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ABSTRACT Subsea pipeline corrosion is considered as a severe problem in offshore oil and gas industry.
It directly affects the integrity of the pipeline which further leads to cracks and leakages. At present, subsea
visual inspection and monitoring is performed by trained human divers; however, offshore infrastructures
are moving from shallow to deep waters due to exhaustion of fossil fuels. Therefore, inhospitable underwater
environmental conditions for human diver demand imaging-based robotic solution as an alternate for visual
inspection andmonitoring of subsea pipelines. However, an unfriendly medium is a challenge for underwater
imaging-based inspection andmonitoring activities due to absorption and scattering of light that further leads
to blur, color attenuation, and low contrast. This paper presents a new method for subsea pipeline corrosion
estimation by using color information of corroded pipe. As precursor steps, an image restoration and
enhancement algorithm are developed for degraded underwater images. The developed algorithm minimizes
blurring effects and enhances color and contrast of the images. The enhanced colors in the imaging data
help in corrosion estimation process. The image restoration and enhancement algorithm are tested on both
experimentally collected as well as publicly available hazy underwater images. A reasonable accuracy is
achieved in corrosion estimation that helped to distinguish between corroded and non-corroded surface
areas of corroded pipes. The qualitative and quantitative analyses show promising results that encourage
to integrate the proposed method into a robotic system that can be used for real-time underwater pipeline
corrosion inspection activity.

INDEX TERMS Underwater image, restoration, enhancement, subsea pipeline, corrosion estimation.

I. INTRODUCTION
Subsea pipelines are the backbone in offshore petrochemical
industry for transportation of oil and gas to the onshore
setup for further chemical processes. In order to ensure the
safe and uninterrupted transportation of extracted oil, these
underwater pipelines require inspection on a regular basis
for corrosion, cracks and leakages. Several methods such
as saturation diving, pigging and Underwater Vehicles have
been developed to inspect the pipelines to maintain their
integrity [1]. Although, the subsea pipelines are manufac-
tured with several protection layers to minimize the external
environmental effects, however, with the passage of time,
the protection layers get damaged or disbonded by harsh

underwater situations. As a result, the water molecules pene-
trate under the damaged or disbonded layers. The direct con-
tact of water molecules with metallic surface of the pipeline
initiates the oxidation process [2]. The oxidation progresses
further to corrosion on external surface of the pipeline and
affects its integrity by bringing cracks and leakages [3], [4].

In the offshore petrochemical industry, subsea pipeline
corrosion is considered as a severe problem. At present,
different techniques are being tested to provide better solu-
tion for the detection of corroded surface of the pipeline.
Corrosion detection helps further to repair the effected sur-
face timely before any catastrophic failure occurs. Since last
few years, researchers have been working on non-destructive
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testing (NDT) methods to inspect/detect the corrosion on
subsea pipeline and monitor its structural health [4]–[6].
Commonly used NDT methods are based on radiographic,
electromagnetic, ultrasonic, liquid penetrant testing, mag-
netic particle, acoustic emission, infrared and thermal and
visual testing [7]–[9].

The visual testing (VT) among other NDT methods is
considered asmost effective due to its simplicity and low cost.
In VT method, a trained inspector or engineer equipped with
simple tools such as flash light and diving skills is assigned
to inspect the subsea pipelines. The VT method can be per-
formed at shallow waters more effectively, however, the off-
shore infrastructures are now moving from shallow waters to
deep waters due to the exhaustion of fossil fuels [10]. In deep
waters, the VT method by human inspectors is not only
difficult but also increases life risks, labor cost and inspection
time due to numerous factors. However, the importance, sim-
plicity and effectiveness of VT method brought alternative
robotic solutions for deep waters such as Remotely Oper-
ated Vehicle (ROV), Human Occupied Vehicle (HOV) and
Autonomous Underwater Vehicle (AUV). These underwater
vehicles (UVs) are suitable alternates of human inspectors
with higher efficiency and almost zero life risks involved. The
UVs are normally equipped with various sensors to collect
information during inspection activities [11]–[13]. Among
these sensors, the underwater cameras are being used to
acquire imaging data. The image/video data can be analyzed
further for fault detection and corrosion inspection activities.

In the remainder of the paper, Section 2 discusses the
related research that has been done for underwater image
enhancement to solve different challenges including corro-
sion detection, Section 3 describes each step of the proposed
methodology for underwater image restoration, enhance-
ment and corrosion estimation. Section 4 discusses the
results and performance evaluation of the proposed method.
Section 5 presents the concluding remarks with future works.

II. RELATED WORK
The image based corrosion detection techniques have been
developed in past few years to perform inspection in differ-
ent areas, especially where human access is inviable due to
environmental and other factors involved [14], [15]. In [16],
an image based solution for corrosion detection on the vessel
hull is presented. A two stages method is developed using
weak classifier color-based corrosion detection algorithm.
At the first stage, the algorithm evaluates the corroded surface
as rough texture by relating it with the energy calculated by
using symmetric gray level co-occurrence matrix (GLCM).
At the second stage, the patches of pixels that have passed
the first stage are filtered based on their roughness. Then the
color information of the corroded patches is observed in HSV
color space to distinguish corroded pixels from non-corroded
pixels (i.e. black or white pixels).

Another image based inspection approach for detection
of cracks and corrosion inside a boiler header is dis-
cussed in [17]. The technique is implemented on Laboratory

Virtual Instrument EngineeringWorkbench (LabVIEW). The
inspection is performed on a 360-degree view of cross section
of boiler header in real time. After image acquisition, seg-
mentation is performed using thresholding technique and the
corroded areas are distinguished based on visual analysis that
shows the corroded areas that are relatively brighter compared
with rest of the scene. Edge detection is performed to get the
boundaries information of the corroded regions. A particle
analysis is than conducted to find the statistical information
such as area, pixel value, location and presence of particles in
corroded region. Similarly, imaging based corrosion inspec-
tion concept for urban pipeline networks is presented in [18].
The platform comprises on an inspection mobile robot with
line laser and a closed-circuit television (CCTV) camera. The
inspection task focuses on the inner structure of the pipeline
where visual inspection by human is not possible. Besides
the width of corroded region and its distance from start point,
the method can detect dangerous cracks.

