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ABSTRACT In this paper, a new locating method based on the optimization method for estimating the
position of an electric dipole source in underwater environments with a plate uniform circular antenna
(PUCA) is presented. The image principle is introduced to build the manifold of the PUCA, greatly reducing
the complexity of the manifold. The evaluation function is obtained using the mixed polarization multiple
signal classification algorithm, where the minimum value is found using the fast optimal method improved
matrix adaptation evolution strategy (MA-ES). In this locating method, the voltage from each channel of
the PUCA is the input spatial-temporal data. As a result, the 3-D field components are reduced, and the
method can easily be implemented in practical engineering applications. The theoretical analysis and the
experiments conducted for both the simulation and the actual received data demonstrate that the accuracy
performance of the locating method based on the improved MA-ES is higher than that of the MA-ES and of
the covariance MA-ES.

INDEX TERMS Electro-location, underwater, improved MA-ES, PUCA.

I. INTRODUCTION
In the context of underwater exploration, such as deep sea
exploration and rescue missions in catastrophic conditions,
it is important to estimate the target position. Currently,
underwater target location continues to be challenging in
theory and in engineering practice [1]–[3]. In both cases,
a new locating method is required that is easy to compute and
designed for a broad class of underwater locating systems.
In recent years, various underwater locating technologies
have been proposed, including acoustic-, light- and map-
based locating methods [4]–[6]. At present, sonar locating
methods dominate the field in underwater target locating
applications [4], [7], [8]. However, the locating performance
of the sonar method degrades in specific cases, such as in
environments with heterogeneous distributions of tempera-
ture or density, when the background noise is high, in com-
plex geomorphic structures and in the presence of the Doppler
effect [5], [9]. The locating accuracy of underwater imaging
based on light depends on the transparency of water and,
therefore, cannot work in turbid water or in environments

with no light [6]. To overcome these drawbacks, underwa-
ter target locating methods based on electromagnetic fields
have received research attention. Because the electromag-
netic field has much higher velocity than the sound wave,
the electromagnetic field-based localization method does not
suffer from the Doppler effect nor does it require transpar-
ent water [10], [11]. Generally, the electromagnetic noise
is extremely low and stable. This is especially true in deep
ocean environments because of the high conductivity of
seawater [12], [13].

There are two primary electromagnetic field-based under-
water locating method systems, i.e., the electromagnetic
wave locating method and the low-frequency electro-locating
method. In the literature [10], [14], locating methods are
proposed based on the power path loss model of an elec-
tromagnetic wave propagating through seawater. However,
the skin depth of the high frequency signal is small in sea-
water. Therefore, the radio-frequency signal power decreases
dramatically, reducing its applicability inwide range locating.
Locating methods based on quasi-static electric fields have
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been investigated [1], [2], [15], [16], resulting in lower path
losses compared with the high-frequency signals in seawater.
These electric sense active locating methods are inspired by
weak electric fish, which are able to find and locate a target
by sensing the electric field distortion in dark and turbid
environments. The electric sense locatingmethods show good
performance in underwater avoidance, docking and close-
range object shape estimation. However, the electric field re-
emitted by objects is usually much weaker than that of the
source field. Therefore, electric sense active locatingmethods
are not suitable for long distance target locating scenarios.
The MUltiple SIgnal Classification (MUSIC) algorithm is
a noniterative algorithm that creates a space spectrum to
locate an underwater electromagnetic source. MUSIC-type
algorithms can be introduced when we are only interested in
the position of the target, which can reduce the computation
time [17], [18]. To estimate the position of a small target in
two-dimensional space, a MUSIC-type algorithm has been
proposed by Ammari et al. [19]. In their study, the far field
scattering signal is sampled as the locating data. However,
the far-field signal is a radio-frequency signal, which suffers
from significant power losses in seawater.

In our previous works [18], [20], passive and active locat-
ing methods based on the boundary element method (BEM)
forward model have been proposed. The BEM-based forward
model requires a large amount of computational resources
because of the operations by the high-order impedance
matrix. Moreover, the uniform mesh grid scan method
are applied when searching the global maximum in three-
dimensional space, which also results in large calculation
burden. To simplify the forward model and reduce the com-
putation burden, in this paper, we propose a novel solution
for underwater locating based on the image principle and
the improved matrix adaptation evolution strategy (MA-ES).
In this method, we first design a PUCA, which acts as
the electric signal receiving array. In this PUCA, (M + 1)
electrodes are situated on an insulator plate. The (M + 1)th
electrode is set as the electric potential reference point, which
is situated at the center of the insulator plate. The remainder
of the electrodes are evenly arranged on the circumference
of the insulator plate, surrounding the reference point. With
this design, the voltage between the reference point and the
other electrodes is measured directly. The image principle is
introduced to yield the forward potential distributionmodel of
the PUCA,which features lower complexity and a lower com-
putation burden compared with the BEM and finite element
method (FEM). MP-MUSIC is applied while locating the
target, which can handle signals with polarization. The three-
dimensional target position can be estimated by minimizing
the generalized eigenvalue (the gain matrix and the project
matrix of the noise subspace) [21]. Finding the minimum
eigenvalue is an optimization problem, indicating that use of
a suitable optimization method can significantly reduce the
calculation time. The improved MA-ES is introduced to find
the minimum eigenvalue, which combines the characteristics
of evolution strategies and the Gaussian modeling of the

