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ABSTRACT This paper proposes a new spatiotemporal chaos model, which is a logistic-dynamic coupled
logistic map lattice (LDCML). Through a large number of simulation experiments and theoretical analysis,
it can be proved that a chaotic region has the larger parameter space, and the system is more chaotic
compared with traditional CML by the introduction of a dynamic coupled method, which is more suitable for
chaotic encryption and secure communications. So, this paper presents a bit-level adaptive image encryption
algorithm based on this system, and further demonstrates the good chaos of the system from the aspect of
encryption performance.

INDEX TERMS Logistic-dynamic, CML, parameter space, dynamic coupling, image encryption.

I. INTRODUCTION
Since Lorenz proposed chaos theory in 1963, chaos theory
has gradually formed a set of concrete and practical the-
oretical system after several decades of development and
improvement, and has achieved good results in the fields
of cryptography and secure communication. The research
on chaos system has also mainly gone through the stages
from low dimensional to high dimensional to spatiotemporal
chaos. In the recent years, with the further research on chaotic
systems, the low dimensional and high dimensional chaotic
systems are gradually well known. Spatiotemporal chaos
is favored by its complex dynamic behavior [1]–[5]. Since
Kaneko [1] proposed the coupled logistic map lattice model
(CML) spatiotemporal chaos system, the follow-up people
have done a lot of expansion and deepening in the spatiotem-
poral chaos field. Khellat et al. [2] proposed Globally Non-
local Coupled Map Lattice (GNCML), and Meherzi et al. [3]
proposed One-Way Coupled Map Lattice (OCML). Then
Liu and Yu [4] proposed Two-Way coupled logistic map lat-
tice (TCML). Sinha [6] proposed a stochastic coupled logis-
tic map lattice model for the first time, Rajesh et al. [7],
Mondal et al. [8], Poria et al. [9], and Chen et al. [10] have

all improved it or proposed the new stochastic coupled logis-
ticmap latticemodel. Because these are non-adjacent coupled
map lattice models and the way of coupling is randomly gen-
erated, that is to say it can not be restored, so its use is greatly
limited. Later, Arnold coupled logistic map lattice (ACCML)
and Mixed Linear-Nonlinear Coupled Logistic Map Lattice
were proposed by Zhang andWang [11], [12]. The dimension
of each lattice of coupled logistic map lattice model was also
obtained from one-dimensional and two-dimensional [13] to
three-dimensional [14] to the four-dimensional [15].

All mentioned above are statically coupled logistic map
lattice models, and the research on the dynamic coupled
logistic map lattice model is seldom. Therefore, this paper
proposes a new Logistic-Dynamics coupled logistic Map lat-
tices (LDCML). Its key idea is to use logistic chaotic map
as coupling coefficient, which can ensure that the degree of
coupling between each lattice and other lattices is dynami-
cally changing. Introduction of dynamic coupling not only
can increase the complexity of spatiotemporal chaos, but
also make the energy uniformly diffuse among different
lattices, which bring LDCML system the overall stability.
Through the analysis of the entropy density, entropy breadth,
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bifurcation diagram, information entropy and mutual infor-
mation, the system is proved to be more robust than the
traditional CML and has larger parameters space and stronger
chaos. On the one hand, it makes up for the defect of dynamic
coupling in the field of chaos theory, on the other hand, it also
laid the good foundation for the better application of chaos
theory in practice. For this reason, this paper proposes an
image encryption algorithm based on LDCML system.

In recent years, people have also proposed a large
number of image encryption algorithms based on chaotic
systems [16]–[27]. Zhang et al. [16] proposed a DNA-
level image encryption algorithm based on the MLNCML
system. Hua and Zhou [17] proposed a bit-level image
encryption algorithm based on 2D Logistic-adjusted-Sine
map. Khan et al. [18] proposed image encryption algorithm
based Non-linear Chaotic Map (NCA) and Substitution
Boxes. Hussain et al. [19] proposed an image encryption
algorithm based on Tangent Delay Ellipse Reflecting Cav-
ity Map System (TD-ERCS) and Piecewise Linear Chaotic
Map (PWLCM). This paper proposes an bit- level adaptive
image encryption algorithm based on LDCML system and
harsh-512. On the one hand, LDCML is more complex than
the low dimensional chaotic system and CML because of
introduce of dynamic coupling method, so the phase space
reconstruction is more difficult, and the security performance
is also better when used for image encryption. On the other
hand, LDCML system can provide the wider secret key
space, which can effectively resist violent attacks. In addition,
Through the analysis of encryption performance, the good
chaos of LDCML system is proved from the perspective of
practical application.

The paper is divided into four sections. The first section
introduces the LDCML model. In the second section,
the chaos performance of the model is analyzed from various
angles. In the third section, the image encryption algorithm
based on LDCML system is proposed and its performance
is analyzed. The last section summarizes the full paper and
proposes the further work.

II. INTRODUCTION OF LDCML MODEL
The traditional coupled logistic map lattice model (CML)
proposed by Kaneko [1]:

xn+1(i) = (1− e)(f (xn(i)))+ (e/2)(f (xn(i− 1))

+ f (xn(i+ 1))). (1)

