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ABSTRACT The #SAT problem, which is also called model counting, is one of the most important problems
in artificial intelligence and is challenging to the researchers. The model counting based on extension
rule (CER) algorithm is an exact algorithm for model counting. The weak point of the algorithm is the
high computational complexity which adds to the running time. We introduce parallel CER, an algorithm
that parallelizes the model counting algorithm CER. The CER algorithm is based on the extension rule.
We propose a notion of MC-Tree for describing the computing procedure. We implemented the algorithm
on a quad-core machine using OpenMP to measure the performance. Our experimental results on simulated
data show that: 1) with the increase of the number of processors, the running time of our parallel algorithm
reduces in inverse proportion, and furthermore, the algorithm is more efficient in case of using each number
of processors when the complementary factor is higher and 2) the scalability of the algorithm is linear for
all instances, and the efficiency is evident.

INDEX TERMS Extension rule, model counting, model-counting tree, multi-core, OpenMP, parallelization.

I. INTRODUCTION
In recent years, there has been a comprehensive study and a
significant step forward in the field of Propositional Satisfia-
bility (SAT) [1]–[5]. SAT is to find if there is an interpretation
which makes the propositional formula true. The problem is
of great significance and widely used in the field of artificial
intelligence. Many real-world problems such as formal veri-
fication [6], synthesis [7], classic planning problem [8], and
model-based diagnosis problem [9] can be compiled into SAT
instances and solved effectively by SAT solvers [10]. In fact,
SAT is a Non-deterministic Polynomial (NP) complete prob-
lem [11]. It is the first proved NP-complete problem, which
has important theoretical and practical significance. And
almost all NP-complete problems from a variety of domains
can be transformed into SAT problems and many of these
problem instances can be effectively solved via satisfiability.

However, sometimes it is not enough to just know if a
propositional formula is satisfiable. To solve many important
problems such as conformant probabilistic planning [12] and
performing inference in Bayesian networks [13], we need
to know the number of the true interpretations of corre-
sponding propositional formulas. The complexity of these
problems is higher than NP-complete problems, that is, it is
#P-complete [14], [15]. #SAT problem is to get the number

of the true interpretations of a propositional formula. The true
interpretations are called themodels of propositional formula.
Therefore, #SAT problem is also called model counting. It is
an important extension of SAT.

Currently, #SAT problem has drawn more and more atten-
tion from researchers. #SAT is a well-studied problem that
is of fundamental theoretical importance. In addition, many
algorithms for #SAT problem have been proposed. The
algorithms of #SAT are divided into approximate algori-
thms [16]–[19] and exact algorithms [20]–[23]. Usually,
approximate algorithms are based on different techniques
such as SampleSat, that is, an algorithm that samples from
the solution space of a propositional logic formula near-
uniformly [24], the additional constraints of the input for-
mula [18]. The advantages of these algorithms are that
the running time is faster and the size of problems that
can be solved by approximate algorithms is larger than by
the exact algorithms. The disadvantage is that the num-
ber of models that have been solved is not precise. Most
exact algorithms for #SAT are based on the study of
Davis and Putnam [25]. Based on the Davis-Putnam pro-
cedure, Birnbaum and Lozinskii [20] presented the CDP
(Counting by Davis-Putnam) algorithm that counts the
number of models of propositional formulas. In CDP,
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a propositional formula is split into two subformulas by
choosing a variable x, one in which x is true, and the other is
false. The model sets of the two subformulas are disjointed.
Let M (8) stands for the number of models of the origi-
nal propositional formula 8, and M (81), M (82) separately
stands for the number of models of the two subformulas,81,
82. In addition, n, n1, and n2 denote the number of variables
that occur in 8, 81, and 82. Then: M (8) = M (81) ∗
2n−n1 + M (82) ∗ 2n−n2 . Bayardo and Pehoushek [21] pre-
sented a further extension, based on recursively identifying
disconnected constraint-graph components, that substantially
improves counting performance. The nodes of the connected
graph represent the variables that are contained in the clause
set. If there is a boundary between nodes, the two variables
represented by these two nodes are contained in the same
clause. By this approach, all variables of the clause set can be
divided into a plurality of disconnected components. Thus the
propositional formula can be decomposed into multiple sub-
formulas to be solved separately. Sang et al. [22] presented
an effective procedure for #SAT on combining component
caching and clause learning. In this procedure, the conflicts
and clauses that appear are recorded to avoid repeated com-
putation.