An image based texture analysis for corrosion monitoring
is presented in [19]. In this analysis an experiment on ASTM
A36 steel for atmospheric corrosion process is conducted.
During the experiment, a sequence of image is acquired to
test the corrosion evolution over a period of 44 days. From
the acquired images six different textural characteristics such
as entropy, Hurst coefficient, contrast, correlation, energy
and homogeneity are extracted. The image-based analysis
presented is feasible to check the state of surface corrosion
on ASTM A36 steel materials. Similar approach is discussed
in [20] to detect rust zones using images of metals. The rust
detection model consists of image acquisition, filtering, fea-
ture extraction and classification steps. For the performance
evaluation of the model, the acquired images of metals are
simulated with the Perlin noise in order to get different levels
of corrosion, including extreme rust conditions.

In order to develop image-based corrosion inspection
solutions for underwater situations, there are various pre-
processing steps involved due to environmental effects on
image formation process. The underwater image formation
process faces light absorption and scattering problems by the
presence of suspended particles in turbid water. The light
scattering, and absorption further lead to blur, color atten-
uation and low contrast issues on the image data acquired
in an underwater environment. Therefore, for any VT based
corrosion inspection task using UVs, it is essential to improve
the quality of the image/video data by minimizing the blur,
color attenuation and low contrast issues. In recent years,
various image enhancement and dehazing methods have been
developed for numerous underwater activities.

Chiang and Chen [21] have tackled the underwater image
haze issue by estimating depth maps (i.e. distances between
camera and objects) and by segmentation of foreground and
background. They also determined the presence or absence of
an artificial light source in the image that needs to be removed
or compensated. The depth maps in an image are perceived
using stereo or parallax images. However, the authors note
that since haze increases with distance, therefore, haze is
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a useful clue for understanding the depth of the scene,
by evaluating the concentration of haze in an image between
objects. Next, the absence or presence of artificial light in the
image is detected by comparing the difference between the
mean luminescence of the foreground and background. In an
underwater image, higher foreground means luminescence
which indicates the existence of a supplementary light source
and can be removed. Next, the presented method shows the
removal of haze by compensation of light scattering and
color changes along the object camera path by removing the
scattering model from the image formation model perceived
by the camera. Then estimation of underwater depth in each
pixel of the image is presented. Once the depths at each pixel
have been estimated, the restored energy of the image can be
modified for better color correction after haze removal.

Li and Guo [22] have proposed an approach that utilizes
a simple de-hazing technique coupled with color compensa-
tion, histogram equalization followed by stretching in satu-
ration and intensity in the HSI planes. The proposed method
results in improved contrast, visible and brighter underwater
images. For dehazing, the authors have proposed a simpli-
fied underwater hazy image formation model to estimate
the medium transmission map and global atmospheric light.
Finally, a bilinear filter is applied to de-noise the image that
results in much clear image features.

Cheng et al. [23] presented the underwater image
restoration based on red-dark channel prior and point spread
function deconvolution. McGlamery [24] and Jaffe [25] sim-
plified the Jeff- McGlamery optical image formation model
and proposed an effective algorithm to recover the degraded
underwater images. The red-dark channel is derived to esti-
mate the background light and the transmission. The visibility
of the scene is also compensated by the depth information
to recover the colors of the background as well as of the
object. An efficient low pass filter is developed from the anal-
ysis of point spread function presented in Jaffe-McGlamery
model [24], [25]. This filter is then used in deconvolution
process to deblur degraded underwater images.

In an underwater environment, the absorption of light in
water varies with the wavelengths. As red color is the earliest
to attenuate, the underwater images offer lower contrast and
exhibit color distortion. In [26], a red channel method is
proposed, as a variant of the dark channel method [27] (scene
depth derivation based on observation of background light
patches on haze free underwater images) for recovering the
colors associated with the shorter wavelengths, thus recov-
ering and improving the low contrast and restoring a natural
color. Since it is assumed that the degradation is related to
the distance of the object from the camera, the color of the
water is first estimated using the assumed farthest pixel in
the image. Then the transmission of the scene is estimated
on each of the RGB components of the image, even though
the three matrices are dependent. Since artificially illumi-
nated images in water are common, the presented method
accommodates the saturation component for a proper color
correction of the images.

An underwater image restoration based on image blurri-
ness and light absorption is presented in [28]. The authors
used image blurriness and light absorption to estimate the
background light, scene depth, and transmission maps and
tested on both synthesized and real underwater images with
different color tones and contents.

Li et al. [29] developed a physical model for underwater
imaging and presented a fine dust removal technique based
on deep convolutional neural networks. In another work by
Lu et al. [30], the authors proposed a hierarchical transmis-
sion fusion method and a color-line ambient light estimation
method for image de-scattering from a single input image.
They estimated the preliminary transmission and ambient
light by taking dark channel as prior information. Then they
used color lines to estimate the refined ambient light in
selected patches obtained the final transmission by a joint
normalized filter. The final scene color was achieved by
applying color correction and de-blurring.

Ancuti et al. [31], [55], and [59] have investigated under-
water image enhancement using different techniques. In [31],
a multiscale implementation of the fusion of contrast cor-
rected and white balanced version of image resulted in
artifact-free blend for underwater image enhancement. The
technique was based on single image for several challenging
underwater environments. A review of intelligent underwater
image dehazing and color restoration is presented in [32].