In this model, the parameter e is coupling coefficient and
0 ≤ e ≤ 1, the parameter n(n = 1, 2, 3, . . .) is time sequence.
The parameter i is lattice number and 1 ≤ i ≤ L. i+1 or i−1 is
lattice which is adjacent with i. The function f (x) = µx(1−x)
is logistic map which is proposed byMay [28]. The boundary
conditions are that i+ 1 = 1 when i = L and i− 1 = L when
i = 1, which can ensure that lattice is in the range of (1,L).
The above mentioned CML spatiotemporal chaos system

has a simple structure, whose chaos is only determined by
the parameter µ and e. The most important is that chaos of a

large number of lattices in the CML will diminish and even
disapper when e < 0.3 or µ < 3.8, which greatly limits
the parameter space. In addition, when e > 0.7 or µ > 3.8,
there are some lattices in a non-chaotic state or exist obvious
periodic windows. Therefore, in practical application, only
can take a few fixed lattices, which greatly limits the use
of CML and reduces its safety. Cause of this phenomenon
may be explained by Reaction-diffusion [1], reaction can
strengthen chaos and diffusion can weaken chaos by spread
of energy among lattices. In the CML, due to the way of
adjacent and static coupling, spread of energy among lattices
is inhomogeneouswhich leads to inhomogeneous distribution
of different lattices’ chaos strength. Therefore, this paper
proposes LDCML system based on logistic map, whose cou-
pling coefficient is dynamic, thus causing even distribution of
energy and better chaos. LDCML model is:

xn+1(i) = (1− L(e))f (xn(i))+ (L(e)/2)

(f (xn(i− 1))+ f (xn(i+ 1))). (2)

In the LDCML, the meaning of i, n, f (x) is the same
as CML and the boundary conditions are also consistent with
CML. The difference is that coupling coefficient is e in the
CML while coupling coefficient is L(e) = µ2e(1 − e) in
the LDCML. In order to obtain best dynamic, µ2 is taken for
3.99 in logistic map L(e).
Next, through the analysis of the Kolmogorov-Sinai

entropy, bifurcation diagram, information entropy, space-
time behavior and mutual information of LDCML system,
it can be proved that LDCML is more advanced than the
traditional CML model. In addition, in the paper, the param-
eter e represents initial value of L(e) in the LDCML while
parameter e represents just coupling coefficient in the CML.
For specific analysis, number of lattices L is taken for 100 in
the paper.

III. ANALYSIS OF LDCML SYSTEM
A. KOLMOGOROV-SINAI ENTROPY OF LDCML
The lyapunov exponent [29] is used to describe the degree
of separation of adjacent orbits, which is the very powerful
statistical feature for chaoticmotion. The larger λ is, the better
the chaos of the system is. In general, when λ is greater than 0,
the system is in chaos. It is defined as:

λ = lim
1
n

n−1∑
i=0

ln

∣∣∣∣dF(x)dx

∣∣∣∣
x=xi

. (3)

where F(x) denotes the function and i denotes time sequence.
The spatiotemporal chaos system can be regarded as
L-dimensional chaos system, and Kolmogorov-Sinai entropy
is the sum of positive lyapunov exponents of all L dimensions.
Kolmogorov-Sinai entropy density h is obtained by normal-
izing them to eliminate the effect of the number of lattices.
h is defined in Eq. (4).

h =

L∑
i=1
λ+(i)

L
. (4)
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FIGURE 1. Fig. 1 Kolmogorov-Sinai entropy analysis of system. (a) Kolmogorov-Sinai entropy density of CML.
(b) Kolmogorov-Sinai entropy breadth of CML. (c) Kolmogorov-Sinai entropy density of LDCML.
(d) Kolmogorov-Sinai entropy breadth of LDCML.

In addition, in order to better describe the chaos of each
lattice in spatiotemporal chaos system, Zhang proposed
Kolmogorov-Sinai entropy breadth. It is

hu =
L+

L
, (5)

where L+ is the number of L lattices with positive lyapunov
exponents.

From Fig. 1(a) and Fig. 1(b), it can be found that many
lattice lose chaos or have poor chaos at µ ≤ 3.8 or e ∈
(0.13, 0.19) in the CML. While in the LDCML (as is shown
in Fig. 1(c) and Fig. 1(d)), there is no such defect. Specifi-
cally, when µ > 3.57, there are almost about 100% (µ, e)
parameter pair make all lattices of system in chaos in the
LDCML and the average Kolmogorov-Sinai entropy density
is about 0.28559, while there are only about 47% (µ, e)
parameter pair make all lattices of system in chaos in the
CML and the average Kolmogorov-Sinai entropy density is
just about 0.23333. Obviously, chaos of Kolmogorov-Sinai
entropy of LDCML is better than CML in the whole.

Moreover, remove the defect parameters section of the
CML system, when µ > 3.8 and e ∈ [0, 0.13] ∪ [0.19, 1],
there are about 88.571% (µ, e) parameter pair make all lat-
tices in chaos and the average Kolmogorov-Sinai entropy
density is about 0.328997. While at the time, there are

99.047% (µ, e) parameter pair make all lattices in chaos
in the LDCML and the average Kolmogorov-Sinai entropy
density is about 0.3701364, which are also all better than that
of the CML. Therefore, from analysis of Kolmogorov-Sinai
entropy, we can conclude that in the whole chaos of LDCML
is better than CML. Because of introduce of dynamic coupled
method, LDCML not only makes up defect of CML, but also
enhances chaos of CML.

In addition, from Fig. 1(c), it also can be found that change
of initial value e of L(e) have vary little influence on chaos of
system in LDCML, which is different from that of CML.