Resolution principle is not the only rule of inference
at the basis of most procedures for both SAT and #SAT.
Yin et al. [23] presented a new algorithm CER for #SAT
based on the extension rule. It is a rule that is different
from the resolution principle. The idea is to deduce the set
of all the maximum terms for counting models and to use
the inclusion-exclusion principle to circumvent the problem
of space complexity. Algorithm CER is an exact algorithm
which outputs the precise number of models of the input
formula. In addition, this method is more efficient than
resolution-based methods in cases where the complementary
factor of a clause set is higher. Furthermore, when the comple-
mentary factor is lower, resolution-based methods are more
efficient.

In this paper, we analyze the algorithm CER for #SAT, and
present the notion of Model-Counting-Tree. Based on this,
we propose a strategy to parallelize the algorithm. Subse-
quently, we implement the parallel algorithm on a multi-core
system using OpenMP. The maximum number of processors
used in the implementation is four. Experimental results show
that the efficiency for counting models in a parallelized man-
ner improves considerably.

II. RELATED WORK
First of all, the definitions of SAT and #SAT are clarified as
follows:
Definition 1: Given a propositional formula δ, the SAT

problem is to find if there is an interpretation whichmakes the
propositional formula true. If there is such an interpretation,
it is said that the formula δ
Definition 2: Given a propositional formula δ, the #SAT

problem is to get the number of the true interpretations of the
propositional formula δ.

In general, a propositional formula is solved in the con-
junctive normal form (CNF). We can suppose that the CNF
of a propositional formula is simply a conjunction of clauses,
where each clause is a disjunction of literals, and each
literal is either a positive variable or a negative variable.
Therefore, a propositional formula can be considered to be
a clause set, and the clauses can be seen as a collection of
variables.

We use 8 to denote a set of clauses in CNF, C to denote a
single clause, X to denote the set of all variables that appear
in 8, m to denote the number of all variables in X , and n to
denote the number of clauses in 8.

The extension rule is the inverse of the resolution. Because
it is the basic rule in CER, it must be realized first before
understanding the algorithm CER. The definitions of the
extension rule are clarified as follows:
Definition 3 [26]: Given a clause C and a set X , D = {C ∨

a,C ∨ ¬a} where "a" is a variable that do not appear in C
and a ∈ X . We call the operation proceeding from C to D
the extension rule on C . We call D the result of using the
extension rule on C .
Example 1:Given the clause a∨b and the set X = {a, b, c}

of variables, the result of the extension rule on a ∨ b is
{a ∨ b ∨ c, a ∨ b ∨ ¬c}.
Theorem 1 [26]: A clause C is logically equivalent to the

result of the extension rule D.
Therefore, by using the extension rule on the clauses in a

clause set, a new clause set can be derived that is equivalent
to the original clause set.
Definition 4 [26]: A clause is a maximum term on a

set X if and only if it contains all variables in X in either
positive or negative form.
Example 2: Given a set X = {a, b, c}, then the clause

a ∨ b ∨ c a maximum term on X , and a∨ b is not. Therefore,
given a clause set 8, we can get a new equivalent clause set
8′ where the clauses are all maximum terms.
Theorem 2 [26]: Given a set of clauses 8 with its set of

variables X (|X | = m), if all the clauses in 8 are maximum
terms on X , then 8 is unsatisfiable if and only if it contains
2m clauses.
The above theorem is used to tell whether a set of maxi-

mum terms is satisfiable, or whether the number of models
of the set is zero.

The following theorems are used to count the numbers of
models of a given set of maximum terms.
Theorem 3 [23]: Given a set of clause 8 with its set of

variables X (|X | = m), if all the clauses in 8 are maximum
terms on X , and 8 contains S distinct clauses, then the
number of models of 8 is 2m − S. (S 6 2m)
Based on Theorem 3, the process of model counting is

transformed into the process of computing the number of
elements of the equivalent clause set in which all clauses in
it are maximum terms generated by using the extension rule.
This is the basic idea of CER.
Theorem 4 [23]: There are no intersections between the

sets of the maximum terms that extended from two clauses by
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using the rule, if and only if there is a complementary literal(s)
between the two clauses.

