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ABSTRACT Unlike single geospatial objects extraction from high-resolution remote sensing images,
the task of road extraction faces more challenges, including its narrowness, sparsity, diversity, multiscale
characteristics, and class imbalance. Focusing on these challenges, this paper proposes an end-to-end
framework called the multiple feature pyramid network (MFPN). In MFPN, we design an effective feature
pyramid and a tailored pyramid pooling module, taking advantage of multilevel semantic features of high-
resolution remote sensing images. In the optimization stage, a weighted balance loss function is presented
to solve the class imbalance problem caused by the sparseness of roads. The proposed novel loss function
is more sensitive to the misclassified and the sparse real labeled pixels and helps to focus on the spare set
of hard pixels in the training stage. Compared with the cross-entropy loss function, the weighted balance
loss can reduce training time dramatically for the same precision. Experiments on two challenging datasets
of high-resolution remote sensing images which illustrate the performance of the proposed algorithm have
achieved significant improvements, especially for narrow rural roads.

INDEX TERMS Multiple feature pyramid network (MFPN), feature pyramid, pyramid pooling, weighted
balance loss.

I. INTRODUCTION
In recent years, road extraction from high-resolution remote
sensing images has been applied inmany domains, e.g., urban
planning, Geographic Information System (GIS) data updat-
ing, and traffic navigation. Ideally, roads have regular shape
in object extraction since they have obvious geographical
features [1], including strip-like distribution, uniformity of
gray distribution, geometric shapes of fixed width, and inter-
connected network topologies. However, as shown in Fig. 1,
the main difficulties in road extraction from remote sensing
images are as follows: (1) Diversity. Types of roads include
highways, urban trunk roads, and country roads, resulting in
multiscale characteristics. (2) Narrowness. Compared with
massive objects such as buildings, roads are narrow, likely
to cause discontinuous extraction (Fig. 8, columns 3 and 4).
(3) Sparsity. In rural areas, roads are a sparse target compared

to vegetation and farmland (Fig. 1c), leading to the chal-
lenge of class imbalance. (4) Easily disturbed. The texture
of roads in remote sensing images is easily obscured by
trees (Fig. 1d) or confused with rivers (Fig. 1c), causing
feature variation in different imaging conditions. Therefore,
extracting roads from remote sensing images automatically
and precisely is rather tough work.

In order to handle the extraction task, different methods
have been proposed to cope with these challenges. Some
primary traditional methods based on unsupervised learning,
such as [2]–[12], try to use the inherent information of the
images, including color, texture, and boundary. Nevertheless,
the spectral or inherent properties of roads in remote sensing
images are usually mixed up with other disturbances, such
as shadows, traces of water, and light. Recently, there is a
growing body of literature that recognizes the importance of
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FIGURE 1. Samples of roads in different scenarios. (a) roads in urban;
(2) roads in rural; (c) roads is confused with rivers; (d) roads is
obscured by trees.

robust features. Many researchers are paying more attention
to the use of modern deep convolutional neural networks
(DCNNs) [13], which tend to significantly improve perfor-
mance. Some commonly used models have been achieving
state-of-the-art performance not only in computer vision,
such as fully convolutional network (FCN) [14], deconvolu-
tional network [15], SegNet [16], DeepLab [17]–[19], inte-
grated CNN with conditional random fields (CRFs) [17],
[20], [21], and pyramid scene parsing network (PSPNet) [22],
but also in remote sensing road extraction, e.g. [23], [24] and
Road Structure Refined CNN (RSRCNN) [30].

Among the above prevailing methods of DCNN, common
to these architectures is the use of all convolutional layers,
replacing the last fully connected layers in classification with
the convolution layer, which is more conducive to assigning a
category label to each pixel. However, road extraction based
on DCNN has a couple of critical limitations. First, the net-
work has a too-large receptive field for smaller objects. With
deepening of the network, the spatial size of the receptive
field on feature maps is gradually increasing. Although theo-
retically this indicates howmuch we use context information,
in fact, an object that is larger or smaller than the recep-
tive field may be mislabeled, especially for narrow roads,
as shown in Fig. 1c. Meanwhile, for narrow and sparse roads,
there is less target information after several pooling layers.
Even though the high-level semantic information is abundant,
there is a lack of low-level location information for sparse tar-
gets. Second, the traditional cross entropy (CE) loss function
is not suitable for optimizing sparse scenes. Different from
the object detection task, road extraction mainly focuses on

assigning a category label to each pixel, while the detection
task is only needed to identify several different objects. So,
we argue that the different category distribution will result
in different optimization spaces. Assuming CE loss is still
used, it pays equal attention to all pixel points. After several
iterative optimizations, the vast number of background pixels
will gradually lead the center of gravity to the background
instead of roads. Therefore, we need an efficient loss function
to deal with the problem of unbalanced categories caused by
road sparsity.