B. BIFURCATION DIAGRAM OF LDCML
From analysis of Kolmogorov-Sinai entropy in Section III.A,
we know that change of initial value e have little influence
on chaos of LDCML. So, when analyzing bifurcation dia-
gram of each lattice of LDCML, e is taken for a fixed value
0.43423413435. Without loss of generality, we take the first,
the 50th and 100th lattice to analyze bifurcation diagrams
of different lattices of system (as is shown in Figs. 2(a)-(f)
and Figs. 3(a)-(c)). In the CML, when e ∈ (0.13, 0.19),
CML will lose chaos, which is shown in Figs. 2(d)-(f). At
e = 0.15, it can be found easily that these three lattices of
CML have lost chaos. When e /∈ (0.13, 0.19) and µ ≤ 3.8
(as is shown in Figs. 2(a)-(c)), there are many obvious period
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FIGURE 2. Bifurcation diagrams of lattices of CML. (a) Bifurcation diagram of the first lattice of
CML at. (b) Bifurcation diagram of the 50th lattice of CML at e = 0.8 (c) Bifurcation diagram of the
100th lattice of CML at e = 0.8 (d) Bifurcation diagram of the first lattice of CML at e = 0.15
(e) Bifurcation diagram of the 50th lattice of CML at e = 0.15 (f) Bifurcation diagram of the 100th
lattice of CML at e = 0.15.

windows in the bifurcation diagram and chaos of system is
poor. While in the LDCML, due to introduce of dynamic cou-
pling, chaos of the system (as is shown in Figs. 3(a)-(c)) has
been improved significantly comparedwith CML.Obviously,
there is no any period window in Figs. 3(a)-(c) and chaos of
system is better than CML.

C. MUTUAL INFORMATION BETWEEN
DIFFERENT LATTICES
Mutual information is used to describe the degree
of correlation between two different sequences. When
mutual information is equal to 0, it indicates that these
two different sequences are independent. It can be
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FIGURE 3. Bifurcation diagram of lattices of LDCML. (a) Bifurcation diagram of the first lattice of
LDCML. (b) Bifurcation diagram of the 50th lattice of LDCML. (c) Bifurcation diagram of the 100th
lattice of LDCML.

defined as:

I (X (i),X (j)) = H (X (i))− H (X (i)|X (j)). (6)

In the Eq. (6), X (i) = (xi(1), xi(2), xi(3), . . . , xi(n)),X (j) =
(xj(1), xj(2), xj(3), . . . , xj(n)), which denote the two different
sequences composed of the values of lattice i and j at dif-
ferent moments. H (X (i)) denotes information entropy, which
is defined in Eq. (8). In the LDCML and CML, the smaller
mutual information between different lattices is, the lower
correlation of different lattices is, the less likely that one
lattice is restored by another lattice, which indirectly illus-
trates the security and complexity of the system. In order to
analyze mutual information between different lattices when
using different parameter pair (µ, e), we normalize mutual
information of L lattices. Specifically, as is Eq. (7):

Ld =

L∑
i=1

L,j6=i∑
j=1

I (X (i),X (j))

L(L − 1)
, (7)

where Ld denotes the average mutual information of all
lattices. Fig. 4(a) shows Ld of CML and Fig. 4(b) shows Ld

of LDCML. When µ > 3.57 and e ∈ [0, 1], the average
Ld in the CML is about 0.59436093, while the average Ld in
the LDCML is just 0.247193. It is obvious that Ld of CML
is higher than that of LDCML. Specifically, in the CML,
when µ approaches 4, chaos of single lattice is strongest.
When e approaches 0, coupling between different lattices
is the weakest, which means that each lattice is influenced
most slightly by lattices coupled with it and the most dis-
pensable. So, as is in Fig. 4(a), when µ approaches 4 and e
approaches 0, there are a few of parameter pair (µ, e) make
mutual information between different lattices in the CML
close to 0. Most of parameter pair (µ, e) will make Ld higher
than 0.5. By contrary, in the LDCML, when µ > 3.74, Ld is
lower than 0.1, that is to say that mutual information between
different lattices is very low and approaches 0.

Obviously, because of introduce of dynamic coupling, cor-
relations between different lattices are impaired greatly.

D. INFORMATION ENTROPY OF EACH LATTICE IN LDCML
According to the confusion principle and ergodicity of
chaos system, the value of each iteration of chaos system
should be uniformly distributed in [0, 1] interval. Here,
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FIGURE 4. Mutual information of system. (a) Average Mutual information of CML. (b) Average Mutual
information of LDCML.

the characteristic of chaotic system can be quantitatively
measured by information entropy.

Information entropy was proposed by Shannon in 1948,
which characterizes the degree of confusion of the system.
Themore ordered the system, the lower information entropy it
has. The more disordered the system, the higher information
entropy it has. It is defined as:

H (s) = −
n∑
i=1

P(si) log2(p(si)), (8)

where s is information source and is the lattices in the
LDCML. n represents how many states each lattice has,
which is taken for 10 in this paper. Specifically, the 10 states
are s1 = [0, 0.1), s2 = [0.1, 0.2), s3 = [0.2, 0.3),
s4 = [0.3, 0.4), s5 = [0.4, 0.5), s6 = [0.5, 0.6),
s7 = [0.6, 0.7), s8 = [0.7, 0.8), s9 = [0.8, 0.9) and
s10 = [0.9, 1.0]. In addition, p(si) indicates the prob-
ability of occurrence of si. So in theory, the maximum
information entropy of each lattice is log2 10 ≈ 3.32.
Similarly, information entropy of L lattices are normalized,

as follows:

Hd =

L∑
i=1

H (i)

L
, (9)

where Hd denotes average information entropy of L lattices.
When µ ∈ [3.6, 4] and e ∈ [0, 1], Hd of CML and

LDCML are shown in Fig. 5(a)-(b). As previous analysis of
Kolmogorov-Sinai entropy (see Section III.A), at µ < 3.8 or
e ∈ (0.13, 0.19), many lattices in the CMLwill lose chaos, so
average information entropy of system is low and approach
1.5 in general. Moreover, when µ ∈ [3.6, 4] and e ∈ [0, 1],
the average Hd is about 2.39809. If the defected parame-
ter area is removed, the average Hd is around 2.802932 in
the CML. While in the LDCML, average Hd is up to
3.006486 and more approaches the idea value 3.32, which
is obviously higher than that in the CML. In addition, in
the whole, Hd of both CML and LDCML increase with
µ increasing. Moreover, increase of µ in the system means
enhancement of chaos of the system. So, to some extend, the
larger Hd is, the more powerful chaos of system is.