Given a set of clauses 8 = {C1,C2, · · · ,Cn}, let X be the
set of variables that appear in 8 (|X | = m). Let Pi be the set
of all the maximum terms we can get from Ci by using the
extension rule, and let S be the number of distinct maximum
terms that we can get from 8. Then, according to extension
rule, distinctly, S = |P1 ∪ P2 ∪ · · · ∪ Pn|.
However, it is obvious that using the Extension Rule

directly (generating all the maximum terms) is infeasible for
the consideration of space complexity, although we know
that it is sufficient to count the number of all maximum
terms rather than to list them. Therefore, this problem can
be circumvented by using the inclusion-extension principle.
Theorem 5 (Inclusion-Exclusion Principle): For finite sets

A1, · · ·An, counting elements of the union set becomes more
convenient by using the equation as follows:∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ =
n∑
i=1

|Ai| −
∑

1≤i<j≤n

∣∣Ai ∩ Aj∣∣
+

∑
1≤i<j<l≤n

∣∣Ai ∩ Aj ∩ Al ∣∣
− · · · + (−1)n+1 |A1 ∩ A2 ∩ · · · ∩ An| . (1)

Based on famous inclusion-extension principle, we obtain
the formula:

S =
n∑
i=1

|Pi| −
∑

1≤i<j≤n

∣∣Pi ∩ Pj∣∣
+

∑
1≤i<j<l≤n

∣∣Pi ∩ Pj ∩ Pl ∣∣
− · · · + (−1)n+1 |P1 ∩ P2 ∩ · · · ∩ Pn| (2)

where |Pi| = 2m−|Ci|, and the value of
∣∣Pi ∩ Pj∣∣ is as

follow.

∣∣Pi ∩ Pj∣∣ =

0, there are complementary literals

in Ci ∪ Cj
2m−|Ci∪Cj|, otherwise

Using formula (2), we can easily get the number of models
of clause sets.
Example 3:Given a clause set8 = {¬a∨b∨¬c, a∨c,¬a},

we can count models of8. Based on formula (2), the number
of maximum terms that 8 could extend via extension rule is
known, that is, S = 20 + 21 + 22 − 0 − 20 − 0 + 0 = 6,
therefore the result is 23 − 6 = 2.
Clearly, the worst-case time complexity of Algorithm CER

is exponential. However, there are situations where Algo-
rithm CER is tractable. For example, if there are complemen-
tary literal(s) in each pair of clauses in a set, the complexity
of Algorithm CER will be linear in the number of clauses.
Because only the first n terms in formula (2) are nonzero
terms and need to be computed. Intuitively, for the clause
sets in which there are complementary literal(s) for more

pairs of clauses, Algorithm CER is more efficient, because
there are less nonzero terms that have to be computed using
formula (2). We can use the complementary factor to estimate
the nonzero terms that are really counted in formula (2).
A complementary factor is defined as follow.
Definition 5 [26]: Given a set of clauses 8 =

{C1,C2, · · · ,Cn}, the complementary factor of the set is
the ratio of the number of pairs that contain complementary
literal(s) to the number of all the pairs in the set. That is,
W/(n ∗ (n− 1)/2), where W stands for the number of pairs
that contain complementary literal(s).

Although it is sometimes difficult to calculate the time
complexity precisely by using the complementary factor, nev-
ertheless, the higher the complementary factor of clause set
is, the more efficient Algorithm CER is.

We note that Algorithm CER counts models by using
extension rule that is the inverse of the resolution and employs
the inclusion-exclusion principle to circumvent the prob-
lem of space complexity. To parallelize the algorithm CER,
we can divide the terms in formula (2) into a number of
groups. And every group can be allocated to each proces-
sor dynamically. In the following section, we propose an
algorithm structure on which the parallelization is primarily
based.

III. METHOD OF PARALLELIZATION
In this section, a parallelized strategy for #SAT is given based
on the extension rule. To describe the process clearly, we also
present a notion of Model-Counting-Tree of clause set.