This paper contributes to subsea pipeline corrosion
estimation by restoring and enhancing the degraded under-
water images. Firstly, the developed methodology for under-
water image restoration and enhancement is discussed. The
methodology is used to minimize the underwater effects
on image such as blur, color attenuation and low contrast.
Secondly, the corrosion estimation is presented on different
patterns of corroded surface of pipe that were acquired in an
underwater environment. The region of interest is clustered
into three distinct clusters (i.e. non-corroded, low-corroded
and high-corroded) based on color information using unsu-
pervised clustering technique. The degree of corrosion in
each corroded pattern is calculated in terms of percentage
of pixels count in each cluster with respect to region of
interest.

III. UNDERWATER IMAGE ACQUISITION, RESTORATION,
ENHANCEMENT AND CORROSION ESTIMATION
The proposed methodology presented in this study is given
in FIGURE 1. Initially the acquired hazy or blurred under-
water image is processed to segment the region of interest.
Then the blurring parameters are estimated on segmented
region and based on estimated blurring kernel, the image
is restored or deblurred. Afterwards, the color and contrast
are enhanced. Then, both enhanced versions are fused into
a restored and enhanced image. Finally, the restored and
enhanced region of interest is grouped into three different
clusters to estimate the corrosion in terms of percentage of
pixels in the corroded region.
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FIGURE 1. Proposed methodology for underwater image restoration,
enhancement and corrosion estimation.

FIGURE 2. Designed experiment setup for underwater image acquisition.

A. IMAGE ACQUISITION AND PRE-PROCESSING
1) IMAGE ACQUISITION SETUP
The experiment setup designed for image acquisition is
shown in FIGURE 2. Corroded pipes with different corro-
sion patterns were used in the image acquisition process.
These pipes were labeled, and each pipe was divided into
eight equal surfaces. An indicator was designed and printed
using 3D printing facility. This indicator helped to get the
exact surface position in the underwater environment while
rotating the pipe from one surface to the other. During
the setup calibration, the distance from the camera to the
pipe was kept constant at 15 inches. The image acquisi-
tion was performed using Novatek SJ5000 sports action
(14MP) camera by SJCAM with a waterproof casing. For
underwater image acquisition, the offshore laboratory facility
available within the university premises was used. The off-
shore laboratory consists of wave-tank with the dimensions

FIGURE 3. (a) UTP offshore lab facility and (b) experiment setup
calibration in an underwater environment.

FIGURE 4. A set of acquired underwater images of different corrosion
patterens arranged per degree of corrosion.

of 20×10×1 (Length×Width×Height) meters as shown in
FIGURE 3(a). The designed experiment setup was installed
and calibrated in the wave tank. An artificial light source
of 80 Lumens consists of 10 cool white LEDs was used to
illuminate the underwater scene. In FIGURE 3(b), the image
acquisition setup is shown during image data acquisition in
an underwater condition.

In the wave tank, the underwater imaging process was
simulated such that it could emulate the real underwater
inspection process. During image acquisition, 237 images of
corroded pipes with different patterns and degree of corrosion
were captured. The images were cropped to a dimension
of 1280×720 pixels. Some sample images from the acquired
dataset of corroded pipes with different degree of corrosion
are shown in FIGURE 4.

2) SEGMENTATION OF REGION OF INTEREST
The segmentation is a major step in the proposed methodol-
ogy that does not only help to segment the required object
from the image but also reduces the computational cost in
further image enhancement steps. Instead of processing the
whole image only the region of interest (ROI) is considered.
To segment the required ROI, an entropy-based segmenta-
tion is implemented. Entropy of the image gives information
about the textures contained in an image. Since in acquired
database the focus is on the pipes, therefore, by determining
the entropy of the images, the texture of the pipe from the
image can be obtained. The textural information helps to
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FIGURE 5. The segmentation of region of interest (a) original image with
corroded pipe (b) entropy based rescaled gray image (c) generated binary
mask from rescaled image (d) binary mask with smoothed edges
(e) segmented pipe with full dimensions (f) final segmented pipe by
removing false pixels.

develop a binary mask which is further used to extract the
pipe from the original RGB image.

The entropy H (p) is a statistical quantity of random-
ness of the pipe image which is used to predict the
texture at each pixel of the image as given by the
Eqn.(1).

H (p) = −
∑

x
p(x) log2 p(x) (1)

where p(x) is the distribution of intensity in different
color components of the image and logarithm is taken
on base 2. In a color image, different texture has differ-
ent distribution of color intensity. By using this technique,
the entropy value of each 9-by-9 neighborhood around the
corresponding pixel in the image is calculated. Then the
entropy values of all pixels are rescaled into grayscale
image. From textural information of the rescaled image,
a binary mask is generated to segment the ROI. An esti-
mated projection from binary mask is applied to refine the
edges.

Finally, this binary mask is used to segment the pipe in
the RGB image. The entropy of the original image as shown
in FIGURE 5(a) is calculated to get the textural information.
The textural information is then rescaled to a gray image as
shown in FIGURE 5(b). From the gray image, the binary
mask as illustrated in FIGURE 5(c) is generated with the
help of morphological operations. During segmentation, it is
observed that the outer edges of the binary mask are not
smooth that makes it difficult to segment the pipe properly.
Therefore, a projection is estimated by taking the average of
the true pixels vertically on both outer edges of the binary
mask in the image plane. Then the estimated projection is
applied to the binary mask to smooth its edges by removing
outlier pixels as given in FIGURE 5(d). Finally, the binary
mask is used to segment the corroded pipe from the original
image which is shown in FIGURE 5(e). In order to obtain
the only pixels that are the part of the region of interest,
the remaining false/black pixels are removed as shown in
FIGURE 5(f). By following the above steps, all captured
images are passed through the segmentation to get the region
of interest.

FIGURE 6. A set of segmented images with different degree of blur and
corrosion.

3) SIMULATED BLUR
The Gaussian blur is a common phenomenon for underwater
imaging due to dispersion of light [33] and hydrodynamic
disturbances even in clear or less turbid water. Due to the
limitation of depth and less turbid water in the experimental
lab, the acquired images have unnatural degradation effects.