To overcome such limitations, we propose a new
end-to-end multiple feature pyramid network (MFPN) based
on PSPNet. Unlike PSPNet, we add a novel module called
feature pyramid and customized a pyramid pooling structure
for road extraction, which has the ability to address the
first limitation Feature pyramid [41] is a top-down multi-
scale feature fusion structure combining low-level location
information and high-level abundant semantic features. It can
make up for the poor effect of PSPNet on multi-scale road
extraction. Inspired by PSPNet, the tailored pooling pyramid
module (TPPM), which is designed according to the strip-like
shapes of roads, can fuse the contextual information of differ-
ent subregions with different scales. These two improvements
in the network architecture have excellent prediction capabil-
ity suitable for the extraction of country roads. In addition,
our weighted balance loss function focuses on pixels that are
misclassified and sparse real labels. It can save computing
resources and training time in maintaining prediction accu-
racy. Experiments on public datasets and our own datasets
prove the competitive performance of our MFPN.

The remainder of this paper is organized as follows:
We first review some related works in Section 2 and
describe in detail the architecture of the proposed network
in Section 3. Experimental datasets and evaluations are
described in Section 4. The experimental results are presented
in Section 5. Finally, Section 6 summarizes the findings.

II. RELATED WORK
Study of road extraction from remote sensing images has
lasted for 30 years so far. In this section, we discuss the
technological innovations from traditional methods related to
machine learning as applied to deep learning.

Traditional road extraction methods tried to use the inher-
ent features of roads. Tupin et al. [2] used a liner detector
to extract road candidate segments, using the Markov ran-
dom field (MRF) classifier to select and connect the real
road segments. Wang and Luo [3] proposed a semiautomatic
road extraction method using the Markov random texture
and support vector machine (SVM) classifier. Based on spa-
tial and spectral information, the SVM classifier was used
in [4] and [5]. All of these methods are based on manually
designed features of roads, relying on human intervention.
Therefore, there is a need for a practical algorithm that can
automatically extract robust features from the whole remote
sensing image, not just the characteristics of the road itself.
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FIGURE 2. Overall framework of our model. TPPM, tailored pyramid pooling module; shown in Fig. 3.

Many recent works have already paid attention to the
DCNN technique, which tends to extract robust features.
In [23] and [24], FCN was also incorporated to automatically
learn features of roads, and then to make decisions on road
regions. Mnih [25] proposed a method based on patch-based
CNN. It used principal component analysis (PCA) features as
the CNN input, which were trained by the restricted Boltz-
mann machine (RBM). By using SegNet followed by two
postprocessing techniques, landscapemetrics (LMs) and con-
ditional random fields (CRFs), Panboonyuen et al. [26] pre-
sented an enhanced DCNN framework. Alshehhi et al. [27]
also presented an effective model utilizing patch-based CNN.
In order to acquire fine prediction, simple liner iterative
clustering (SLIC) [28] is used to obtain the initial image
and region adjacent graph (RAG) [29] is applied to facilitate
merging between super-pixels. By changing the architecture
of the network, the above methods could obtain satisfactory
performance. However, they are still multistage and depend
on preprocessing or postprocessing.

The most related work for us is RSRCNN [30], which
also built an end-to-end framework and designed a novel
loss function. Different from the methods mentioned above,
RSRCNN was an end-to-end framework that is able to
advance the state-of-the-art road extraction for aerial images
in the Massachusetts Roads Dataset by using deconvolu-
tional and fusion layers in DCNN. The fusion layers of
RSRCNN directly combined the convolutional and decon-
volutional layers with pixel-wise summing. It may result in
falsely detected roads due to a strong edge in the early layer
of CNN. To relieve this problem, Wei et al. [30] proposed
a road structure–based loss function, which incorporated the
geometric information of road structure in cross-entropy loss.
Note that this is not a direct solution to the problem and

leaves behind the problem of class imbalance imposed by
road sparsity. Therefore, we used feature pyramid to mitigate
the edge effects of fusion and propose a novel weighted
balance loss function to cope with the huge class imbalance.