A. MODEL-COUNTING-TREE
Definition 6: Let Q be the intersection of finite sets

A1,A2, · · · ,An. Then the set that consists of these sets is
called ancestry set of Q, denoted as AS(Q) = {A1,A2, · · · ,
An}. In particular, if there is only one set A, then Q = A, and
we denote the ancestry set as AS(A).
Example 4: Given an intersection of maximum term sets

Q = P1 ∩P2 ∩P3, Pi is the set of all the maximum terms we
can get from Ci in a clause set {C1,C2, · · · ,Cn}. Then the
ancestry set of Q is AS(Q) = {P1,P2,P3}.
Definition 7: Given a clause set 8, X (|X | = m) is the set

of variables that appear in8. Pi is the set of all the maximum
terms generated from clause Ci in 8. Let P be the set of all
the maximum terms on X , clearly |P| = 2m,P ∩ Pi = Pi,
(i = 1, 2, · · · , n). T is a Model-Counting(MC)-Tree for 8,
iff:

1) The root of T is labeled by the |P|.
2) The children of a node labeled |Q| in T are{
|Q ∩ Pi|

∣∣∣Pi /∈ AS(Q)}.
Fig.1 illustrates a MC-Tree of the clause set 8 = {C1,C2,

C3,C4}. Generating a node’s children based on its AS ensures
that every node is uniquely explored within the tree.

The Model-Counting(MC)-Tree is a instrumentality for
representing and enumerating calculation items for model
counting in a best-first fashion. The complete MC-Tree

41044 VOLUME 6, 2018



N. Tian et al.: Parallel Extension Rule-Based Algorithm for #SAT Problem

FIGURE 1. The MC-Tree of the clause set:
{
C1, C2, C3, C4

}
.

enumerates calculation items that are indispensable for model
counting using a particular order on them. We can count the
number of models on the MC-Tree by traversing the tree and
by addition or subtraction of the nodes. Different nodes may
lead to different operations, either addition or subtraction.
If the number of Levels that the node stays is odd, then the
subtraction operation should be made, otherwise the addition
operation (the root stays on the Level 0) need to be done.
Ultimately, we can get a number from the MC-Tree. This
number is the solution of model counting we intend.
Theorem 6:Model counting based on theMC-Tree is sound

and complete.
Proof: The calculation process on the MC-Tree is equiv-

alent to the formula 2m − S. In addition to the root, the other
nodes of the MC-Tree, one-to-one, correspond to the calcu-
lation items in formula (2). In addition, the root is |P| = 2m.
Therefore, the calculation process traversing the MC-Tree is
equivalent to the formula 2m−S. However, the latter is sound
and complete. Hence model counting based on the MC-Tree
is sound and complete.

The MC-Tree actually is a deformation of the formula
2m − S, and they are equivalent. We identify the MC-Tree
as a recurring data structure, thereby facilitating its use
in the framework of model counting. For model counting
problem based on the extension rule by which the solu-
tion can be obtained by the addition or subtraction between
multiple computing items, the MC-Tree induces disparate
calculations.
Definition 8: Given a MC-Tree T and it’s subtree T ′, T ′ is

a maximum subtree iff the root of T ′ is a child of the root of
T , denoted as ms(T ).

As is shown in Fig.1, in fact, there are as many maximum
subtrees in MC-Tree as there are clauses in the clause set.
Theorem 7: The maximum subtrees in MC-Tree is equal to

each other, and the processes of calculating their values are
independent.

Proof: It is easy to find that there is an equivalence
relation of nodes on theMC-Tree. The process of determining
the value of nodes on the MC-Tree is not related, that is,
they can be completed independently. Based on Definition 7,
in addition to the root, the generation of any node is just
related to its parent node. That means the nodes that are on the
same path from the root to leaf are associated on generation.
But calculating the value of each node is independent of any
other. In addition, the maximum subtrees are identified as

some equivalence classes that contain multiple nodes. There-
fore, the maximum subtrees are equal and independent.