FIGURE 5. Analysis of the average information entropy. (a) The average information entropy of CML.
(b) The average information entropy of LDCML.
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FIGURE 6. Analysis of information entropy of each lattice of system. (a) Information entropy of each
lattice of CML at µ = 3.78. (b) Information entropy of each lattice of CML at µ = 3.99. (c) Information
entropy of each lattice of LDCML at µ = 3.78. (d) Information entropy of each lattice of LDCML at
µ = 3.99.

More meticulously, Fig. 6(a) or Fig. 6(b) shows infor-
mation entropy of each lattice of the CML when µ =

3.78 or µ = 3.99 and e ∈ [0, 1]. Fig. 6(c) or Fig. 6(d)
shows information entropy of each lattice of the LDCML
when µ = 3.78 or µ = 3.99 and e ∈ [0, 1]. By comparison,
it is easy to find that many lattices of the CML exists defect
at at µ < 3.8 or e ∈ (0.13, 0.19) and LDCML makes up the
defect.

Finally, we can conclude that ergodic and random of the
LDCML are better that that of the CML.

E. SPACE-TIME BEHAVIOR OF LDCML SYSTEM
According to the research of Kaneko [1], CML system has
six kinds of space-time behavior pattern, namely frozen ran-
dom pattern, pattern selection pattern, defect turbulence pat-
tern, defect diffusion pattern, pattern competition intermittent
chaos pattern and complete turbulence pattern. Moreover,
in the CML, space-time behavior pattern is determined by
µ and e.

While in the LDCML, the initial value e of coupling coeffi-
cient L(e) as same as the initial values of lattices only affects
the location of chaotic pattern in the space-time behavior

pattern, but does not change the space-time behavior pat-
tern. Moreover, the change of the space-time behavior pat-
tern is only decided by µ. So, for simplicity, e is taken for
0.323436536when analyze space-time behaviour of LDCML

In addition, compared with CML, because of the intro-
duction of dynamic coupling method, LDCML can enter
complete turbulence pattern faster and does not exist defect
turbulence pattern and defect diffusion pattern. Specific is
following.

1) WHEN µ < 3.57
At µ ≤ 3, chaos does not exist in the LDCML and as is
shown in Fig. 7(a), there is only one-period. When µ > 3,
in the space-time behavior map, the thin-long X-shaped
chaotic zones and two-period gradually emerge (as is shown
in Fig. 7(b)) and their positions are determined by differ-
ent initial value e and xi(0). As µ increasing, X-shaped
chaotic zones gradually widen (as is shown in Fig. 7(c)).
Whenµ is up to about 3.455, two-period becomes four-period
and X-shaped chaotic zones further widen, which is shown
in Fig. 7(d). When µ is about 3.5, four-period becomes eight-
period, which is shown in Fig. 7(e). Finally, at µ = 3.57, the
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FIGURE 7. Space-time behaviour at µ < 3.57. (a) Space-time behaviour at µ = 2.8. (b) Space-time
behaviour at µ = 3.01. (c) Space-time behaviour at µ = 3.4 (d) Space-time behaviour at µ = 3.455.
(e) Space-time behaviour at µ = 3.5. (f) Space-time behaviour at µ = 3.57.

obvious period phenomenon is no longer recognizable and
the circular chaotic zone begins to appear in the space-time
behaviour map, which is shown in Fig. 7(f).

2) WHEN µ ∈ (3.57,3.75]
As is shown in Fig. 8(a), when µ = 3.58, there are obvi-
ously circular and X-shaped chaotic zones in the space-time

behavior map. Different e and xi(n) will make different
number of X-shaped chaotic zones appear in different loca-
tions. As µ increasing, the circular chaotic zone begins to
be compressed and extends to both sides, which means that
the two chaotic orbits begin to approach each other (see
Figs. 8(b)-(c)). When µ is taken for 3.7, the two chaotic
orbits have begun to merge and the circular chaotic zone is
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FIGURE 8. Space-time behaviour of LDCML at µ ∈ (3.57,3.75]. (a) Space-time behaviour at µ = 3.58.
(b) Space-time behaviour at µ = 3.62. (c) Space-time behaviour at µ = 3.68. (d) Space-time behaviour
at µ = 3.7.

invisible, which cause more X-shaped chaotic zones begin to
appearing, which is shown in Fig. 8(d).

3) WHEN µ ∈ (3.7,4]
As µ increasing further, there are more and more X-shape
chaotic zone appearing in space-time behaviour map. Finally,
when µ = 3.75, LDCML enters into complete chaos turbu-
lence pattern, which is shown in Fig. 9(a). Then, with the
further increase of µ, the chaotic zone will extend to both
sides. At µ = 3.8, max(xi(n)) ≈ 0.95 and min(xi(n)) ≈
0.1808, which is shown in Fig. 9(b). At µ = 3.9, max(xi(n))
≈ 0.975 and min(xi(n)) ≈ 0.095. Finally, when µ is up to 4,
xi(n) is filled with [0, 1], which is shown in Fig. 9(d).
From analysis of space-time behaviour above, it can be

known that because chaos of system is mainly affected by
coefficient µ in the LDCML, space-time behavior is more
simple compared with that of CML (see [1], [11]). Moreover,
in the CML, only at µ > 3.85, can system enter complete
chaos turbulence pattern, while in the LDCML system can
enter complete chaos turbulence pattern just at µ ≈ 3.75.
That is to say that system can faster enter best chaos by intro-
duction of dynamic couplingmethod. It may be explained that

because coupling coefficient L(e) is also in chaos, which can
enhance uncertainty of spatiotemporal chaos system, so chaos
of all lattices are significantly strengthen.