Therefore, the environmental effects are simulated by
inducing the Gaussian blur artificially (using different values
of σsim) as shown in FIGURE 6. The detailed description
of inducing Gaussian blur in self-acquired underwater image
dataset is mentioned in [34]. The simulated blur helped to
keep the ground truth images same for different blurring lev-
els which is not possible in the images that are acquired even
in real blurry environment of the same underwater location.
The blurred images are divided into four groups based on
blurring level from Group 1 (low blur) to Group 4 (extreme
blur).

B. IMAGE RESTORATION AND ENHANCEMENT
The underwater images are mostly blurred due to turbid
medium. Mathematically, a blurred image can be approxi-
mately described by the Eqn.(2).

b(x, y) = (h ∗ o)(x, y)+ n(x, y) (2)

where b(x, y) is the blurred image, h(x, y) is the point spread
function (PSF) or distortion operator present in the original
image, o(x, y) and n(x, y) are additive noise that comes from
the medium during image capturing process. Based on this
model, the ultimate task of deblurring is to de-convolve the
blurred image with the PSF that exactly describes the distor-
tion. PSF is required to be estimated to perform deconvolution
process, therefore, the standard deviation σest of the deblur-
ring kernel is estimated first to calculate PSF. The estimation
of σest is performed with the help of an artificial neural
network (ANN). In the proposed method, the ANN fitting
tool with the sigmoid function is used to train the network.
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The input data consists of features of the image whereas
the values of standard deviation of the simulated blurring
kernel in the image is given as a target or output. For feature
vector, seven distinctive features of each image are selected
by analyzing their tendencies in the image dataset. These
features include contrast, correlation, energy, homogeneity,
range, entropy and standard deviation. Then a vector is devel-
oped by extracting these features from all simulated images.
Similarly, a target vector is created by gathering the value
of standard deviation of blurring kernel against each image.
Before training, both input and target vectors are normalized.
In order to estimate the σest , AAN training is performed using
70% of the fetched data while 30% of the data is used to
validate and test the module. After ensuring better perfor-
mance in training, validation, and testing, amodel is obtained.
Then features of each blurred image are extracted, normalized
and passed through the model. By de-normalizing the output,
an estimated σest for the deblurring kernel of the input image
is obtained. The process is repeated for all blurred images to
estimate σest and then to calculate deblurring kernel or PSF
for deconvolution process. Here deblurring kernel is denoted
by σest and is given in the Eqn. (3).

g(x, y) =
1

2πσ 2
est
e
−
x2+y2

2σ2est (3)

In order to complete the image restoration process,
the Wiener filter-based deconvolution is used. In Wiener
deconvolution, the blurred image b(x, y) which is given
in Eqn. (2), is convolved with estimated deblurring kernel
g(x, y) to obtain restored image ô(x, y) as given in the Eqn.(4).

ô(x, y) = g(x, y) ∗ b(x, y) (4)

The Wiener deconvolution filter provides g(x, y) in the
frequency domain as given by [35] the expression in Eqn.(5).

G(u, v) =
1

H (u, v)

[
[H (u, v)]2

[H (u, v)]2 + 1
SNR(u,v)

]
(5)

where G(u, v) and H (u, v) are, the Fourier transforms of
g(x, y) and h(x, y) respectively at locations (u, v) in frequency
domain, SNR(u, v) is the signal to noise ratio. The deconvolu-
tion operation is carried out either as shown in Eqn. (4) or in
frequency domain as given in Eqn. (6) [35].

Ô(u, v) = G(u, v)× B(u, v) (6)

Ô(u, v) and B(u, v) are the Fourier transforms of restored
image ô(x, y) and blurred image b(x, y) respectively and by
performing inverse Fourier transform on Ô(u, v), the restored
image ô(x, y) is obtained. In Wiener deconvolution, SNR is
calculated as a ratio of the variance of blurred image to the
variance of noise. In the simulated data, the blur is induced
through a low pass filter that already has suppressed the noise
to a negligible state, therefore variance of noise is considered
as low as to 0.0001. However, for real images the variance of
noise can be calculated on the noise component. In order to

FIGURE 7. An image with different blurring levels and its restored
versions with ANN based estimated values of σest for Wiener
deconvolution.

obtain the noise component, a low pass filter with neighbor-
hoods of size 3-by-3 is applied to the blurred image which
results in a filtered component, the subtraction of filtered
component from the blur image gives the noise component.
Then the estimated blurring kernel and SNR are used in
Weiner deconvolution process to restore original features of
the blurred images. All blurred images are passed through
the explained restoration process. FIGURE 7, shows a few
sample restored images with their estimated values of σest .

Upon restoration, the segmented image of the corroded
pipe is further passed through the color correction process.
For color correction, the image is converted from RGB (Red-
Green-Blue) to HSV (Hue-Saturation-Value) color space.
In HSV color space, the histogram of the Value component is
stretched over the entire range. This improves the brightness
of the available colors in the image. Then the Hue and Satu-
ration are concatenated with the corrected Value component,
and then the image is converted back to the RGB color space.
In RGB color space, once again the histogram is stretched
over the whole intensity range (0 to 255) to achieve the color
correction in all three channels. The histogram stretching is
based on the mathematical expression given by Ghani and
Isa [36] in the Eqn. (7).

Pout = (Pin − imin)
(
omax − omin

imax − imin

)
+ omin (7)

where Pout and Pin are the pixels of output and input images
respectively. imin, imax, omin and omax are minimum and
maximum values of intensities for input and output images
respectively.