The MC-Tree of a clause set 8 may be regarded as
the combination of its root and maximum subtrees that
may be treated as distinct MC-Trees with smaller size.
Let T ,ms1(T ),ms2(T ), · · · ,msn(T ), respectively, denote the
MC-Tree of 8 and its maximum subtrees, and the result of
calculating MC-Tree T is denoted as Cal(T ). Then we have
the formula:

Cal(T ) = 2m −
n∑
i=1

Cal(msi(T )) (3)

Thereby, based on the Theorem 7, we can firstly find
all the maximum subtrees of a MC-Tree, and then compute
all maximum subtrees with smaller size in parallel. In fact,
the maximum subtree Ti is the set of calculation items that
contain Pi instead of P1, · · · ,Pi−1 in formula (2). Therefore,
computing all maximum subtrees with smaller size in parallel
is actually computing the corresponding set of calculation
items of formula (2) in parallel.

In fact, the size of each maximum subtree is not same,
so their computation complexity is asymmetric. We can find
that in a complete MC-Tree, the number of nodes in the first
maximum subtree (according the order from left to right)
is the sum of the nodes of the other maximum subtrees.
Similarly, the number of nodes in the second maximum
subtree is the sum of the nodes of the maximum subtrees
except the first and the second one. The same rule is suitable
for others. Therefore, it may be a case that the computa-
tion complexity of the initial maximum subtree is one half
of the whole MC-Tree. However, any maximum subtree of
MC − Tree(ms(T )) can be divided into its root R and max-
imum subtrees of it. We then obtain the following formula,
similar to formula (3).

Cal(ms(T )) = Cal(R)−
n∑
i=1

Cal(msi(ms(T ))) (4)

Based on the formula (3) and (4), we can divide the
MC − Tree(T ) into multiple nodes and a number of smaller
subtrees instead of maximum subtrees of T , and compute
them in parallelization. In the next section, we propose a
parallelized algorithm in which the number of processors is a
parameter in it.

B. PCER ALGORITHM
In this subsection, Algorithm parallel CER (PCER) imple-
ments the parallelized computation of #SAT in detail.

The number of processors is a parameter in Algo-
rithm PCER. We can divide the algorithm into two main
stages. The first stage comprises steps from 2 to 8 in the
algorithm. In the first stage, compute the value of nodes on
Level i (0 ≤ i < k) and k =

⌈
log2 K

⌉
, K is the number

of processors. The second stage consists of steps from 9 to
15. In this stage, compute the value of nodes on Level i
(k ≤ i ≤ n). However, in implementation, we can parallelize
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FIGURE 2. Running time of the PCER algorithm using different values of K at instances
whose complementary factors are different. (a) R1. (b) R2. (c) R3. (d) R4. (e) R5.
(f) R1, R2, R3, R4, R5.

FIGURE 3. Scalability plot of parallel PCER at different instances. (a) R1. (b) R2. (c) R3.
(d) R4. (e) R5. (f) R1, R2, R3, R4, R5.

the algorithm on a multi-core system by parallelizing the two
stages. We parallelize the first stage by assigning one Level
from 0 to k − 1 to each processor dynamically and compute
the value of nodes on each Level separately. The second stage
can be parallelized by assigning one subtree to each processor
dynamically in which its root is the node on the Level k .
Note that the variable sum denotes the number of all the

maximum terms that could not be generated by using the
extension rule. The final output is the number of models of

the clause set 8, and we initialize sum to be 0 in step 1.
In steps 4 and 11, the node N is computed according to the
formula (2). In addition, the number of Pi(i = 1, 2 · · · , n) in
the node N is odd or is not determined whether the node is on
the odd Level or not (step 12).

The algorithm PCER is another form of algorithm CER.
In case of one processor, they are equivalent. The paralleliza-
tion, which is implemented in the next section, is based on
the algorithm PCER.
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Algorithm 1 PCER (Model Counting in Parallelization)
Input: A clause set: 8 = {C1,C2, · · · ,Cn};
the set of variables: X = {x1, x2, · · · , xn};
the number of processors: K ;
Output: The number of the models of clause set 8: sum

1 Init: sum← 0; k ←
⌈
log2 K

⌉
2 for each Level i (0 ≤ i < k) do
3 for each node N on Level i do
4 Compute the value of N ;
5 if i is an odd number then
6 sum − = the value of N ;

7 else
8 sum + = the value of N ;

9 for each subtree Ti (the root of Ti is the node on the
Level k) do

10 for each node N in Ti do
11 Compute the value of N ;
12 if i is on the odd level then
13 sum − = the value of N ;

14 else
15 sum + = the value of N ;

IV. EXPERIMENTAL RESULTS
Our experiments address the performance of the parallel
version for the algorithm PCER. We implemented the algo-
rithm on a Quad-core processor (3.4 GHz each) machine.
The programs are coded in C language with OpenMP
directives. In our experimental study, we consider the
following.