III. METHODS
In this section, the proposed end-to-end framework for road
extraction from high-resolution remote sensing images is
illustrated. We first introduce the MFPN architecture and
each component, followed by our efficient loss function.
Then we describe the training setting.

A. MFPN ARCHITECTURE
1) OVERALL FRAMEWORK
As shown in Fig. 2, the proposed MFPN method is a single
end-to-end network composed of a backbone network and
two feature-processed subnetworks. The backbone network
is responsible for overcoming the problem of road diversity,
computing a robust convolutional feature map by a modified
101-layer ResNet [40]. The first subnet is a feature pyramid
that can be well suited for multiscale scenarios by effectively
integrating multilevel semantic information. The second sub-
net uses a tailored pooling pyramid module able to aggregate
contextual information, to get over the disturbance of external
factors on the road. We will elaborate on each component
below.

2) BACKBONE NETWORK
To cope with the diversity of roads, we need feature extrac-
tors with generalization capabilities. The model should be
adaptable to different types of roads, to acquire a robust
feature map through the backbone network. Here, different
from the original ResNet, which included a stem block and
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TABLE 1. The architecture of backbone network.

four residual blocks, C2, C3, C4, and C5, we use a refined
ResNet to extract robust features from remote sensing images.
First, inspired by Inception v3 [45] and v4 [44], we modify
the stem block with a stack of three 3 × 3 convolution
layers followed by a 3 × 3 max pooling layer. The stride of
the first convolution layer is 2 and of the other two layers
is1, so the size of the output feature maps is one-quarter of
the input images. Compared with the original stem block in
ResNet (7 × 7 convolution layer with stride 2 followed by
3× 3 max pooling with stride 2), our design can reduce half
the parameters and information loss from raw input images.
Second, we enhance the feature generalization of diverse
roads by maintaining the spatial sizes of the feature map.
To obtain a fine result for road extraction requires that the
spatial sizes of the last feature map should be close to the
input image. We use atrous convolution [17] in the residual
blocks to keep the size. The atrous convolution not only can
keep the constant size of the feature map, but also increase
the size of receptive fields and enrich semantic information.
In our design, only the first conv-layer in C3 uses a convolu-
tion layer with stride 2, and two residual blocks, C4 and C5,
use atrous convolutionwith hole rate (2,4). Therefore, the size
of a remote sensing image after stem block with four residual
blocks is 1/4,1/4,1/8,1/8, and 1/8, respectively, corresponding
to the input images. The detailed structure of the backbone
network is presented in Table 1.

3) FEATURE PYRAMID
In rural areas, the results of road extraction are often dis-
continuous. The main reason is that the features for narrow
roads tend to disappear with a deeper network, resulting in
fragmented forecast results, especially for country roads. This
is also a common problem for algorithms extracting smaller
targets. Here, we solve the multiscale problem by applying

a feature pyramid. As shown in Fig. 2, we use a top-down
pathway and lateral connections to construct a multiscale,
rich feature pyramid. It combines low-level road location
information with high-level abundant semantic features to
cope with the gradual disappearance of useful informa-
tion. In brief, the lateral connections are a 1 × 1 convo-
lution layer applied to C2, C3, C4, and C5, acquiring four
new enhanced feature maps, L2, L3, L4, and P5, which can
efficiently strengthen the bottom-up features. As this indi-
cates, the operation of the top-down pathway is to merge
the adjacent level information by element-wise addition
in L2, L3, L4, and P5, followed by a 3 × 3 convolution
layer to get the final feature map. Owing to C5, C4, and
C3 having the same spatial size in our network design,
we directly get P4 by element-wise addition to P5 and L4,
then acquire P3 by adding P4 and L3. For the fusion of
L2 and P3, we get P2 according to the above operation
after a coarse spatial upsampling of P3. The final fea-
ture maps we get are P2, P3, P4, and P5, corresponding to
C2,C3,C4, and C5, respectively, with the same spatial sizes.
Each level of the pyramid can be used for extraction of roads
at a different scale. In Section 5, we will show that the
benefit of this feature pyramid is significant for extraction
performance.

