MABL. Hence, it should be designed by fully integrating the
mathematical model of distributed EHED (2)-(7), as [38]

Rjih
(
skjih, s

k+1,j
ih , akjih

)
=


pm

min
j=1,2,...,J

Fkji
, if

(
skjih, a

kj
ih

)
∈ SABest

i

0, otherwise

(16)

Fkji = f (xkji , x
other
i,k−1)+

NCi∑
u=1

PFui (17)

PFui =

χ
(
Zui − Z

u,lim
i

)2
, if violated

0, otherwise
(18)

where Fkji denotes the fitness function of the jth individual
at the kth iteration, which is closely related to the utility
function, i.e., Fi =-Ui; pm is a positive multiplicator; SABest

i
represents the state-action pairs set of the best individual at
the kth iteration for the ith buyer agent; f is one of three
objective functions in (2); NCi is the number of constraints
for the ith buyer agent based on (5)-(7); PFui is the penalty
function corresponding to the uth constraint for the ith buyer
agent; χ is the penalty factor; Zui denotes the uth constraint
of the ith buyer agent; and Zu,limi is the constraint limit
corresponding to Zui .

TABLE 1. Overall Execution Procedure of MABL for Distributed EHED

TABLE 2. The Parameters Used in MABL for Distributed EHED.
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TABLE 3. Performance Results with Different Objective Functions Obtained by Different Algorithms in 30 Runs

D. OVERALL EXECUTION
In summary, the overall execution of MABL for distributed
EHED is provided in Table I. Note that the implementation
process of each buyer agent can be can be computed simul-
taneously, thus the computation time can be dramatically
shorten.

V. CASE STUDIES
For evaluating the performance of MABL for dis-
tributed EHED, six centralized heuristic optimization algo-
rithms including GA [8], PSO [7], GSA [6], EGSA [6],
TVAC-GSA [6], and SAL-TVAC-GSA [4], are used for com-
parisons with different objective functions in (2), where the
parameters of these algorithms can be referred from [4].
Through trial-and-error, the main parameters of MRBL for
distributed EHED are given in Table II. Furthermore, all
the simulations of the proposed algorithm are undertaken
in Matlab R2016a by a personal computer with Intel(R)
Xeon (R) E5-2670 v3 CPU at 2.3 GHz with 64 GB of RAM.

A. SIMULATION MODEL
The testingMECS is composed of 39 energy hubswith 29 dif-
ferent structures, in which the 34th energy hub is selected
as the seller agent, while others are the buyer agents. This
system consists of 76 energy sources, including 27 electrical
sources with the value-point effects (8 of that consider the
POZ constraints), 34 gas stations, and 15 heat sources, where
the types of output energy carriers contain electricity, heat,
cool and compressed air. All the parameters of this system
are given in [4], which has 103 controllable variables (76 of
that for energy sources and 27 for dispatch factors). Besides,
the optimization interval of each controllable variable is
equally divided into 5 smaller intervals, thus each action
space contains 5 alternative action strategies, as well as for
the state space.

B. STUDY OF CONVERGENCE
Fig. 4 illustrates the convergence process of MABL for min-
imizing the total energy costs fC of distributed EHED, where
the total energy demand of electricity, heat, cool, and com-
press air are 12.0, 9.5, 0.7, and 1.2 pu, respectively. It can be

FIGURE 4. Convergence of MABL for minimizing the total energy costs.
(a) Objective functions of different agents. (b) Bargaining processes of
some agents. (c) Index of the best buyer agent with the largest payoff.

found from Fig. 4(a) that the seller agent and the buyer agents
can constantly search a better optimal solution with a lower
total energy costs via the continuous bargaining game from
each other, more concretely, each of them can approximate an
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FIGURE 5. The 39-hub MECS with 29 energy hub structures and 76 energy sources.

optimal solution after 80 iterations, while the optimal input
energy production of each energy source is given in Fig. 5.
This obviously indicates that the bargaining game can effec-
tively achieve an effective coordination between the buyer
agents and a seller agent, thus the total payoff of all the energy
hubs can be maximized.