best solutions [22], [23]. A set of physical experiments in
the laboratory is performed to verify the proposed locating
method. The experimental results indicate that the proposed
locating method yields high accuracy estimations in under-
water target locating.

II. UNDERWATER TARGET ELECTRO-LOCATING METHOD
We suppose that a source target is emitting a monochromatic
signal at frequency f from a position rt ∈ RN×1, where
N is the position dimension. In underwater locating appli-
cations, N = 3. The potential signal is measured by the
passive PUCA, composed of (M + 1) electrodes. Let 9 ∈
R(M+1)×1 be the measured voltage of each channel. Our goal
is to assess the measured voltage 9 at position rt. In prac-
tical applications, several snapshots are needed for under-
water target localization. For clarity, a high signal-to-noise
ratio (SNR) signal output strategy based on a narrow band
filter is performed, yielding the locating method for a single
snapshot [4].

Locating a target in an underwater environment is an
inversion problem, which can be considered an optimization
problem as follows:

rt = arg min
rt
J (9, f (rt)) (1)

where J is the evaluation function, whichmeasures howmuch
the estimated result given by the forward model f (rt) fits the
measured voltage 9. Hence, in order to locate the source
target underwater, three major problems must be solved:
1) a suitable forward model f (rt) is needed, which can pro-
vide accurate estimations of the voltage for each channel
of the PUCA; an analytical expression for f (rt) is derived
based on the electromagnetic field propagation model; 2) an
appropriate evaluation function J should be chosen; in radar
technology and underwater acoustic locating applications,
a signal subspace projection using eigen-decomposition is
widely used [24], [25]; and 3) the search time for the global
optimal solution should be reduced while avoiding local
optimum solutions. In most cases, the grid search method,
a genetic algorithm (GA), a gradient algorithm, etc., is used to
minimize the evaluation function J . However, the grid search
method spends a large amount of computation time searching,
especially for a high-dimensional optimization problem, and
the gradient algorithm suffers from the appearance of local
solutions for non-convex optimization problems. Moreover,
GA requires long time calculations for convergence.

A. UNDERWATER ELECTRIC FIELD FORWARD MODEL
To locate the target underwater, the electric field distri-
bution or the forward model f (rt) must first be analyzed.
We consider an infinite half-space with Neumann boundary
conditions, as indicated in Figure 1. The insulator can be a
dielectric material, such as plastic or glass. The conducting
material is seawater, with conductivity σ . If the electric dipole
source is located at position rt, with the dipole moment of p,
then the basic image principle from electrostatic field theory
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FIGURE 1. The field distribution for an electric source in seawater with
Neumann boundary conditions.

is applied to yield the potential φr at point r on the boundary
as follows:

φr =
p · (r− rt)

2πσ |r− rt|3
(2)

The M + 1 electrodes are situated at positions ri, where
i = 1, 2, 3, · · · ,M + 1. We define the (M + 1)th electrode
as the reference point rref. The voltage between the reference
point and the other electrodes 9 can be expressed as:

9 = 8r −8ref = (Gr −Gref)p; (3)

8r= Grp

=
1

2πσ



ex · (r1 − rt)

|r1 − rt|3
ey · (r1 − rt)

|r1 − rt|3
ez · (r1 − rt)

|r1 − rt|3
ex · (r2 − rt)

|r2 − rt|3
ey · (r2 − rt)

|r2 − rt|3
ez · (r2 − rt)

|r2 − rt|3
. . .

ex · (rM − rt)

|rM − rt|3
ey · (rM − rt)

|rM − rt|3
ez · (rM − rt)

|rM − rt|3


×

 pxpy
pz

 (4)

8ref = Grefp

=
1

2πσ


1
1
...

1


M×1



ex · (rref − rt)

|rref − rt|3
ey · (rref − rt)

|rref − rt|3
ez · (rref − rt)

|rref − rt|3



T pxpy
pz

 (5)

where ex ,ey and ez are the normal vectors in the x, y and z
directions. In addition, p =

[
px py pz

]T. In the expressions
above, the (M × 3) matrix G = Gr − Gref is referred to as
the gain matrix or array manifold [26]. Equation (3) shows
that G is the array manifold with the following arguments:
the electric dipole source position rt, the electrode position r
and the conductivity of the seawater σ . We rewrite the gain
matrix as G̃ = σG and the source dipole moment as p̃ = p

σ
.