IV. APPLICATION IN IMAGE ENCRYPTION
In order to further demonstrate the practical significance of
LDCML system and excellent chaos, this paper proposed a
new image encryption algorithm based on LDCML system.

A. INTRODUCTION OF ALGORITHM
1) ENCRYPTION PROCESS
Step 1:Use harsh-512 for the plaintextP sized r×c and secret
key K with the length of 480 bits is generated.
Step 2: The key K is divided into 12 groups of 40-bits

subkeys (k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12) and
converted into decimal (b1, b2, b3, b4, b5, b6, b7, b8, b9,
b10, b11, b12) in the interval [0,1], where (b1, b2, b3, b4, b5,
b6, b7, b8, b9) is the initial values of the 9 lattices of the
LDCML system. The coefficient is µ = 3.99 + 0.01 × b10,
µ2 = 3.99+ 0.01× b11, e = 0.01+ 0.99× b12.
Step 3: Iterate the LDCML system 2 × max(r, c) times.

Set d_one= 0, d_zero= 0. For the value xij of jth iteration of
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FIGURE 9. Space-time behaviour when µ ∈ (3.7,4]. (a) Space-time behaviour at µ = 3.75. (b)
Space-time behaviour at µ = 3.8. (c) Space-time behaviour at µ = 3.9. (d) Space-time behaviour at
µ = 4.

each lattice ith, if xij ≥ 0.5, let d_one= d_one+ 1, Zi(j) = 1,
Vi(d_one) = floor (mod (xij × 1014, c)) + 1, if xij < 0.5, let
d_zero = d_zero+1, Zi(j) = 0, V_zeroi(d_zero) = floor (mod
(xij×1014, r))+1. Finally, 9 groups of permutation bit streams
Zi and corresponding permutation values Vi and V_zeroi are
obtained. In addition, the value y0 of the last iteration of the
first lattice is taken for the initial value of the diffusion.
Step 4: Pixel level permutation is performed on plain-

text P with Z1 and corresponding permutation values
V1 and V_zero1. The specific permutation process is as
follows.

I. Set initial values d_one = 1, d_zero = 1, j = 1.
II. Scans Z1 from left to right. If Z1(j) == 1, the d_oneth

row of P is left shifted circularly by V1(d_one) times and let
d_one = d_one+1, j = j + 1. if Z1(j) == 0, the d_zeroth
column of P is upward shifted cyclically by V_zero1(d_zero)
times and let d_zero = d_zero+1, j = j+ 1.
III. If d_one > r , let d_one = 1. If d_zero > c, let d_zero
= 1. It means that if the index d_one or d_zero exceeds the
length or width of the image, the first row or first column
is re-scanned and the shift value becomes V1(d_one+r) or
V_zero1(d_zero+c). Then return to II.

IV. If j = 2×max(r, c)+ 1, the permutation ends and P1
is output.
Step 5: P1 is divided into 8 binary matrices, which include

A1, A2, A3, A4, A5, A6, A7, A8 according to Eq. (10). Then,
A1, A2, A3, A4, A5, A6, A7, A8 are permuted into B1, B2, B3,
B4, B5, B6, B7, B8 using the permutation sequence Z2, Z3, Z4,
Z5, Z6, Z7, Z8, Z9 and corresponding permutation values as
the method in Step 4.

Ak = dec2bin(P1)i,8(k−1)+j, (10)

where i(i ∈ [1, r]) indicates row, j(j ∈ [1, c]) indicates
column, dec2bin denotes converting decimal number into
binary number of 8-bit.
Step 6: Use y0 as the iterative initial value of logistic map

yn = 4yn (1−yn) (n = 1, 2, 3 . . . , r×c). If yn ≥ 0.5, yn = 1.
if yn < 0.5, yn = 0. The binary matrix Y is obtained after
r × c iterations. Let Y = reshape (Y , [r, c]), which means
converting Y to a binarymatrix sized r×c. Before performing
the specific diffusion operation, we first introduce an adaptive
binarymatrix shift method. The specificmethod is as follows:
I. Input matrix Y .
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FIGURE 10. Encryption flow chart.

II. i is the row index, j is the column index, so Y (i, j) is the
value of ith row and jth column of the matrix. Make

total =
r∑
i=1

c∑
j=1

Y (i, j)× ((c− 1)× i+ j).

III. Thematrix Y is left shifted circularly by (totalmod c)+
1 times, and then upward shifted circularly by (totalmodr)+
1 times. Finally Y ′ is output and define Y ′ = Ex(Y ).
Use Y to do the operations on B1, B2, B3, B4, B5, B6, B7,

B8 as Eq. (11), and then combine the results D1, D2, D3, D4,
D5, D6, D7,D8 into ciphertext C .
Step 7: If encryption rounds is less than l given encryption

rounds. The key K is left shifted cyclically by one bit to
obtain K , and return to Step 2. If encryption rounds is equal
to l, the encryption ends and obtain the final ciphertext C .

Encryption is shown in Fig. 10.