The absorption of light reduces the contrast in underwater
images and makes the image features dull. This condition
reduces the possibility to recognize the required objects
by the vision system during underwater inspection task.
In order to enhance the contrast of the underwater images,
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Contrast LimitedAdaptiveHistogramEqualization (CLAHE)
is adopted [37]. The CLAHE is a variant of Adaptive His-
togram Equalization (AHE) [38], [39]. In AHE the noise
over-amplification tendency is higher during the contrast
enhancement. Therefore, to reduce this problem, a contrast
limit is defined in CLAHE to clip the unnecessary region
from the histogram [40]. The clipping limit is defined by
the normalization of the histogram and thereby the size of
the neighborhood region in the pixel domain. The clipping
region is not discarded but redistributed equally among all
histogram bins. The redistribution will push some of the bins
over the defined clip limit again, this effect can be reduced by
repeating the procedure recursively until the excessive area is
negligible. In the proposed method, the CLAHE is applied
to all three-color channels in RGB color space separately to
enhance the contrast of all available tints in the image.

After enhancing both color and contrast, wavelet based
fusion algorithm [41] is used to fuse both color corrected and
contrast enhanced images into a single restored and enhanced
image. There are various variants of wavelet that are avail-
able for multispectral image analysis. However, Daubechies
wavelet (db2) is selected among different wavelet types due
to its better performance reported byMedina-Daza et al. [42]
and Park et al. [43] for image fusion. Both enhanced images:
the color corrected, and the contrast enhanced versions are
decomposed into detail and approximate wavelet coeffi-
cients (approximate, vertical detail, horizontal detail, and the
diagonal detail) using two-level-2D decomposition method.
After decomposition of both color corrected and contrast
enhanced images, the coefficients are fused together. In the
wavelet decomposition, the maximum values of the coef-
ficients contain the higher frequencies or striking features
of the image. To fuse the coefficients from both images,
the approximate and detail coefficients with maximum val-
ues are considered for fusion. After combining coefficients
of both enhanced images into fused coefficients, inverse
composition is applied to get the synthesized image. For
inverse composition, the reverse process is carried out to get a
restored and enhanced image. Since, digital image processing
deals with discrete data sets; therefore, each input image is
decomposed into its coefficients and inversely composed into
a synthesized image using discrete wavelet transform (DWT)
and inverse discrete wavelet transform (IDWT) respectively.
In FIGURE 8, a complete picture of discrete wavelet-based
decomposition, fusion and inverse composition of enhanced
images is shown.

C. CORROSION ESTIMATION
Upon image restoration and enhancement operations,
the images are processed further to detect and estimate the
corrosion on the surface of the pipes. Before corrosion detec-
tion, it is important to describe the distinct levels of corrosion.
From the study of underwater oxidation process [44], it is
found that normally onmetallic objects, the corrosion process
does not start uniformly all over the metal surface at the
same time. An affected metallic surface can be classified

FIGURE 8. Wavelet based-decomposition, fusion and inverse composition
of color corrected and contrast enhanced images.

into two major regions: corrosive and non-corrosive. The
corrosive region can further be classified into moderate and
highly corroded areas. These moderately and highly corroded
regions are useful to describe the degree of the corrosion
within the region of the interest. This information can be
further used to categorize highly affected or damage points
on the surface of the pipeline.

In image-based corrosion inspection, color of the corrosion
is an important feature to detect the corroded areas and eval-
uate the degree of corrosion. Therefore, k-means clustering
is used to group the pixels of the corroded pipe into three
different clusters based on colors. In this study, the original
pipelines were white (or white painted), therefore, the white
color represents the non-corrosive region while light brown
and dark-brown colors are classified as moderate and high
corroded areas.

The k-means or Lloyd’s algorithm [45] is an iterative pro-
cess to partition some observations in a dataset into clusters
in which each observation belongs to the cluster with the
nearest mean. Therefore, k-means algorithm is useful tomake
the cluster of the corrosion in underwater images of the
pipeline. In the proposed method, k-means is used to make
the color-based clusters of the corroded pipe. This technique
is useful to differentiate the corrosive and non-corrosive areas
as well as to assign the levels of the corrosion in the same
image. Initially, the restored and enhanced image is converted
from RGB to CIELab color space. In CIELab color space
all perceivable colors are described in three dimensions L
for lightness, a and b for color opponents. The values of
L from 0 to 100 represent the darkest black to brightest
white respectively. The red and green opponent colors are
represented along a, with green at negative a values and red
at positive a values. The yellow and blue opponent colors are
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FIGURE 9. k-means based cluster of region of interest of (a) restored and
enhanced image into (b) non-corroded, (c) moderately corroded and
(d) highly corroded clusters.

represented along the b, with blue at negative b values and
yellow at positive b values. Since colors information exists
in a and b oponents therefore the difference between two
colors can be measured using distance metric in a and b opo-
nents. In proposed method, Euclidean distance is calculated
to distinguish three different clusters based on white, light
brown and dark-brown colors. Based on Euclidean distance,
the pixels are separated into three clusters then each pixel is
labeled according to its cluster. The pixels of each cluster are
separated from original image.

The k-means clustering technique separates the pixel infor-
mation of each restored and enhanced image into three clus-
ters based on white, light brown and dark-brown colors as
shown in FIGURE 9. The light brown and dark-brown clus-
ters represent the corroded section while white cluster is
considered as non-corroded area in the region of the inter-
est. The number of the pixels are calculated in all three
clusters. The pixel counts in each cluster is converted into
percentage by using the total pixels contained by the region
of interest. The percentage of pixels in each corroded cluster
points out the moderately and highly corroded regions on the
surface of the pipeline during inspection. Similar information
of the non-corroded cluster differentiates between affected
and healthy regions of pipeline. From moderately and highly
corroded clusters, the degree of corrosion can also be approx-
imated within the specific region of interest.

IV. RESULTS AND DISCUSSIONS
The acquired underwater images are processed through each
step as described in the proposed methodology. Apart from
processing self-collected data the proposed method is also
validated on publicly available underwater images that are
severely degraded by blur, color attenuation and low contrast
issues. In order to evaluate the performance, the statisti-
cal quantities of quality evaluation metrics are calculated.
For color enhancement evaluation, a color difference metric
experiment is also conducted. In the following subsections,
the performance of the proposed method along with quality
evaluationmetrics and color difference evaluation experiment
is described in detail.