As a result, G̃ is the new gain matrix without the parameter σ .
In this section, the forward model f is derived for an electric

dipole source in an infinite half space, with which the voltage
between two electrodes located at the boundary can be readily
obtained.

B. THE EVALUATION FUNCTION BASED ON MP-MUSIC
The electric field excited by an electric dipole source in
seawater is polarized because the different azimuth of the
dipole moment yields totally different field and voltage at
the receiving electrodes. To estimate the position of the
electric dipole source in the seawater, the MP-MUSIC algo-
rithm is introduced as the evaluation function J , which is a
high-accuracy locating algorithm based on a subspace algo-
rithm [27], [28]. It is not necessary to calculate the azimuth of
the polarized incident signals, which can also be applied for
underwater target locating. The canonical MUSIC algorithm
is widely used in direction-of-arrival (DOA) area estimation.
The phase of the incident wave is the primary argument
to consider. In this study, the locating method is different
from the canonical MUSIC algorithm. Because we estimate
the three-dimensional position of the target according to the
received quasi-static electric signal from the PUCA, the volt-
age amplitude, not the phase, contains the target position
information. Suppose that the relative displacement of the
PUCA system and the electric dipole source can be neglected
during the measurements. For each snapshot, the measured
data are acquired as 9 = Gp + e, where the additive noise
matrix e is assumed to have a zero mean with covariance
E
{
eeH

}
= σe

2I, where E {·} is the expected value of the
argument, (·)H denotes the Hermitian transpose operator, and
I denotes the identity matrix.
According to the MP-MUSIC algorithm, the array covari-

ance matrix 9 under the zero-mean white noise assumption
based on the one snapshot acquired voltage 9 is as follows:

R9 = E
{
99H

}
= GE

{
ppH

}
GH
+ σe

2I. (6)

where R9 is a Hermitian matrix of sizeM ×M . Using eigen
decomposition, we obtain the following:

R9 = U6UH. (7)

where 6 is a diagonal matrix with eigenvalues λ1 ≥ λ2 ≥

· · · ≥ λK ≥ 0. We assume that only one electric dipole
source is in this locating area. As a result, the signal subspace
US is the vector space spanned by the first column of U.
The remainder of the columns compose the noise subspace
UN. Thus, the projection matrix of the noise subspace can be
expressed as P⊥ = I − USUH

S . Assuming the electric dipole
source is located at position rt = rt0, the gain matrix or the
array manifold G can be derived. Three eigen values are
obtained via generalized eigen-decomposition as follows:λt1 λt2

λt3

 = eigen(GHP⊥G,GHG) (8)

where the three eigen values are ordered as follows: λt1 ≤
λt2 ≤ λt3. The evaluation function is derived based on the
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FIGURE 2. The locating flow diagram.

MP-MUSIC algorithm as follows: J (rt) = λt1. Alternatively,
the space spectrum can be represented as P(rt) = 1

J (rt)
.

The estimated position that minimizes the evaluation function
J or maximizes the spectrum P corresponds to the position
of the electric dipole source. According to the literature [26],
[29], and [27], the locating flow diagram is shown in Figure 2,
where the function F in the flow diagram is the optimization
strategy, which could help the locating system find the posi-
tion of the electric dipole source with fewer computations.

C. LOCATING THE TARGET WITH THE IMPROVED
MA-ES METHOD
Locating the position of the electric dipole source is essen-
tially an optimization problem. We can therefore choose
one optimization method among the optimization algorithms.
However, not all optimization algorithms are suitable to
locate an underwater target. Because underwater target locat-
ing is a nonconvex optimization problem, with some local
minimums, the gradient method cannot be directly applied
to solve the underwater locating problem. The improved
optimization method based on the improved MA-ES engine
is proposed to lower the computation burden, as shown
in Figure 3. In this optimization strategy proposed by Beyer
and Sendhoff [30], the ellipse optimization landscape is
depicted with the evaluation function J . In practice,the pop-
ulation (dots) is much larger than necessary. The figure

FIGURE 3. Illustration of an actual optimization run with (C)MA-ES
method where the yellow dash line indicates the evaluation path
by the use of MA-ES.

illustrates how the distribution of the population position
(yellow dash line) moves during the optimization. In this
optimization problem, the population convergences to the
global optimum within a few generations.