D1 = bitxor(B1,Y ) D5 = bitxor(B5,Y )
Y = Ex(Y ) Y = Ex(Y )
D2 = bitxor(B2,Y ) D6 = bitxor(B6,Y )
Y = Ex(Y ) Y = Ex(Y )
D3 = bitxor(B3,Y ) D7 = bitxor(B7,Y )
Y = Ex(Y ) Y = Ex(Y )
D4 = bitxor(B4,Y ) D8 = bitxor(B8,Y )
Y = Ex(Y )

(11)

2) DECRYPTION PROCESS
Step 1: Input secret key K , let K = circshift(K , l−1) ( rotate
K to the left l − 1 bits).
Step 2, Step 3: As same with the encryption, the key K

is combined with the LDCML system to obtain permutation
sequences Zi, Vi, V_zeroi and initial values y0 for diffusion.
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Step 4: With reference to the Step 6 of encryption, the
initial value y0 is brought into the logistic map yn = 4yn
(1− yn) (n = 1, 2, 3 . . . , r × c) to obtain the diffusion binary
matrix Y . The ciphertext C is divided into eight groups of bit
matrix D1, D2, D3, D4, D5, D6, D7, D8. Decrypt them with
Y , the specific operation is in Eq. (12)
Step 5: Permute B1, B2, B3, B4, B5, B6, B7, B8 with Z2, Z3,

Z4, Z5, Z6, Z7, Z8, Z9 and corresponding permutation values,
the exact permutation method is the opposite of encryption.
The permutation bitstream Zi is scanned forward from the last

bit. If Zi(j) == 1, Bi is right shifted cyclically. If Zi(j) == 0,
Bi is shifted downwards cyclically . Finally, A1, A2, A3, A4,
A5, A6, A7, A8 are obtained and combined into a decimal pixel
matrix P2.
Step 6: Permute P2 with Z1 and corresponding permu-

tation values, and permutation process is also opposite of
encryption.
Step 7: If decryption rounds is less than l, let K =

circshift(K ,−1) (rotateK to the right by one bit) and return to
Step 2. If the decryption round is equal to l, decryption ends

FIGURE 11. Color image encryption. (a) Fruits_color image. (b) Encrypted Fruits_color. (c) Decrypted Fruits_color. (d) The
image formed by concatenating the R, G, and B components of Fruits_color. (e) The image formed by concatenating the R, G,
and B components of encrypted Fruits_color.
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and the final plaintext P is obtained.

B1 = bitxor(D1,Y ) B5 = bitxor(D5,Y )
Y = Ex(Y ) Y = Ex(Y )
B2 = bitxor(D2,Y ) B6 = bitxor(D6,Y )
Y = Ex(Y ) Y = Ex(Y )
B3 = bitxor(D3,Y ) B7 = bitxor(D7,Y )
Y = Ex(Y ) Y = Ex(Y )
B4 = bitxor(D4,Y ) B8 = bitxor(D8,Y )
Y = Ex(Y ).

(12)

For the color image, we concatenate together its R, G, and
B components and then encrypt it. Specifically, Fig. 11(a)
is Fruits_color sized 512 × 512, and Fig. 11(d) is the
image formed by concatenating R, G, and B components
of Fruits_color. Fig. 11(e) is the encrypted Fig. 11(d), and
Fig. 11(b) is a synthesized encrypted Fruits_color. Fig. 11(c)
is the decrypted Fruits_color. So essentially the encryption of
the color image is the encryption of the gray image with three
times size of the color image.

B. ALGORITHM PERFORMANCE ANALYSIS
1) INFORMATION ENTROPY ANALYSIS
The essence of the image is a kind of information source.
The more uniform the distribution of the pixel values, the less
effective information the image contains. The distribution of
pixel values can be quantitatively described by the Shannon

information entropy. Similar to Eq. (8), the definition of
information entropy of the image is as follows:

H (s) =
255∑
i=0

p(si) log2(p(si)), (13)

where s denotes the image, and p(si) represents the frequency
of pixel si. Therefore, the upper limit of H (s) is 8, and the
larger H (s) is, the more uniform the pixel distribution is.
Figs. 12(a)-(f) shows plaintexts and ciphertexts of Lena, Barb
and P-0 image whose pixels are all zero. Intuitively, we can
not get any valid information from the ciphertext image.
Figs. 13(a)-(e) shows pixel distribution histograms about the
three images. Obviously, pixel distribution of plaintext image
is not uniform, while ciphertext image is uniform and the
probability of occurrence of different pixels are almost equal.
Table 1 shows information entropy of the images before
and after being encrypted. It can be found that information
entropy of ciphertext image is generally about 7.9992, which
is more close to ideal value 8 than other algorithms.

2) THE LOCAL INFORMATION ENTROPY ANALYSIS
Sometimes we not only care about the encryption perfor-
mance of the image in the whole, but also more care about
encryption performance of certain key parts of the image,
because these parts may contain more important and crit-
ical information. At this time, we can use local informa-
tion entropy to measure the encryption performance of local

FIGURE 12. Encryption results. (a) Lena. (b) The encrypted Lena. (c) The image P-0. (d) The image C-0. (e) The image
Barb. (f) The encrypted Barb.
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FIGURE 13. Information entropy analysis. (a) Pixel distribution histogram of Lena. (b) Pixel distribution histogram of encrypted
Lena. (c) Pixel distribution histogram of C-0. (d) Pixel distribution histogram of Barb. (e) Pixel distribution histogram of
encrypted Barb.

TABLE 1. Information entropy analysis.

image. The local information entropy can be defined as:

H(k,TB)(Si) =
k∑
i=1

H (Si)
k

, (14)

where Si represents an optional set of pixels from the cipher-
text image, TB represents the number of pixels in Si, k rep-
resents that k groups of Si are selected, and H (Si) represents
the information entropy of Si. According to [30], TB is set
for 1936, k is taken for 30, confidence level α is taken for
0.05, so the local information entropy should be between
[7.901901305, 7.903037329]. Table 2 shows the local infor-
mation entropy of the encrypted Lena, Barb, P-0, Elaine. It is

TABLE 2. Local Information entropy analysis.

obvious that the local information entropy of the encrypted
ciphertext all passed the test.

3) χ2 TEST
In addition to information entropy, according to [31], the χ2

test also can be used to quantitatively describe the distribution
of the pixel histogram. It is defined in Eq. (15).