A. IMAGE QUALITY EVALUATION METRIC
The performance of the proposed method is evaluated
using image quality evaluation metrics. The image quality

evaluationmetric is an importantmeasure to test the quality of
a processed imagewith respect to original image. In this study
two quality evaluation metrics namely Full Referenced and
Visible Edges Based metrics are used. The quantities of each
quality metric with mathematical description and acceptable
range or value are given in the following subsections.

1) FULL REFERENCED QUALITY EVALUATION METRICS
The full referenced quality evaluation metric uses the original
image as a reference to assess the quality of the processed
image. In this study, the metric consists of four quantities
namely as Mean Squared Error (MSE), Peak Signal to Noise
Ratio (PSNR), Structural Similarity Index Measure (SSIM)
and a Measure of Entropy (MoE). The metric is useful to
observe the loss of information during image processing
operations. If a reference image r (x, y) is compared with a
processed image p (x, y) provided that both images have a
same size

[
nx , ny

]
then MSE and PSNR can be formulated as

given in Eqn. (8) and Eqn. (9) [46]. The metrics (MSE and
PSNR) are calculated in each component of the color image
and then mean values of three components (Red Green Blue)
are considered for evaluation. The lower MSE and higher
PSNR represent improved quality of the processed image.

MSE =
1

nxny

nx−1∑
0

ny−1∑
0

[r(x, y)− p(x, y)]2 (8)

PSNR = 10 log10

[
max(r(x, y))2

MSE

]
(9)

Similarly, SSIM assess the visual impact of an image using
comparison of three characteristics: luminance [l(r, p)], con-
trast [c(r, p)] and structure [s(r, p)]. The overall index can
be measured by calculating the multiplicative combination of
three terms [47].

SSIM1(r, p) = [l(r, p)]α[c(r, p)]β [s(r, p)]γ (10)

where α, β and γ are parameters used to correct the relative
importance of the luminance, contrast and structure respec-
tively and their values are defined as 1. The r and p are
the reference and processed images respectively. A detailed
mathematical derivation of all three characteristics of SSIM
(i.e. luminance, contrast and structure) is formulated in [47]
and [48]. The mean SSIM is calculated on a color image with
respect to reference image at each pixel as defined in [47] and
given by the following expression.

SSIM [r, p] =
1
M

M∑
j=1

SSIM1(rj, pj) (11)

where rj and pj are the image contents of reference and pro-
cessed images respectively at jth local window whileM is the
total number of local windows present in the image. Likewise,
MoE helps to compare the reference imagewith the processed
image by measuring the features enhancement in terms of
textural information. MoE of an image is already defined in
Eqn. (1) [46]. For an adequate image quality, the acceptable
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range of SSIM is considered to be 0.7 to 1 whereas the higher
values of MoE depict better image quality.

2) VISIBLE EDGES BASED QUALITY EVALUATION METRIC
The visible edges-based quality evaluation deals with the
comparison of images obtained by different tone mapping
operators. In this study, the quality of the publicly available
dataset is evaluated using the visible edges based metric
proposed in [49] and used in [26] and [50]. This qualitymetric
finds that whether the algorithm has recovered the edges that
were lost due to the blurring effects. It works by measuring
three coefficients that indicate the new visible edges in the
restored or deblurred image. The first of these coefficients,
e computes the rate of new visible edges in restored image
by developing a map on the restored image and then counting
the number of edges on the original image no and restored
image nr . Mathematically, it is given by [49] as:

e =
nr − no
no

(12)

The second coefficient r computes the ratio of the gradient
ri in the restored image for each pixel i that belongs to the
visible edges nr . By taking geometrical mean the following
expression is obtained as described by [49].

r = exp

[
1
nr

∑
i

log(ri)

]
(13)

The final coefficient σ determines the number of pixels ns
that are saturated to black or white by the algorithm. The
normalized dimensions (dimx , dimy) of the image are used
in the following calculation as given in [49].

σ =
ns

dimx × dimy
(14)

For e and r coefficients, the higher measured value depicts
the better quality of the processed or restored image which
undergoes the evaluation process; whereas σ should be close
to zero for better restoration with white background having
no saturation [26], [49].

3) HUMAN VISUAL PERCEPTION BASED IMAGE QUALITY
EVALUATION METRICS
In order to evaluate the enhanced images in terms of
color, contrast and blurring, the human visual perception-
based image quality evaluation is also performed. Two
recently developed metrics, patch-based contrast quality
index (PCQI) [51] and underwater color image quality eval-
uation (UCIQE) [52] are used. The PCQI is general matric
for contrast assessment that provides the accurate predic-
tions on human perception of contrast variations with the
local contrast quality map. Its ability to perform the con-
trast quantification with patch-based approach differentiate
it from other global contrast evaluation techniques. In PCQI,
each image patch is decomposed into mean intensity, signal
strength and signal structure components then their percep-
tual distortion is measured. At the end, the local score for each

FIGURE 10. Artificial neural network-based estimation of σest for all four
groups of different blurring levels.

patch is averaged to obtain on overall score for entire image.
The UCIQE is specifically developed for underwater image
quality evaluation by quantifying the colorfulness, sharpness
and contrast. The machine learning technique is adopted to
calculate the coefficients for blurring, color cast and marine
snow on a trained model. The weighted average of standard
deviation of chroma, contrast of luminance and average of
saturation component of CIELAB space with the calculated
coefficients provides a score for each image to assess its color,
contrast and blurring.