Besides, to search a potential better optimal solution, each
buyer agent can select an optimal action strategy for each
controllable variable of the corresponding energy hub by self-
scheduling based on knowledge learning, thus they can reject

the seller agent (See Fig. 4(b)) and contribute to improving
the total payoff of MECS (See Fig. 4(c)).

C. COMPARATIVE RESULTS AND DISCUSSIONS
Table III shows performance results with different objective
functions in (2) obtained by different algorithms in 30 inde-
pendent runs, where the performance results of the former six
algorithms are the best optimal solutions with the smallest
objective functions in 30 runs, respectively; all the perfor-
mance results are in a per-unit (pu) system and the energy

39570 VOLUME 6, 2018



X. Zhang et al.: MABL for Distributed EHED

costs are inmonetary-unit (mu); TC is the computation time in
a run. Note that the obtained objective functions ofMABL are
much smaller than that of other algorithms, especially for the
minimization of total energy losses. Particularly, the minimal
total energy losses fL obtained by MABL in the best case is
only 55.69% of that of GA, in which the optimal operation
points of all the energy hubs are provided in Table IV while
the obtained optimal dispatch factors are given in Fig. 6,
and the detailed operation illustration of energy hub #27 from
the input energy carriers to the output energy carriers is
given in Fig. 7. It verifies that the obtained optimum by
MABL can not only satisfy all the constraints (5)-(7), but
also significantly reduce the total energy losses. Even in the
worst case, it is still only 94.31% of that of SAL-TVAC-GSA.
These high-quality optimal solutions clearly demonstrate the
beneficial effect of knowledge learning, and the effective
coordination among the seller agent and the buyer agents via
the continuous bargaining games.

FIGURE 6. Dispatch factors distribution of all the energy hubs with
minimization of total energy losses obtained by MABL in the best case.

FIGURE 7. Best optimal results of energy hub #27 with minimization of
total energy losses obtained by MABL.

Moreover, it is obviously that the computation time of
MABL for distributed EHED is the shortest among all the
algorithms, which is only 7.25% of that of GA for minimiza-
tion of total energy costs and losses simultaneously in the best
case, i.e., the computation rate can be up to 13.8 times against
to GA, which is essentially benefited from the distributed
optimization and associativememory based knowledge learn-
ing with a cooperative swarm.

TABLE 4. Optimization Results of the Best Optimal Solution with
Minimization of Total Energy Losses Obtained by MABL.

VI. CONCLUSION
This paper presents a novel MABL for distributed EHED of
a large-scale MECS. The main observations are summarized
as follows:
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1) The one-seller and n-buyer bargaining game can effec-
tive achieve an effective coordination among the energy hub,
thus the self-organized and distributed computation of each
energy hub can be implemented for distributed EHED.

2) The associative memory and swarm intelligence can
dramatically accelerate the convergence rate of knowledge
learning, while the non-uniformmutation operator is conduc-
tive to a high optimization accuracy.

3) Simulation results on the complex testing system verify
the superior performance of MABL compared with six cen-
tralized heuristic optimization algorithms, which can rapidly
obtain a high-quality optimal solution for distributed EHED
with different objective functions.

4) Compared with the gradient-based distributed meth-
ods (e.g., consensus algorithm or ADMM), MABL is more
suitable for the non-convex and non-smooth EHED as it
is fully independent on the mathematical model. Moreover,
the performance of MABL is competitive to other distributed
heuristic optimization algorithms due to its fast convergence
and strong global search ability. Hence, it is adequate to be
generalized to handle other distributed optimization of large-
scale and complex smart energy systems.

In order to improve the applicability for the real-world
system, our futureworkswill consider both the environmental
effects and the energy networks constraints.
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