4) TAILORED PYRAMID POOLING MODULE
Road extraction from remote sensing images can be viewed
as a task of pixel-level classification of sparse objects. Mean-
while, roads in remote sensing images encounter many dis-
turbances, such as illumination and obstruction by trees.
Therefore, the useful information contained in each pixel
is extremely important for pixel-level classification. There
is no doubt that contextual information is of great impor-
tance to get a fine result. So, in [22], a pyramid pooling
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module was applied to semantic segmentation tasks, which
achieved amazing results. In the original design, the pyramid
pooling module consisted of four average pooling layers of
different size. One of them generates a single bin output
through global pooling, and the others use different kernel
size to get pooling results in different subregions with bin
sizes of 2×2, 3×3, and 6×6, respectively, producing different
contextual information. However, for sparse road targets, this
is still not enough. According to our statistics, in a remote
sensing road image of 320 × 320 pixels, the widest road is
only 50 pixels wide. Most of the common roads vary from
20 pixels to 40 pixels. Some of the smaller roads have
smaller width, less than 15 pixels. The part of narrow roads
is one of the most tough challenge, so we draw lessons from
PSPNet and then design the tailored pyramid pooling module
to focus on it. As shown in Fig.3, in the pyramid pool-
ing module behind P2, P3, P4, and P5, two average pooling
layers were added with smaller rectangular kernel size
in different directions, adapting to the strip-like shape of
roads. For example, in last feature map of 80 × 80 pixels,
the narrow roads are mapped to <3 pixels after several
sampling layers. We consider that the shape of the road
is narrow and not horizontal or vertical on the image,
and we add two extra average pooling layers with kernel
size 5 × 80 and 40 × 5 in the pyramid pooling module.
This strategy offers a good trade-off between accuracy and
speed.

FIGURE 3. Tailored pyramid pooling module.

It is worth mentioning that the pyramid pooling module is
beneficial to the extraction of sparse scenes. After a deep con-
volution network, only few subregion on the feature map con-
tain less valid information on the sparse objects. Thus, if we
use the feature map directly to make predictions, it is easy
to get fragmented prediction results. In contrast, the pyramid
pooling module divides the feature map into several different
subregions by average pooling layer, using different kernel
sizes. A subregion is likely to contain the sparse object infor-
mation we need. Then it will be upsampled to be the same size
feature as the original feature map via bilinear interpolation.
In this process, not only the image context information is
included, but representation information on the sparse object
is further increased.

B. WEIGHTED BALANCE LOSS
1) LOSS FUNCTION
Regarding either object detection, like the series of
RCNN [31]–[33], [34], [46], or semantic segmentation, like
FCN and DeepLab, class imbalance is an important problem
during training. Due to many easy samples that contribute
no useful information, training will be easily inefficient.
Furthermore, vast numbers of background examples may
lead to local optimization. Different from hard negative
mining [35]–[38] and focal loss [39], we design a weighted
balance loss to solve the extreme class imbalance caused
by road sparsity, which can suppress the bad influence of
background pixels by dynamically adjusting weights.

We design the weighted balance loss function based on the
following principles:

(a) Focusing on the rare class (foreground). In sparse
scenes, the limited information inherently contained in pic-
tures is very important for our optimization. To enhance the
feature representation of the rare class, we shall be obliged to
pay more attention to it in our loss function.

(b) Suppressing the bad influence of background to total
loss. The frequent class (background) can dominate total
loss, causing local optimization spaces, further resulting
in a lot of waste of computing resources. Here, we use
a self-adjusting weight to reduce the loss produced by
background.

(c) Punishing the misclassified pixels. Ideally, we want to
predict every pixel correctly, but this is just an expectation.
Therefore, our loss function should try hard to rectify this
error, and a simple way is to put it on the same status as
foreground.

In brief, our weighted balance loss on the basis of the cross-
entropy loss CE, which is defined by

CE =
∑
i,j

(yi,j log pi,j + (1− yi,j) log (1− pi,j)) (1)

Assume that {yi,j|1 ≤ i ≤ h, 1 ≤ j ≤ w} indicates
the ground truth of input images, with a size of h × w × c,
where h and w are spatial dimensions and c is the channel
dimension. Note that yi,j = 1 means that the pixel at location
(i, j) in the image belongs to road and yi,j = 0 stands for
background. Meanwhile, pi,j represents the probability that
the (i, j) th pixel of input image is predicted to be road, which
can be calculated by the following softmax function:

pi,j =
ezi,j,k=1

ezi,j,k=0 + ezi,j,k=1
(2)

where zi,j, is the output vector at location (i, j) in the
last features map with two output channels, road and
background.