• The input sets of clauses are randomly generated by a
programwith parametersm (the number of all variables),
n (the number of all clauses), and p (the probability
of any variable occurrences in each clause). Each vari-
able occurs with a certain probability p in any clause.
Variables appear in the form of positive variable with a
certain probability p′ and in the form of negative variable
with probability 1 − p′, the interval of p′ is (0.1-0.5).
We control the complementary factor of each instance
by the parameters p and p′.

• The instances in our experiment contain 30 variables and
100 clauses. The CER algorithm is more efficient for
the instances that have the higher complementary factor.
When the complementary factor is high, CER algorithm
shows a relatively good performance and the running
time is less. To observe the experiment conveniently and
see the improvement of the efficiency clearly, we select
the instances whose complementary factors are approx-
imately 0.2, 0.3, 0.4, 0.5 or 0.6.

• For each instance, we run the algorithm PCER using
different number of processors, from K = 1 to 4.

TABLE 1. The parallel efficiency of PCER algorithm using different
numbers of processors.

• For each instance, we get the running time of the parallel
algorithm by calculating the average running time for
20 experiments.

Fig.2 shows the experimental study for the PCER algorithm
using different values of K at different instances. R1, R2, R3,
R4, andR5 are the instances whose complementary factors are
approximately 0.2, 0.3, 0.4, 0.5, and 0.6, respectively. From
the results of the Fig.2, we observe the following remarks:

1) With the increase of the number of processors, the run-
ning time of PCER algorithm reduces in inverse pro-
portion.

2) The higher complementary factor of instance is,
the more efficient PCER algorithm is, in case of using
each number of processors.

Fig.3 shows the scalability of PCER algorithm for
instances R1, R2, R3, R4, and R5, respectively. The parallel
algorithm reduces the running time of the sequential version,
that is, K = 1, and the speedup achieved scales are linear
with increasing the number of processors for all instances.
All these proved that the approach has very good scalability.

We determine the parallel efficiency Ek of the PCER algo-
rithm using K processors by

Ek = t1/(tk ∗ k) (5)

where t1 represents the running time on a processor and tk
represents the running time using K processors. We can see
the results of parallel efficiency from Table 1. There are two
observations as follows.

1) As the number of processors increases, there has been
a slight decrease in the parallel efficiency.

2) With the increase of complementary factor, the parallel
efficiency slightly decreased.

V. CONCLUSION
In this paper, we introduced the exact algorithm CER, which
is based on extension rule and proposed the notion of
Model-Counting-Tree to parallelize the CER algorithm.
We presented an efficient parallelization for exact sequential
algorithm CER. The parallel algorithm was implemented
on a Quad-Core machine using OpenMP. We compared the
running time and speedup according to running the algorithm
with different criteria. From the comparisons, we conclude
the following:
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1) With the increase of the number of processors, the run-
ning time of PCER algorithm reduces in inverse
proportion.

2) The higher the complementary factor of instance is,
the more efficient the PCER algorithm is, in case of
using each number of processors.

3) The parallel algorithm reduces the running time of
the sequential version, that is, K=1, and the speedup
achieved scales are linear with increasing the number
of processors for all instances. The parallel algorithm
PCER has very good scalability.

4) The parallel efficiency of PCER algorithm performs
excellently.

In future work, we will continue to improve the effective-
ness of our algorithm. Although the parallelization method
presented in this paper has been developed to solve #SAT,
it is limited not only to this setting but also can be applied
to different procedures that can be described on the data
structure similar to the Mode-Counting-Tree. Also, we will
try to use these proposed strategies into some other problems
in the future.
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