B. IMAGE RESTORATION AND ENHANCEMENT
By training a neural network with different distributions of
blurred images, it is then used to estimate σest values for these
distributions. In the artificial neural network (ANN) training,
the Matlab
 NN fitting tool is used to train the data for the
estimation of the Gaussian deblurring kernel. For the input
of the training algorithm, seven different features from each
blurred image are extracted. These features include contrast,
correlation, energy, homogeneity, range, entropy and stan-
dard deviation. In order to estimate the blurring parameter
(σest ) for further calculation of Gaussian point spread func-
tion (PSF), the features of 948 images of four groups with
different blurring levels are used. Out of these 948 images,
70% are used to train the neural network, 15% for validation
and 15% for testing. Each blurring level consists of a set
of 237 images. The simulated values of σsim in each group
of images are used as a target vector for the ANN algorithm.
In order to obtain the best performance regarding the error,
ten hidden layers are used in the ANN training and both input
and target values are normalized on a scale of 0 to 1.

After training, validation and testing; a Matlab function is
generated and then selected features of each blurred image
are passed through this function to obtain the σest . The results
of ANN-based estimation of σest in each group of blurred
images are shown in FIGURE 10. The σest is approximately
estimated for all the images, and its values fluctuat around
the desired values with standard deviations of 0.62, 1.37,
1.86 and 1.95 respectively. The mean errors in the estimation
for all four groups of different blurred images are obtained
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FIGURE 11. Restored images from a different degree of blurring effects with color corrected, contrast enhanced and final enhanced
images.

as 3.35% for Group 1, 2.6% for Group 2, 3.95% for Group
3 and 0.79% for Group 4. The PSF or deblurring kernel
for each image is determine based on estimated values of
σest to restore the blurred image. The restored images with
their color corrected, contrast adjusted and enhanced or fused
images of self-collected dataset are shown in FIGURE 11.
The image enhancement provided better colors and intensities
that highlighted the degree of corrosion in each pattern more
prominently. Especially, the regions of interest, such as the
white (non-corroded), light brown (moderately corroded) and
dark-brown (highly corroded) areas are enhanced quite well.
These enhanced areas made the corrosion estimation process
more accurate and easy. It helps in the evaluation of the
method for corrosion estimation in the blurry environment.
From visual inspection of the enhanced images, it is observed
that color and contrast enhancement have been done even
in extremely blurred images. It further motivated to test the
proposed method on natural underwater images with real
blurring, color distortion, and low contrast issues.

Upon executing all restoration and enhancement opera-
tions on self-acquired images, the image quality evaluation

TABLE 1. The mean statistical quantities of referenced quality evaluation
metric on self-collected underwater images in all four blurring groups.

is performed using full referenced metric. The quality of
the final restored and enhanced images in all four groups
is evaluated using input or original images as references
and results are shown in Table 1. The overall trend of the
MSE values in all four groups shows that the blurring effects
in the underwater imaging are directly proportional to the
MSE as the error increased with higher blurring level. The
PSNR is noticed between 25dB and 27dB which reflects that
algorithm maintained the quality of the images in all four
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FIGURE 12. The results comparison of proposed method on natural hazy and blurred underwater images with Galdran et al. [26].

groups. The SSIM is decreased with blurring effects up to
0.37 and approximately 30 to 50% of an image is maintained
in term of luminance, contrast, and structure as compare with
the original image. The overall trend of MoE shows that
the measured quantity is improved in numbers as compared
to input images. This improvement is significant for feature
enhancement of the images. The higher values of MoE in all
four groups also depict that even with higher blurring effects,
the proposed method improved the features of the image.

After obtaining the results on self-collected dataset, the
proposed method is validated by comparing the results with
existing technique on real underwater images. Due to the
limitation of the availability of real underwater image dataset,
the validation is performed on few real underwater images
as shown in FIGURE 12 that have been used in [26]. These
images are severely degraded by underwater effects and have
natural blur, low contrast and attenuated colors around the
scene that posed a challenge for proposed method to improve
them.

The results are compared, both visually and quantitatively
with the existing technique proposed by Galdran et al. [26].
For comparative analysis, the results of theGaldran et al. [26]

in term of processed images are downloaded from their avail-
able online resource [53]. For a visual comparison, the results
on hazy underwater images by Galdran et al. [26] and by
the proposed method are given in FIGURE 12. From the
visual analysis, the proposed method outperforms as com-
pared to Galdran et al. [26], however, the dominated color
(green) in some of the images such as Image 6, 8 and 10
(see FIGURE 12) are not recovered fully by the proposed
method.

For quantitative comparison, the full referenced quality
evaluation metric is calculated. The statistical quantities of
the metric for both methods are given in Table 2. The overall
low MSE and higher PSNR are noticed by the proposed
method. The SSIM shows improved numbers in the proposed
method which means that the proposed technique can main-
tain the structure of the image during image restoration pro-
cess. Similarly, the MoE is also increased, and higher values
are achieved in our case which displays that our method has
improved the features of the image.

For a quantitative analysis on real underwater hazy images,
apart from full referenced metric, the visible edge based
evaluation metric (which is used by Galdran et al. [26]) is
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TABLE 2. The statistical quantities of referenced quality evaluation metric on publicly available hazy underwater images.

TABLE 3. The coefficients of visible edges based quality evaluation metric on publicly available hazy underwater images.

TABLE 4. Underwater dehazing evaluation on images in [55] based on pcqi [51] and uciqe [52] metrics.

also calculated. Three coefficients of the metric are computed
for both methods. These coefficients are calculated by using
the Matlab source code available at online resource [54] of
Hautière et al. [50] and are tabulated in Table 3. The coef-
ficient σ that determines the number of saturated pixels to
black and white is almost zero for both cases while other two
coefficients e and r show that the higher values are obtained
for the proposed method. From both visual and quantitative
analyses, it can be concluded that the performance of the

proposed method is better than the existing method proposed
by Galdran et al. [26].