By observing the definition of CE in Equation (1), we can
find that the CE loss pays equal attention to different pix-
els, failing to consider class imbalance. Following the three
principles mentioned above, our weighted balance loss can be
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written as:

L (W) =

N∑
n=1

l (Wn,CEn)

=

N∑
n=1

Wn∗CEn

=

N∑
n=1

∑
i,j

(wn1yi,j log pi,j + w
n
2(1− yi,j) log (1− pi,j))

(3)

where N is the number of training batch sizes. Wn ∗ CEn
(n = 1, 2 . . . ,N ) indicates the loss of a single image,
calculated by assigning weight to different pixels, where
wn1 denotes the weight of misclassified and sparse real pixels
and wn2 controls the contribution of background to total loss.
In our loss function, wn1 and w

n
2 are expressed as follows:

wn1 = 1,∀ pixel ∈ {misclassified, ground truth (4)

wn2 = max
(
T , pi,j

)
, ∀ pixel ∈ {others} (5)

where T is the manual threshold to decide how much each
background pixel contributes to total loss. Note that pi,j is
always less than 0.5 in {others}, since it represents the prob-
ability that pixels are predicted road. So if we set T to be
greater than 0.5, wn2 is a constant, otherwise the value of
wn2 will change with pi,j.
Now, each pixel has its own weight to distinguish its

impact on total loss. Naturally, foreground pixels receive
more attention than background pixels by applying self-
adjusting weight. The setting of threshold T not only restrains
the background loss, but, more importantly, can stabilize the
training process in early training.Wewill explore this in detail
below.

2) CLASS IMBALANCE AND wn
2 INITIALIZATION

During the training, we find a problem caused by instability
in initializing the weight of the loss function. Each step of the
training will directly affect the prediction of the next batch
of images. Due to the existence of wn2, we focus more on
optimizing misclassified pixels and real road categories in
the current step. In the next step, most of the road pixels are
located at previously unoptimized positions, which leads to
instability in early training. To counter this, we limit the initial
value of wn2 by applying the threshold T to avoid training
instability, caused by the large disparity in contributions to
the total loss between foreground and background. In other
words, pi,j is very small due to easily predicting background
pixels and wn2 is linearly related to pi,j if we do not set
the threshold T . The small wn2 will lead to unstable training
because of the uneven contribution of foreground and back-
ground to total loss.

C. TRAINING SETTING
We implement our model based on the TensorFlow frame-
work and all experiments are executed on a computer

with a Tesla P100 GPU. As common practice, the MFPN
model is initialized with pretrained ResNet-101
on the ImageNet dataset. The training is carried out
by optimizing the weighted balance loss function using
MomentumOptimizer with momentum of 0.9. Inspired by
Chen et al. [17] and Liu et al. [42], we use a ‘‘poly’’ learning
rate policy where the initial learning rate of 0.0005 was
multiplied by (1− iter

max_irer )
power

with power = 0.9.
We adopte the L2-loss with weight decay of 0.0001 and
batch normalization technique [43] with a mini-batch size
of 16. Other experimental details will be given in the next
section.

IV. EXPERIMENTS DATASETS AND EVALUATION
To verify the competitive performance of the end-to-end
MFPN model, several experiments on road extraction from
remote sensing images are carried out on two different
datasets, the Massachusetts and RSI datasets. All con-
trolled experiments are evaluated based on precision, recall,
F-measure and, mIoU.

A. MASSACHUSETTS DATASET
This dataset was collected by Mnih [25], and includes 1108
training, 14 validation, and 49 testing images. Each image is
1500×1500 pixels in size with a spatial resolution of 1 meter
per pixel, composed of tri-band information (red, green, and
blue channels). In addition, the dataset is aerial imagery and
covers a total area of more than 2634 square kilometers,
including urban, suburban, and countryside regions. Samples
of this dataset are shown in Fig. 4.