χ2
=

255∑
i=0

(vi − v)2

v
, (15)

where vi denotes frequency of pixel value i appearing in
the image, v denotes the average frequency and is taken for
(r × c)

/
256. The larger χ2 is, the more the pixel values
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TABLE 3. χ2 test about the pixel histogram.

deviates from the average level, and themore uneven the pixel
distribution is., Table 3 shows χ2 values of the five images.
It can be found that χ2 value of ciphertext image is far lower
than plaintext image and around 250.

4) CORRELATION ANALYSIS
In general, neighboring pixels are similar in the image which
contains valid information. The good encryption algorithm
should weaken the correlation between adjacent pixels of the
image by encryption. For quantitative description, correlation
analysis is introduced here.

In Eq. (16), X denotes 2000 pixels randomly selected from
the image, and Y denotes 2000 pixels adjacent to X. Y and
X have three adjacent ways including horizontal, vertical
and diagonal. R(X ,Y ) represents the correlation coefficient
between X and Y . Take Lena, BARB and P-0 as examples.
As is shown in Table 4, correlation between adjacent pixels of
plaintext image is very high, which is close to 1. After being
encrypted, correlation between adjacent pixels of the image is
about reduced to thousandth, which is near the ideal value 0.

E(X ) =

n∑
i=1

xi

n

D(X ) =

n∑
i=1

(xi − E(X ))2

n

cov(X ,Y ) =

n∑
i=1

(xi − E(X ))× (yi − E(Y ))

n
R(X ,Y ) =

cov(X ,Y )
√
D(X )× D(Y )

× 100%

(16)

5) ANALYSIS OF ANTI-CLIPPING ATTACK
Clipping attack is to intercept a piece of the ciphertext image,
and then use the original secret key to decrypt it, and observe
the difference between the decrypted image and the original

FIGURE 14. Clipping attack analysis. (a) Let
512∑
j=1

100∑
i=1

C(i, j ) = 0. (b) Decrypted

Fig. 14(a). (c) Let
512∑
j=1

100∑
i=1

C(i, j ) = 0. (d) Decrypted Fig. 14(c).
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plaintext image. From the side, it also can reflect that the
stronger the ability of anti-clipping attack of the algorithm
is, the better the performance of permutation is.

Fig. 12(a) is Lena and Fig. 12(b) is encrypted Lena called
C here. Following, we clip the part of C (as is shown
in Fig. 14(a)), and then decrypt clipped C to obtain image
Pc (as is shown in Fig. 14(b)).
From image Pc, it can be seen that the most information

of Lena can be recognized and clipped part are distributed
uniformly in the decrypted image, which also illustrates the
superiority of the permutation. The key of permutation is
homogeneity of distribution of the 0,1 bit in the bit stream
sequence Zi and the uniformity of distribution of permutation
value Vi and V_zeroi, which all depend on the LDCML
system. In the paper, at µ = 3.99 + 0.01 × b10, µ2 =

3.99+0.01×b11 and e = 0.01+0.99×b12, it can be seen that
the chaos of the LDCML system is best and the frequencies
of 0-bit or 1-bit appearing in Zi is very close to 0.5 from
Fig. 1(c). In addition, from Fig. 15(a), the frequency of the
row shift value Vi and the frequency of the column shift value

V_zeroi are also similar to each other, whose curves basically
coincide.

For comparison, this paper also select the CML system at
µ = 3.99 + 0.01 × b10, e = 0.01 + 0.99 × b11 as the
permutation sequence generator. At the time, the frequency
of 1 bit appearing is about twice as large as that of 0 bit
in Zi, and the frequency of row shift value Vi and the fre-
quency of column shift value V_zeroi appearing (as is shown
in Fig. 15(b)) are also greatly different that the frequency
of row shift values is much higher than that of column shift
values. Therefore, ability of anti-clipping attack is poor using
the CML. Fig. 14(c) is encrypted Lena after being clipped
using CML system and Fig. 14(d) is the decrypted Fig. 14(c).
It can be found that a large number of zig-zag stripes appear
on the missing blocks in the Fig. 14(d), which proves that
the permutation is insufficient. Of course, the chaos of the
CML system is greatly enhanced when e ≤ 0.01 is fetched.
However, the overall key space of the CML system has a
certain reduction compared with the LDCML system, so the
security will be reduced correspondingly.

FIGURE 15. Permutation sequence distribution analysis. (a) The permutation sequence shift value
frequency chart generated by LDCML. (b) The permutation sequence shift value frequency chart
generated by CML.

FIGURE 16. Analysis of image sensitivity. (a) Image C . (b) Image C_one. (c) Difference image between C and C_one.
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TABLE 4. Correlation of adjacent pixel of image.

6) SENSITIVITY TO SECRET KEY
In the proposed algorithm, initial values of lattices and the
coefficients of LDCML system are all generated by the secret
key K . Therefore, analyzing the key sensitivity is also an
indirect analysis of the sensitivity of the LDCML system
to the initial state. Of course, the sensitivity of the key is
also related to the design of the algorithm. In the section,
the sensitivity to secret key can be described quantitatively
by NPCR andUACI between two images, which is defined in
Eqs. (17)-(18).

For the secret key K , the first 360 bits constitute the initial
values of 9 lattices of the LDCML system, the [361, 400]th
bits are the part of coefficient µ, the [401, 440]th bits are
the part of coefficient µ0, and the last 40 bits are the part
of e. Therefore, the analysis of the sensitivity to secret key is
divided into four situations. The 80th bit or 400th bit or 440th
bit or 480th bit is negated.