For a broader spectrum of performance comparison,
we also conducted an assessment using human visual per-
ception based image quality evaluation metrics PCQI [51]
and UCIQE [52]. We applied the proposed approach on
the same set of images as presented in [55] for com-
parison and acquired PCQI and UCQIE metric values.
Table 4 presents PCQI and UCIQE metric values for
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FIGURE 13. (a) The restored and enhanced image of different blurring
levels with its (b) non-corroded, (c) moderately corroded and (d) highly
corroded clusters.

a number of recent approaches for underwater image
enhancement [26], [31], [55]–[59] as well as our proposed
approach. It is noted that the proposed method resulted in
compatible values. In particular, in terms of PCQI the pro-
posed method outperformed all the methods with highest
average value.

C. CORROSION ESTIMATION
For corrosion estimation, the region of interest is catego-
rized into three clusters. The first cluster consists of the
non-corroded region which is represented by white pixels;
the second cluster is named as moderately corroded which
comprises of light brown pixels while the third cluster con-
sists of dark-brown pixels that are highly corroded part on the
surface of the pipe. In order to distinguish between these three
different regions, we have adopted unsupervised k-means
based clustering approach to group them into three clusters.

The color components of CIELab color space are used to
segment each cluster based on the above mentioned three
colors. In FIGURE13, the results of k-means based clustering
of corroded pipe are presented. From the visual analysis, it is
observed that color-based clustering is successful but preci-
sion has slightly declined in the images that are restored and
enhanced from higher blurring effects. However, the region
of interest is accurately portioned into three desired clusters
in all four cases.

After extracting three clusters of all the images, the number
of pixels in each cluster are estimated. The sum of pixel
counts in two clusters; moderately corroded and highly cor-
roded gave the corrosion estimation. This estimation per-
formed on input or original images as well as on all restored

FIGURE 14. The mean percentage of pixels in three clusters of original
and all four groups of images.

FIGURE 15. The accuracy (%) of pixel counts in each cluster with respect
to original image.

and enhanced images of four blurring groups. Due to different
pattern of corrosion, each image depicts different percentage
of pixels in three clusters. The percentage in each cluster is
calculated based on the number of pixels in that cluster with
respect to total pixels in the region of interest or the size
of the region of interest which is about 480 × 720 pixels.
The results of non-corroded, moderately corroded and highly
corroded regions in terms of mean percentage of all four
groups as well as of original images are shown in FIGURE14.
The results of the mean percentage of non-corroded clusters
for all groups including the original images are calculated
up to 30.13%. In moderately corroded clusters of original
images, the mean percentage of pixels in the region is cal-
culated about 14% while in other four processed groups
of images it is found to be between 21 to 23%. Similarly,
in the highly-corroded clusters, the original images show
about 58% affected region while enhanced images display the
mean affected area between 49% and 51%. As in corrosion
estimation, only moderately and highly corroded clusters are
considered. The accuracy of underwater corossion estima-
tion was caculated using the ground truth images taken in
lab environment out of the water. The mean error in these
two clusters is calculated about 6% to 9%. The accuracy
of corrosion estimation in each cluster of four groups with
respect to ground truth images is calculated more than 90% as
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TABLE 5. Standard 24 colors patches of ground truth, underwater image and enhanced image with color distance metric.

shown in FIGURE 15. The less error with higher accuracy
in cluster-based corrosion estimation proves the overall per-
formance of the proposed method in four groups of images
having different blurring effects.

D. COLOR DIFFERENCE EVALUATION EXPERIMENT
In this study, the color is an important feature to estimate
the corrosion of the pipeline, so it is essential to evaluate the
proposed method for color enhancement. Therefore, besides

conventional image quality evaluation metrics as described
in section A.1, an experiment was conducted to calculate
color distance metric. A color checker (as shown in FIGURE
16(a)) was developed with 24 standard color patches using
Color Checker Passport by X-Rite [34]. Two images of the
developed color checker were taken (one in underwater and
other out of water as a ground truth) under normal illumina-
tion conditions as shown in FIGURE 16 (a) & (b). In both
cases, the distance from the color checker to the camera
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FIGURE 16. Color checker with 24 standard colors. (a) Ground truth image (b) underwater hazy image (c) restored and enhanced
underwater image.

was kept similar at about 1.5 meters. Then the underwater
image was processed through proposed image restoration and
enhancement algorithm to improve the image (see FIGURE
16 (c)). Then all 24 color patches are cropped from each of
the image (i.e. ground truth, underwater and enhanced image)
as given in Table 4. All the patches from each image are
converted from RGB to CIELab color space to calculate the
difference metric 1E by using L, a and b values of ground
truth, underwater image and enhanced image as given in
Eqn. (15).

1E(GT , I ) =
√
(LGT−LI )2+(aGT − aI )2 + (bGT − bI )2

(15)

where GT and I are the ground truth and input image, respec-
tively. In our case, the underwater and enhanced images are
considered as input images.

The quantitative analysis of the color patches shows better
performance of the proposed method in terms of low values
of for enhanced image as compared hazy underwater image.
From the visual analysis, it is also observed that the colors
patches are severely degraded in hazy underwater image
however the proposed method has improved each color patch
in enhanced image as shown in Table 4. The performance of
proposed method in this experiment authenticated the color-
based corrosion estimation.

V. CONCLUDING REMARKS
This paper presented a new image-based methodology for
subsea pipeline corrosion estimation. The image restoration
and enhancement prior to corrosion estimation was tested
on self-collected as well as on publicly available degraded
underwater image datasets, both have shown promising
results. A high accuracy of more than 90% is achieved for
corrosion estimation in all three defined clusters for differ-
ent underwater blurring conditions. As the corrosion esti-
mation is based on color information of the corroded pipe;
therefore, besides conventional image quality evaluation met-
rics, a color distance experiment was conducted. The color
distance metric (1E) depicts improved performance of the
proposed method in terms of low values as compared to

hazy underwater image. At present, the presented method can
estimate only the corroded surface area of the pipe; however,
in future the method will be improved to estimate the depth
of the effected region as well. Present improved results sug-
gested to integrate the proposed method into an underwater
robotic system for real-time inspection and monitoring of
actual subsea pipeline corrosion inspection activities.
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