The MA-ES algorithm includes the standard covariance
matrix adaptation evolution strategy (CMA-ES), which con-
sists of two evolution paths: 1) learning the mutation strength;
and 2) the rank-one update of the covariance matrix. In his
work, people can reduce two items, one of the evolution
paths and the covariance matrix of the CMA-ES algo-
rithm. As a result, the computation burden of the covariance
matrix update and its square root operations is reduced [30].
To remove the covariance matrixC and p-path, this algorithm
is based on the assumption that cp = cs. However, in Beyer’s
work, the factors cp and cs are not equal in practice, which
degrades the optimization performance. Hence, in this paper,
we propose an improved MA-ES algorithm, where cp and
cs are near one another. The default factors cp and cs are
expressed as follows:

cp =
µeff/N + 4

2µeff/N + 4+ N
(9)

cs =
µeff + 2

µeff + 5+ N
(10)

In this study, the search dimension is N = 3. Implementing
cp = cs, µeff = 5.26. Based on the standard parameter
settings [30], the following is derived:

µ∑
m=1

w2
m =

1
µeff

(11)

µ∑
m=1

wm = 1 (12)

wherewm refers to the weight factor of themth best individual
of the current offspring population with λ individuals and µ
represents the number of the selected offspring. Generally,
the number of the selected offspring is half that of λ, yielding
µ =

⌊
λ
2

⌋
. With a good choice of weight factors, (11) and (12)

can be satisfied simultaneously. In this study, we apply the
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FIGURE 4. Magnetization as a function of applied field. The weight
factors versus the offspring population λ.

power series weight distribution, wherein those who most fit
the evaluation function are given the largest weights. Given
wm = αηm−1, (11) and (12) can alternatively be expressed as
follows:

α2
µ∑

m=1

η2(m−1) =
1
µeff

(13)

α

µ∑
m=1

ηm−1 = 1 (14)

According to (13) and (14), it is easy to obtainα2(1− η2µ) =
1− η2

µeff
α(1− ηµ) = 1− η

(15)

When µ → ∞, we have (η2µ, ηµ) → 0. Thus, (15) can be
simplified as α2 ≈

1− η2

µeff
α ≈ 1− η

(16)

Hence, resolving (16) for α and η, α = 2
µeff+1

and η = µeff−1
µeff+1

.

In reality, µ is not infinite, which results in
µ∑

m=1
wm < 1.

Finally, the modified weight factor is as follows: w̃m =
ηm−1

µ∑
i=1
ηi−1

, and µ̃eff =
1

µ∑
i=1

w̃2
i

. The data in Figure 4 show the

weight factors for different offspring λ. These results show
that the modified weight factors approaches the asymptote
when λ → ∞. As a result, µ̃eff approaches 5.26, when
λ ≥ 43.
In Figure 5, the ratio of cp/cs when using the weight factors

derived with the improved MA-ES is shown. The data in this
figure show that the cp/cs ratio depends on the distribution
weight scheme. The cp/cs ratio cannot be near 1 when using
the standard MA-ES weight scheme provided in provided
in [30] and [31]. However, the weight scheme proposed in this

FIGURE 5. cp/cs ratio versus the offspring population λ.

paper shows that the cp/cs ratio approaches 1 as the offspring
population λ increases. Moreover, the ratio does not deviate
too much from 1 when λ ≥ 20. The proposed weight scheme
ensures that the MA-ES is suitable for different offspring
populations.

The pseudocode of the improved MA-ES method, shown
in Algorithm 1, is based on previous work [30]. The default
strategy parameter settings are the following: 1) The learn-
ing rate of rank-one c1 = 2

N+1.32+µeff
; 2) Rank-µ cw =

min
(
1− c1, 2

µeff−2+ 1
µeff

(N+2)2+µeff

)
; and 3) The damping constant

dσ = 1 + cs + 2max
(
0,
√
µeff−1
N+1 − 1

)
. In the algorithm,

N (0, I) represents the N -dimensional isotropically indepen-
dent identically normal distribution, and the operation 〈·〉wµ

means the following: 〈x〉wµ =
µ∑
i=1

wixm;λ.

In this section, the underwater electric dipole source locat-
ing problem is transformed to an optimization problem. As a
result, three models are provided: 1) the forward model f
based on the image principle, which features a small com-
putation burden and is easily implemented; 2) the evaluation
foundation J based on the MP-MUSIC algorithm, which
can reduce the search dimension from 6 degrees of freedom
(3 dimensions of the target position and 3 dimensions of the
target azimuth) to 3 degrees of freedom (3 dimensions of
target position); and 3) the improved optimization strategy F
based on the low-complexity MA-ES.