Table 5 lists NPCR and UACI about sensitivity to secret
key. From the table, it can be seen that the weak change in the
secret key can cause the large change in the ciphertext image.
Moreover,NPCR orUACI between the two ciphertext images
is generally greater than 99.6 or 33.4 and meets security
standard. Therefore, the algorithm is very sensitive to changes
of secret key, and the LDCML system is also very sensitive
to change of the initial state.

7) IMAGE SENSITIVITY
Image sensitivity refers to the difference between two cipher-
text images obtained by encrypting two images of the same
size using the same secret key. The larger the difference,
the higher the image sensitivity, the less likely the attacker can

TABLE 5. Sensitivity to secret key.

use the chosen-plaintext attack or the known-plaintext attack
to crack an algorithm, the more secure the algorithm is.

Specifically, take the Lena image as an example, we add
1 to the first pixel of Lena to obtain the image o_Lena, and
then encrypt the Lena and o_Lena using the same key to
obtain the ciphertext images C and C_one, which is shown
in Figs. 16(a)-(b). Then use the NPCR and UACI to quanti-
tatively describe the difference between C and C_one, where
difference image is shown in Fig. 16(c). NPCR and UACI are
defined in Eq. (17) and Eq. (18).

UACI =

r,c∑
i=1,j=1

|C1(i,j)−C2(i,j))|
255

r × c
× 100%, (17)
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TABLE 6. NPCR and UACI about image sensitivity.

TABLE 7. Encryption time analysis (Unit: second).

TABLE 8. Comparison of different encryption algorithms.


D(i, j) =

{
0, (C1(i, j) == C2(i, j))
1, otherwise

NPCR =

r,c∑
i=1,j=1

D(i, j)

r×c × 100%,

(18)

where C1 and C2 denote two ciphertext images, m and n
denote the length and width of image. When NPCR reaches
about 99.6 andUACI reaches about 33.4, the algorithm meets
the security criteria. Table 6 shows the NPCR and UACI of
Lena, BARB, and Elaine. It can be seen that the algorithm
completely meets the security standards.

8) SECRET KEY SPACE
The secret key K in the proposed algorithm consists
of 480 bits. In the permutation phase, the permutation index
and permutation values are generated by the LDCML sys-
tem, while the initial values and coefficients of the LDCML
system are completely dependent on the key K , so key space
is 2480. During the diffusion, the bit matrix is generated by
the logistic map, and the logistic map completely depends on
the initial value y0. Therefore, under the condition that the

decimal precision is 14, the secret key space for diffusion is
1014 ≈ 245. Of course, y0 is also generated by the LDCML
system. Therefore, the algorithm’s key space is 2480, which is
far greater than the theoretical security key space 2100.

9) COMPUTATIONAL COMPLEXITY
For any image encryption algorithm, in addition to consid-
ering the security performance of encryption, computational
complexity also needs to be analyzed. Assume that the size
of the grayscale image is r × c. In the proposed algorithm,
9 groups of permutation indexes and permutation values sized
2×max(r, c) need to be generated from the LDCML system
and the time complexity is O(18 × max(r, c)). Then use
these 9 sets of permutation indexes and permutation values to
complete one time pixel-level permutation and eight time bit-
level permutations, so O(9× r × c) sub-element permutation
operations are required. Of course, the bit-level permuta-
tion can be run in parallel, so in actual operation, the time-
consuming is about O(2 × r × c) sub-element replacement.
The most time-consuming parts in this phase is 8 time bit-
level permutations.
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In the diffusion phase, the logistic map needs to be iterated
r × c times to get a bit matrix sized r × c, and then another
seven groups of bit matrix are obtained through the adaptive
shift algorithm. Finally, the 8 groups of bit matrix and the
permuted image are exclusive or to get ciphertext image. The
main time-consuming in the phrase lies in the adaptive shift
operation, that is because the shift value is calculated 8 times
according to the element position and element value of the bit
matrix, so its time complexity is O(8× r × c) .
Specifically, when the algorithm is running in theWindows

7 operating system, 1.8 GHz CPU frequency, 8G of mem-
ory, and Matlab2016a running software, the time-consuming
taken for encryption is shown in Table 7. Obviously, the pro-
posed algorithm is far faster than other algorithms.

10) COMPARED WITH OTHER ALGORITHMS
In order to further prove the novelty of this algorithm.
We compare the proposed algorithm with Parvaz algo-
rithm [24] and Khan algorithm [18] from the angles of secu-
rity and encryption time. The Table lists comparison results
of the three algorithms given by taking the gray image sized
512 × 512 as an example. From Table 8, it can be seen that
the security effect and encryption time of proposed algorithm
are better than those of the other two algorithms. Especially,
the running time of the proposed algorithm ismuch faster than
that of the other two algorithms.

V. CONCLUSIONS
Through the above Kolmogorov-Sinai entropy, bifurcation
diagram, mutual information, information entropy, space-
time behavior of the LDCML system and the corresponding
theoretical description, it can be found that LDCML has a
larger parameter space than CML has because of introduction
of parameter µ2. LDCML enter into complete chaos earlier
because of chaos of L(e). LDCML has better security than
CML has because of the lower mutual information and the
higher information entropy. In addition, the model structure
of LDCML is simpler than that of Space-time chaos sys-
tem with parameter q proposed by Zhang et al. [27]. Then,
the paper proposed an image encryption algorithm based
on LDCML system. Through analyzing information entropy,
local information entropy, anti-clipping attack, image sensi-
tivity, secret key space, sensitivity to secret key, adjacent pix-
els correlation and computational complexity, the proposed
algorithm is proved to be more superior than others.

In the future work, on the one hand, the dynamic coupling
theory can be applied to higher dimensional spatiotemporal
chaos systems. On the other hand, according to the impor-
tance of different parts of the image, image encryption can
be performed differently, which makes the key information
more secure and save the computational complexity.
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