FIGURE 4. Sample aerial images from the Massachusetts dataset:
(a) aerial images; (b) binary maps, ground-truth images denoting
the locations of roads.
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B. RSI DATASET
We obtain 1500 1000 × 1000-pixel satellite remote sensing
images from QuickBird, of which 20% were made into test
dataset. Each image has red, green, and blue channel informa-
tion after geometric correction. As shown in Fig. 5, the dataset
covers a wide variety of terrain, including plains, basins, and
hills, leading to more challenges for road extraction in this
work.

FIGURE 5. Sample satellite images from the RSI dataset: (a) satellite
images; (b) binary maps, ground-truth images denoting
the locations of roads.

There are two major differences between the Mas-
sachusetts and RSI datasets: type and annotation methods.
The Massachusetts images were obtained by aerial photog-
raphy, and the others by satellite imagery. As for annotation
methods, the Massachusetts dataset used equal width lines
to mark the centers of roads and the ground truth of the
RSI dataset is completely coincident with the road, retaining
the geometric information.

C. EVALUATION METRICS
To quantitatively evaluate the performance of different
frameworks on road extraction, we use four common
metrics, as shown in Equations (6)–(9): precision, recall,
F-measure (F1), and mIoU. All of them are based on
four basic components in information retrieval: true posi-
tive (TP), true negative (TN), false positive (FP), and false
negative (FN). TP indicates the number of correctly classified
road pixels, TN indicates the number of correctly classi-
fied background pixels, FP indicates the number of mistak-
enly classified road pixels, and FN indicates the number of

mistakenly classified background pixels.

Precision =
TP

TP+ FP
(6)

Recall =
TP

TP+ FN
(7)

F1 =
2× Precision× Recall
Precision+ Recall

(8)

mIoU =
1
2
× (

TP
TP+ FP+ FN

+
TN

TN + FP+ FN
) (9)

Precision is the ratio of correctly classified road pixels
among all predicted road pixels, while recall measures the
percentage of correctly classified road pixels among all actual
road pixels. F1 and mIoU are common combinations based
on these four components. The higher the value, the better
the performance.

V. EXPERIMENTAL RESULTS
We design several groups of comparative experiments
to explore the effectiveness of each component for our
MFPN model. In this section, we investigate the impact of
each improvement in our network, followed by a detailed
analysis of the performance on two different datasets.

A. ABLATION STUDY ON RSI DATASET
Wenowdemonstrate the validity of the key design component
elaborated earlier. Several controlled experiments with our
MFPN network are conducted on the RSI dataset for this
ablation study. Except for the components we are validating,
all experiments keep the parameters consistent. The effective-
ness of the feature pyramid and the pyramid pooling module
is shown in Table 2, and the curve in Fig. 6 illustrates the
contribution of our weighted balance loss function.

TABLE 2. Effectiveness of various designs on the RSI test set.

1) EVALUATION OF FEATURE PYRAMID
One idea is that low-level feature maps contain scarce seman-
tic information, but with obvious location information. Con-
versely, high-level coarse semantic features are abundant, but
location information is crude. The structure of the feature
pyramid is proposed to take full advantage of both. There-
fore, the choice of the combined feature map has become
an important factor that can affect the experimental perfor-
mance. The performance of different feature map combina-
tion strategies is shown in Table 3. As we could see, using
only the monolayer feature map, neither the middle layer P3
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FIGURE 6. Curves of mIoU for MFPN model trained with cross entropy and
weighted balance loss functions with different T at different iterations.

TABLE 3. Performance of different feature map combination strategies.

nor the last layer P5 have achieved prominent results. The
fusion of P4 and P5 has better performance than the fusion
of P2 and P3 or P3 and P4, which is based on the fact that
the combination of P4 and P5 reached an ingenious balance
between semantic features and location information. Note
that the more layers we combine, the higher mIoU we get.
As seen by the results presented in Table 3, when using all
feature maps, the performance of mIoU is improved from
87.6% to 89.9% with other metrics reaching the optimum:
91.3% for precision, 87.6% for recall, and 89.4% for F1.

In summary, the results of the comparative experiments
verify the validity of the feature pyramid. The multilevel
fusion structure is better than single-level architecture in
the road extraction network, which is due to the ability
to fuse multilayer features for better extraction of narrow
roads.