III. NUMERICAL EXAMPLES
A. SIMULATION MODEL SETUP
In this section, we present a simulation model to analyze
the performance of the proposed localization method. In this
simulation model, the ambient conductivity is σ = 4S/m,
which is the same as that of the seawater. In a practical
application, we cannot implement a PUCA with an infinite
plane. Therefore, a rectangular flat panel is built as the base
of the PUCA, with length α, width β and thickness h. Seven
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Algorithm 1 Improved MA-ES

Require: 9, rt0, σ (0), σstop, λ; % input the raw data and
information of the environment

Ensure: restimate; % output the target estimation position
1: Initialize: rt(0) ← rt0, g ← 0, s0 ← 0, M(0)

← I,
µeff← 5.26

2: η = µeff−1
µeff+1

3: wm←
ηm−1

µ∑
i=1
ηi−1

, m = 1, 2, · · · , µ;

4: µeff←
1

µ∑
i=1

w2
i

5: repeat
6: for l = 0 to λ do
7: z(g)l ← Nl(0, I);
8: d (g)l ←M(g)z(g)l ;
9: J (g)l ← J (rt(g) + σ (g)d (g)l )

10: end for
11: Sort the offspring population in decrease order
12: rt(g+1)← rt(g) + σ (g)

〈
d (g)

〉
wµ

13: s(g+1)← (1− cs)s(g) +
√
µeffcs(2− cs)

〈
z(g)
〉
wµ

14: C1 =
c1
2

(
s(g+1)(s(g+1))T − I

)
15: Cw =

cw
2

(〈
z(g)l (z(g)l )T

〉
wµ
− I

)
16: M(g+1)

←M(g) [I+ C1 + Cw]

17: σ (g+1)
← σ (g)exp

[
cs
dσ

( ∥∥s(g+1)∥∥
E[‖N (0,I)‖] − 1

)]
18: g++
19: until Fulfill termination conditions
20: restimate = rt

FIGURE 6. The improved PUCA system with 7 receiving electrodes.

electrodes are located on the rectangular flat panel, forming
a receiving antenna array. Electrodes with index number 1 to
6 are uniformly distributed in a circle of radius rPUCA = 8
cm. The seventh electrode is the reference electrode, which
is set at the center of the panel. The voltage between the m
th electrode and the reference electrode is the received data
of channel m, where m = 1, 2, 3, 4, 5, 6. The structure of
the PUCA is shown in Figure 6. Table 1 shows the position
of each electrode. Theoretically, the forward model for this
rectangular flat panel would not be the same as the forward
model f in (2) because the boundary condition changes.

TABLE 1. The positions of the 7 electrodes in the PUCA system.

However, the image principle-based forward model f yields
an approximate solution that is sufficiently accurate for prac-
tical applications when the panel boundary effect can be
neglected.

We first investigate the accuracy of the proposed forward
model f as the size parameters of the panel change. An elec-
tric dipole source is located at position (0, 0, 10) (cm). The
low-frequency time harmonic signal of 1kHz is loaded on the
dipole. The dipole moment is p = (0, 0, 1). We calculate
the voltage from channel 1 and channel 2 of the PUCA
versus the structure parameters α and β when h = 1 cm
using the commercial electromagnetic simulator environment
computer simulation technology (CST) Studio Suite and the
proposed forward model f (the electric dipole source and the
PUCA compose a symmetrical system; therefore, the volt-
ages of channels 1 and 4 are the same, and channels 3, 5
and 6 have the same voltages as channel 2). The voltages are
shown in Figure 7, and a selection of the simulation results
are listed in Tables 2 and 3. The data in Figure 7 and Tables 2
and 3 show that the voltages obtained by the forward model
f are similar to the results via CST, i.e., the error is less
than 1% when min(α, β) ≥ 3 rPUCA. However, the data
show a relatively large error when min(α, β) ≤ 2.5 rPUCA,
i.e., the error is greater than 3%. We varied the electric dipole
source position (0, 0, z) from z = 8 (cm) to z = 30 (cm).
From Figure 8, the voltages obtained by the forward model f
show good match with the results from CSTwhen the electric
dipole source is situated at different positions.

TABLE 2. The voltage ratio from the CST and the voltages from the
forward model f for channel 1.

TABLE 3. The voltage ratio from the CST and the voltages from the
forward model f for channel 2.
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FIGURE 7. The ratio of the voltages from the CST and the voltages from
the forward model f . (a) The voltage ratio of channel 1; (b) The voltage
ratio of channel 2.

FIGURE 8. The voltages obtained by the forward model f and CST when
α = 30 cm and β = 26 cm.

A locating system is usually placed on an autonomous
underwater vehicle (AUV), which means that the structure
parameter h is determined by the carrier. Hence, the influence
of structure parameter h should also be taken into consid-

FIGURE 9. The voltage ratio by the forward model f and CST versus the
panel thickness h, when α = 30 cm and β = 26 cm.

eration. The data in Figure 9 show the voltages ratio from
channels 1 and 2 with different h when the electric dipole
source is placed at point (0, 0, 10) (cm) with α = 30 cm and
β = 26 cm. The results show that the two curves approach 1,
and the panel thickness h has no significant influence on the
calculation results from channels 1 and 2, with the maximum
error less than 0.3%, which means that the influence of the
factor h can be neglected.
From this subsection, we conclude that the proposed for-

ward model f based on the image principle is simple in
expression, resulting in a small computation burden. Accord-
ing to the CST analysis, the forward model results in the
accurate voltage for each channel of the designed PUCA for
underwater electric dipole source locating, thus verifying the
proposed forward model.