2) EVALUATION OF THE TAILORED PYRAMID POOLING
MODULE
The task of road extraction can be considered as a binary
classification, where nonroad pixels are negatives and road
pixels are positives. The information contained in each pixel
is related to the degree of difficulty in classification. Increas-
ing the contextual information of pixels is of very useful for
predicting pixels correctly. Table 4 shows the improvement
of TPPM. As seen in Table 2, the model with PPM increased

TABLE 4. Performance of different designs in TPPM.

mIoU by 5.2% compared with the model without PPM.
This is due to the fact that PPM has the advantage of increas-
ing the contextual information of images and expanding the
representation information of sparse objects. Compared with
PPM, TPPM adds several averaged pooling layers that are
adapted to the strip-like shape of the road. Table 4 describes
the relationship between mIoU and modification strategies.
The required computational resources grow with the number
of pooling layers we added. Considering the computational
time cost, we add two pooling layers, 5 × 80 and40 × 5 in
subsequent experiments, offering a good trade-off between
accuracy and speed. As shown in Table 6 (rows 3 and 4),
mIoU increases from 87.6% to 88.5%, while F1 improves
from 86.7% to 87.8%, which validates that our design is more
suitable for sparse road extraction.

3) EVALUATION OF THE WEIGHTED BALANCE LOSS
The original intention of designing the weighted balance loss
is to improve the performance of MFPN by focusing on the
optimization of sparse objects. However, in the actual exper-
iment, we find, amazingly, that this loss function promotes
convergence of the parameters and save a lot of computing
resources. In contrast, the evaluation indicator do not show
surprising performance. Fig. 6 plots the curve of the rela-
tionship between mIoU and training steps. The blue curve
indicates the performance of the model with standard CE loss
function. The other three curves represent the performance of
models with different thresholds T in the weighted balance
loss function. As shown in Fig. 6, using weighted balance
loss in the model can save about 104 training steps in a given
mIoU. Similarly, with a specific training step, the network
with the weighted loss function has higher mIoU. Compar-
ing different thresholds, we find that the smaller T is set,
the faster mIoU grows with training steps. When T = 0.4,
we get a most beautiful curve.
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TABLE 5. Performance of different methods on massachusetts dataset.

FIGURE 7. The Extraction result on Massachusetts dataset compared with other traditional methods.

What if we set a smaller T manually, such as T = 0.1?
It is interesting to see the performance of MFPN with a
smaller T . However, the actual experimental results show that
a too-small T will cause the model to diverge. As previously
mentioned, we only set the threshold T in order to solve
the problem that wn

2 may cause instability in early training.
Therefore, an excessively small T is of no practical signifi-
cance and will cause the model to diverge equally. Here, we

empirically set T = 0.4 to make road extraction results
appropriate.

B. RESULTS COMPARISON ANALYSIS
In this subsection, we compare MFPN with other tradi-
tional extraction methods that are state-of-the-art in com-
puter vision, DeepLab-v2, DeepLab-v3, FC-DenseNet [47]
and PSPNet. A consistent setting was imposed on all
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TABLE 6. Performance of different methods on RSI dataset.

the experiments, unless the T of MFPN was 0.4. The details
of results are as follows.

1) RESULTS WITH MASSACHUSETTS DATASET
Allmodels are trained based on the union of training and valid
datasets. Limited by the capacity of GPU memory, we used
a batch size of 16. The training is completed when it reached
80,000 iterations.

Samples of the extraction results are shown in Fig. 7.
As we can see, the images of MFPN look very close to
the ground truth, which includes more detail for both dense
roads in urban areas and sparse roads in the countryside.
From Table 5, the results show that MFPN with all of
our components was the winner compared with other clas-
sic extraction methods on any metrics (precision, recall,
F1, and mIoU). As for mIoU, it outperforms DeepLab-v2,
DeepLab-v3, FC-DenseNet and PSPNet by 8.3%, 8.1%,
7.2% and 7.8%, respectively; this yielded higher F1 at 14.1%,
13.8%, 12.7% and 13.4%. Meanwhile, RSRCNN performs
extremely well on recall, because it uses a mechanism that
fuses feature layers when extracting features. This is similar
to the feature pyramid and can handle multiscale problems.
Compared with the PSPNet, the experimental results of the
MFPN using only TPPM are not significantly improved,
while only recall increases by 4.7%. This is because our
TPPM is designed based on the geometry of the road.
When MFPN uses feature pyramid, the experimental results
are significantly improved on precision and recall. There-
fore, the value of F1 and mIOU are improved by approxi-
mately 11% and 5% respectively compared to other methods.
Of course, the F1 of MFPN with all components is higher,
at 13.1%, than that of RSRCNN. All comparative results
confirm that MFPN is more effective and very suitable for
road extraction.