B. UNDERWATER LOCATING PERFORMANCE
The space spectrum P is plotted versus the measured voltage
from the PUCA system. By finding the peak of P, the target
can be located. To simulate the practical scenario, the received
data from the PUCA are mixed with additive white Gaussian
noise. In this simulation, the squared ‘‘F’’ norm of the signal
matrix ‖Gp‖2F is one hundred times that of the squared ‘‘F’’
norm of the noise matrix ‖e‖2F, yielding a signal-to-noise ratio
(SNR) of 20 dB [32], [33]. We set the electric dipole source at
positions (0, 10, 10) cm, (30, 10, 10) cm and (30, 20, 20) cm.
Spectrum images are thus obtained and shown in Figure 10.
In the images, the green points are the actual location
of the source. The highlighted points represent the esti-
mated positions of the source, which are (0, 9.67, 10.02) cm,
(31.71, 10.37, 6.16) cm, and (31.54, 20.58, 18.68) cm. The
spectrum is not a convex function, i.e., there is more than one
local maximum in the spectrum, as shown in Figure 10 (a).
Hence, the solution can easily be trapped in a local maximum
using a gradient-based algorithm.

In this subsection, we focus on the performance of the
improved optimization strategy when the evaluation function
J is minimized. Providing that the electric dipole source
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FIGURE 10. The spectrum images are given based on the MP-MUSIC
results when SNR = 20 dB. (a) The real position of the electric dipole
source is (0,10,10) cm; (b) The real position of the electric dipole source
is (30,10,10) cm; (c) The real position of the electric dipole source is
(30,20,20) cm.

is located at point (0, 10, 10) cm with a dipole moment of
(1, 1, 0) A·m. All the simulations run on a laptop with the fol-
lowing configuration: Intel Core i3−4030UCPU@1.9 GHz,
4 GB RAM, Windows 10 (64 bit) operating system and
MATLAB 2010b. We first analyze the performance of the

FIGURE 11. The evaluation function J with different offspring
population λ.

optimization strategies (CMA-ES, MA-ES and the improved
MA-ES) when the total number of calculations is 18000,
yielding 18000

λ
generations. The average J , after 100 simula-

tions, is shown in Figure 11. The data show that the three opti-
mization strategies show similar performance when λ ≤ 30.
However, the optimization performances of CMA-ES and
MA-ES degrade when λ ≥ 30. That is because the offspring
generation decreases when λ increases, resulting in inade-
quate adaptation. The data for the improved MA-ES show
better optimization performance, indicating that the optimiza-
tion result is not significantly affected by λ.

The convergence speed is also considered. In Figure 12(a),
the offspring population is set at λ = 43, and the average
evaluation value decreases as the number of evolution gener-
ations increases. The improved MA-ES convergences more
rapidly to 10−7 when the evolution generations is larger than
360. The optimization results will not decrease significantly
when the number of evolution generations is larger than 400.
However, more than 500 and 550 generations are required
for the convergence of the MA-ES and the CMA-ES, respec-
tively, with stable optimization results larger than 10−6. One
can see that the average locating errors estimated by the
optimization strategies show strong correlation with the evo-
lution generation of the offspring from Figure 12 (b). The
average estimating error using the improved MA-ES can
be as large as 0.02 cm, when the number of generations is
larger than 360. The MA-ES results have an estimating error
greater than 0.025 cm, where the number of generations is
greater than 430. Using CMA-ES, the number of evolution
generations must be greater than 600 to achieve an estimation
error of approximately 0.025 cm. Both the MA-ES and the
improved MA-ES require similar calculation times for the
same number of evolution generations, yielding 8.3 ms per
generation, as shown in Figure 12 (c). For similar accuracy
in the results, the CMA-ES requires 9 ms per generation.
Comparedwith the two optimization strategies (CMA-ES and
MA-ES), with respect to convergence speed and computation
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FIGURE 12. The performance of the optimization strategies when λ = 43.
(a) The evaluation function J versus offspring generation; (b) The
estimated position errors; (c) The calculation time versus offspring
generation.

burden, the improved MA-ES yields a better solution and has
a smaller computation burden.

Further study of the proposed PUCA system shows that
the image principle can accurately describe the electric field
distribution of the panel-based PUCA system. Moreover,
the thickness of the panel has little effect on the electric field

distribution. The evolution function J , based on MP-MUSIC,
shows that the global minimum corresponds to the position of
the electric dipole source. However, the proposed underwater
locating method is a non-convex optimization, resulting in
local minimums in the evolution function, indicating that a
global optimization strategy must be applied. The improved
MA-ES is introduced and analyzed in detail, resulting in a
faster convergence speed than the MA-ES or the CMA-ES.
Moreover, the improved MA-ES has a similar computation
burden as MA-ES and a lower computation burden than the
classical CMA-ES because the operations to generate the
covariance matrix and to calculate the matrix square root are
reduced, which simplifies the evolution strategy significantly
both from the algorithmic complexity and the computation
burden. The improved MA-ES also provides a more accurate
solution than both the MA-ES and the CMA-ES.

IV. EXPERIMENT
The physical experiment is performed in our laboratory envi-
ronment to verify the proposed locating method. The PUCA
system is designed with seven electrodes. An image of the
PUCA system is shown in Figure 13. The receiving elec-
trodes’ positions are listed in Table 1, and the diameter is

FIGURE 13. (a)The image of the PUCA system; (b) The electric dipole
source.
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11 mm. The panel of the PUCA system is plastic with the
following structural parameters: α = 30 cm, β = 26 cm
and h = 1 cm. In this experiment, the PUCA is horizontally
floating in the center of the water tank shown in Figure 14.
The water tank fills with water creating a body of water with
length of 3 m, width of 1.5 m and height of 1.5 m. Sea
salt is added to the water, and we adjust the conductivity
to 4 S/m, which is similar to the conductivity of seawater.
Two metal sheets that cover the end of a cylindrical plas-
tic pipe (length 12 cm, radius 10 mm) act as the electric
dipole source, which is fixed to a horizontal movable gantry
workbench on the tank. We can move the dipole source to
any point in the tank with high resolution. In this experi-
ment, the measured impedance of the electric dipole source
in water is 20 � at 1 kHz. The load voltage of the dipole
source is 1.04 Vrms, yielding a dipole moment of 6 mA · m.
Restricted by the experimental equipment, the time division
measurement method and the offline locating method are

FIGURE 14. (a) The physical experiment environment; (b) The amplifier of
the electro-locator and the ZOOM H6 Handy Recorder with configurable
gain from −∞ to 55.5 dB with a 96 kHz sample rate and 24 bit precision.

FIGURE 15. The schematic diagram of the digital narrow band
demodulation filter.

adopted. The seven electrodes compose six channel receivers,
from channel 1 to channel 6. The high-precision voltage
measurement meter ZOOM H6 Handy Recorder is used to
sample and store the measured voltage data, which then is
imported into the MATLAB calculator. During the voltage
measuring, channel i is connected to the input 1 of the ZOOM
H6 Handy Recorder. Meanwhile, channel 4 is connected to
the input 2 of ZOOMH6 Handy Recorder as the signal phase
reference. In this manner, the voltages of channels i and 2 are
measured and stored simultaneously.

We set the electric dipole source above the PUCA at the
plane z = 20 cm. According to the measurements, the voltage
from the PUCA is in the range of 0.1 ∼ 8.0 mV, and the
data contain noise. Thus, if we only use the measured data
from one snapshot, the SNR would be low because of the
wide sampling band, which might result in locating failure.
To reduce the out-of-band noise and interference, a digital
narrow-band demodulation filter is applied to the background
to extract the voltage magnitude. To reduce the additional
gain and phase distortion, each channel of the PUCA uses
a controllable digital filter with the same parameters. The
MATLAB FDATOOL is used to generate the filter coef-
ficients. The generation of filter coefficients is achieved
using a frequency mixing operation to shift the signal to
the baseband. The baseband signal then passes through a
narrow-band low-pass filter, resulting in a very high rejection
of out-of-band signals [34]. The filter outputs the voltage
and the angle of each channel with high SNR, which can be
used as input data to the evaluation function J with only one
snapshot. A schematic diagram of the digital narrow-band
demodulation filter is shown in Figure 15. In this system,
the bandpass of the filter is 400 Hz. The filtered data are
shown in Figure 16, where the noise is significantly reduced
by the digital filter.

An example will illustrate the proposed locating method
step by step. The measured raw data are the input arguments
to the electro-locator, and the electro-locator will export the
electric dipole position after the calculation as follows:
• Step 1: Load the measured data 9m from https://
drive.google.com/file/d/1fAOm2r9CKQ2SgjRmZ3J3qf
zfKcOIWfQo/view?usp=sharing;

• Step 2: Filter the measured voltage with the demod-
ulation narrow-band filter. Output the amplitude and
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FIGURE 16. Red: The frequency spectrum of the measured voltage after
the mixer; Green: The measured data after the low pass filter (LPF).

angle of channel i and phase reference channel 4. The
resulting voltage ratios, ψi

ψ4
: ψ1
ψ4
= −0.447, ψ2

ψ4
=

0.0629, ψ3
ψ4
= 0.989, ψ4

ψ4
= 1.00, ψ5

ψ4
= 0.731,

and ψ6
ψ4
= 0.180, yield the modified data 9 =

[−0.447 0.0629 0.989 1.00 0.731 0.180]T;
• Step 3: Calculate the covariance matrix