2) RESULTS WITH RSI DATASET
We evaluate our MFPN on the RSI dataset in this subsection.
The batch size is also set as 16 and there are 110,000 total
training iterations.

Table 6 shows the quantitative comparison results of six
methods measured by mIoU. The mIoU of DeepLab v3
(87.9%) is superior to that of DeepLab v2 (86.2%). The main
reason is that DeepLab v3 adds global information by image

pooling in the prediction phase, which benefits from the
pyramid polling module of PSPNet. By fusing the contextual
information of four subregions with different scales, PSPNet
achieves an mIoU of 87.6%. Compared with other classical
algorithms, FC-DenseNet outperforms on precision, but it has
the lower performance on recall. However, all these methods
still have certain limitations on the issue of multiscale. The
feature pyramid combines low-level location information and
high-level semantic features to solve this problem and the
result in Table 6 (rows 5) show the competitive performance.
Adding another improvement module, the MFPN with fea-
ture pyramid can acquire the best performance: 91.8% for
precision, 88.3% for recall, 90.0% for F1, and 90.4% for
mIoU. Fig. 8 shows examples of our extraction results.

3) RESULTS ON NARROW RURAL ROADS
After the above analysis, we can see that the MFPN model
achieves superior accuracy. Further, we continue to explore
what kind of roads MFPN is more suitable for, and whether
it meets our original design intention, adapting to sparse and
multiscale scenarios.

To verify our conjecture, we carefully selecte a subset
of narrow roads, called the S-subset, from the RSI test
dataset, where the width of the road is less than 30 pixels
on the 1000× 1000-pixel remote sensing images. We named
the subset of remaining images in the RSI test dataset the
N-subset. We divide the images into 320 × 320 sub-images
with an overlap of 0.1. Table 7 and Fig. 9 show details of the
two subsets.

TABLE 7. Numbers of two subsets of the RSI dataset.

Tables 8 and 9 represent the comparative performance of
MFPN and other traditional extraction methods on the two
test subsets. Compared with PSPNet (rows 3 and 4), mIoU of
MFPN is increased by 10.5% on the S-subset and 2.9% on the
N-subset. The increase of F1 on the S-subset is 5 times that on
the N-subset. Note that recall amazingly increases by 25.6%
on the S-subset, yielding the higher 5% on the N-subset,
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FIGURE 8. Visual improvements on the RSI dataset. MFPN produces more accurate and detailed results.

FIGURE 9. Samples of two subsets in the RSI dataset; the first row indicates the S-subset and the second row the N-subset.

which obviously indicates that MFPN can address the issue
of narrow roads, because recall denotes the percentage of
correctly classified road pixels among all actual road pixels.

The results on two subsets are shown in Fig. 8, where the first
and second rows are from samples of the N-subset and the
remainder are from the S-subset. All in all, the MFPN model
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TABLE 8. Performance of different methods on the S-subset dataset.

TABLE 9. Performance of different methods on the N-subset dataset.

has superior ability to extract narrow roads, benefiting from
the effective feature pyramid and tailored pooling pyramid
model.

VI. CONLUSION
In this paper, we build an end-to-end MFPN model for road
extraction from high-resolution remote sensing images. First,
we extract image features by refined ResNets with atrous
convolution, which can increase the size of receptive fields
while keeping the spatial size of feature map. Then we use
an effective top-down feature pyramid to fuse multilevel
information, aiming to get a feature map that includes rich
semantic information and sparse target location informa-
tion. Subsequent tailored pyramid pooling modules further
increase the combination of sparse target information and
context information at different scales. Finally, training is
carried out by optimizing the weighted balance loss, which
accelerates the convergence of themodel under the premise of
ensuring mIoU. Experiments were conducted on two remote
sensing datasets of different types and compared to other
prevailingmethods. The results show thatMFPNoutperforms
other methods on all performance measures. Especially it
gains obvious improvements for narrow rural roads.
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