R9 = κ


2.0 −0.28 −4.4 −4.5 −3.3 −0.80
−0.28 0.04 0.62 0.63 0.46 0.11
−4.4 0.62 9.8 9.9 7.2 1.8
−4.5 0.63 9.9 10.0 7.3 1.8
−3.3 0.46 7.2 7.3 5.3 1.3
−0.80 0.11 1.8 1.8 1.3 0.32

,

where κ is a real number that is larger than zero;
• Step 4: Obtain the eigenvector U, and the eigenvalue 6
using eigenvalue decomposition. In this example,

U= 0.1


−0.35 −1.4 9.5 0.62 0.98 −2.7
0.15 0.38 0.78 −9.9 0.46 0.38
−1.5 −2.6 2.0 −0.072 −7.2 6.0
2.1 6.7 2.4 0.84 2.8 6.0
−3.2 −5.5 −0.34 0.17 6.3 4.4
9.1 −4.0 0.004 0.042 0.43 1.1

,

6 = β


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 2.75

,

where β is a real number greater than zero. Therefore,
the signal subspace is

US =


−0.27
0.038
0.60
0.60
0.44
0.11

,

FIGURE 17. The space spectrum at the plane z = 22.2 cm.

and the noise subspace projection matrix is

P⊥=0.1


9.3 0.10 1.6 1.6 1.2 0.29
0.10 10.0 −0.23 −0.23 −0.17 −0.04
1.6 −0.23 6.4 −3.6 −2.6 −0.65
1.6 −0.23 −3.6 6.4 −2.7 −0.65
1.2 −0.17 −2.6 −2.7 8.1 −0.48
0.29 −0.04 −0.65 −0.65 −0.48 9.9

;

• Step 5: Set the initial point at (0, 0, 5), and start the
improved MA-ES engine. For a more straightforward
expression, we use the spectrum P near the electric
dipole source, as shown in Figure 17;

• Step 6: The final output of the improved MA-ES opti-
mization result is (10.0,−20.0, 24.1), which is near the
true position (10,−20, 20).

In Table 4, the estimated positions and their actual posi-
tions are listed, where all the estimated positions are near
the corresponding actual positions. However, the last row
shows a maximum error of 8.1 cm. The estimation errors are
caused by the following four reasons: 1) the electric dipole
source in the experiment is not an ideal dipole; therefore,
using the ideal dipole model may generate an error; 2) the
proposed locating method is suitable for deep sea target
locating; however, the experiment is implemented in a water
tank, wherein the boundary can affect the distribution of the
electric field, resulting in errors; 3) the actual positions of
the electric dipole source and the PUCA system may move
slightly during the measurements from the action of the water

TABLE 4. The estimated positions of the conductor target and insulator
target in different positions.
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wave; and 4) the SNR decreases as the distance between the
electric dipole source and the PUCA decreases, degrading the
locating performance. Although some experimental results
slightly offset the center position, the localization accuracy is
still good. These results prove that the proposed localization
scheme can be applied for underwater target locating.

V. CONCLUSIONS
In this paper, we propose a novel target locatingmethod based
on the optimization method in an underwater environment.
As one of the three elements of the optimization method,
the forward model f , based on the image principle, is pro-
posed. The PUCA for the locating sensors is designed and
studied using CST. The results show that the electric field
distribution on the panel of the PUCA with a finite volume
can be described with the image principle-based forward
model f when min(α, β) ≥ 3. Furthermore, the effect of
the thickness h of the panel can be neglected. The forward
model f is a simple expression, yields high accuracy for the
PUCA, and has a small computation burden. MP-MUSIC is
introduced as the evaluation function J for another element of
the optimization method, which can reduce the search space
dimension (from six dimensions to three dimensions). The
electric dipole source is located by determining the optimal
solution of the evaluation function J or by finding the peak
of the space spectrum P. Hence, the improved MA-ES for
the optimization method is proposed. The improved MA-ES
provides better performance in convergence, uses 28% fewer
evaluation generations as compared with the MA-ES, and
outputs a more accurate solution. Moreover, the MA-ES
based algorithm has a smaller computation burden, i.e., the
calculation amount is less than that of the CMA-ES by 7.8%.
A set of physical experiments is performed in a water tank
to verify the proposed locating method. In this experiment,
a PUCA system is implemented, which consists of a plastic
panel base and seven electrodes (corresponding to six receiv-
ing channels), acting as the sensor. The sampling signal is fil-
tered using a digital demodulation narrow-band filter, which
provides a high SNR base band signal for each channel. The
experiments provide satisfactory locating results, verifying
the effectiveness of the proposed locating method.
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