
SPECIAL SECTION ON SECURITY AND TRUSTED COMPUTING
FOR INDUSTRIAL INTERNET OF THINGS

Received May 28, 2018, accepted July 1, 2018, date of publication July 12, 2018, date of current version August 7, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2855408

Compact Hardware Implementation of
a SHA-3 Core for Wireless Body
Sensor Networks
YI YANG1,2, DEBIAO HE 1,2, NEERAJ KUMAR 3, (Member, IEEE), AND SHERALI ZEADALLY 4
1Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan
University, Wuhan 430072, China
2Jiangsu Key Laboratory of Big Data Security & Intelligent Processing, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
3Department of Computer Science and Engineering, Thapar University, Patiala 147004, India
4College of Communication and Information, University of Kentucky, Lexington, KY 40506, USA

Corresponding author: Debiao He (hedebiao@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61501333, Grant 61572379, Grant
61572370, and Grant U1536204, in part by the National High-Tech Research and Development Program of China (863 Program) under
Grant 2015AA016004, and in part by the Natural Science Foundation of Hubei Province of China under Grant 2015CFB257.

ABSTRACT One of the most important Internet of Things applications is the wireless body sensor
network (WBSN), which can provide universal health care, disease prevention, and control. Due to large
deployments of small scale smart sensors in WBSNs, security, and privacy guarantees (e.g., security
and safety-critical data, sensitive private information) are becoming a challenging issue because these
sensor nodes communicate using an open channel, i.e., Internet. We implement data integrity (to resist
against malicious tampering) using the secure hash algorithm 3 (SHA-3) when smart sensors in WBSNs
communicate with each other using the Internet. Due to the limited resources (i.e., storage, computation,
and communication capabilities) of sensors in WBSNs, a lightweight implementation of SHA-3 is needed.
To address this challenge, we propose a new implementation of the SHA-3, which has a compact hardware
architecture. Our implementation of SHA-3 consists of a reliable logic structure, random access memory, and
an enhanced finite state machine. The simulation on a Vitrtex-5 field programmable gate array shows that the
proposed implementation is suitable for the WBSN on different applications. We evaluate the sensor area of
the proposed SHA-3 implementation and compare it with other recently proposed hardware implementations
of SHA-3. In addition, our hardware implementation approach reduces the area by almost 74.7% compared
with the recently proposed hardware implementation which has the smallest area.

INDEX TERMS Body sensor network, cryptographic hash function, encryption, FPGA, hardware, IoT,
SHA-3, wireless.

I. INTRODUCTION
Nowadays, the Internet of Things (IoT), is widely applied
in network convergence through intelligent sensing, perva-
sive computing and other communication sensing technol-
ogy, which are gradually changing the daily lives of people.
IoT is also called the third wave of the world information
industry after the computer and the Internet [1] eras. One
of the most important IoT applications is the Wireless Body
Sensor Network (WBSN) (Fig 1). A WBSN enables the
physiological parameters of the human body to be collected
by body sensors. The WBSN is not only a new solution for
universal health care, disease prevention and control, but also
an important part of the IoT [2] ecosystem.

The WBSN enables the integration of intelligent, minia-
turized and low power sensor nodes to monitor the body’s

FIGURE 1. The WBSN based on the IoT.

function and the surrounding environment. As shown
in figure 1, when the local controller sends the instructions
to the sensors, they will extract the designated physiological

40128
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-2446-7436
https://orcid.org/0000-0002-3020-3947
https://orcid.org/0000-0002-5982-8190


Y. Yang et al.: Compact Hardware Implementation of a SHA-3 Core for WBSNs

body signals and transmit the information to the local con-
trollers. The body sensors are integrated with bio-sensors to
measure blood pressure, electrocardiogram and so on. Then
the local controller sends the collected signal values to the
base station which delivers the WBSN physiological data
to the servers for analysis and storage. Due to the massive
scale and distributed nature of IoT networks [3], [4], security
and privacy guarantees (e.g., security and safety-critical data,
sensitive private information) are major challenges [5], [6].
It is important to keep data integrity [7] in the WBSN
environment. If the WBSN has no integrity checking, then
the attacker can change the data by adding additional data.
The WBSN also needs to ensure the sensor area are as small
as possible. However, the current implementations of WBSN
cannot meet lightweight security requirements [8] essential
for WBSN applications.

In this work, we propose an implementation of SHA-3with
a compact hardware architecture for the WBSN to ensure
these aforementioned requirements by using the SHA-3 data
encryption algorithm implementation on the FPGA for sen-
sors. The main goal is to make messages of variable lengths
map to the message digest of fixed length. With the rapid
development of computer technology and advances in cryp-
tology, NIST issued the SHA-3 algorithm which is based on
the Keccak algorithm. In a sense, the SHA-3 algorithm is the
other name for the Keccak algorithm. The Keccak algorithm
is faster than the Blake algorithm, the JH algorithm and Skein
algorithm when it performs integrity verification of a large
amount of data and it also has good security.

The compact hardware architecture makes the sensor area
in the WBSN as small as possible. We have used the Ran-
dom Access Memory (RAM) to store intermediate variables
to reduce areas. The FPGA technology can provide speed
and stability without high investments on the initial cost of
ASIC design. The FPGA is also easy to maintain for a long
time [9], [10].

A. OUR CONTRIBUTIONS
We summarize the main contributions of this work as
follows:

1) We propose a compact hardware implementation of
SHA-3 by using FPGA suitable for the sensors of WBSN.

2) We conduct a performance evaluation about the sensor
area of the proposed implementation and compare our results
with other recently proposed hardware implementations of
SHA-3.

B. ORGANIZATION OF THE REST PAPER
The rest of the paper is organized as follows. Section 2
describes the SHA-3 algorithm. Section 3 reviews related
work recent hardware implementations of SHA-3. Section 4
presents our proposed compact hardware implementation of
SHA-3. Section 5 evaluates the occupied slices of the pro-
posed SHA-3 implementation and compare our results with
other hardware implementations of SHA-3.

FIGURE 2. Hermetic sponge strategy.

II. THE SHA-3 ALGORITHM
The SHA-3 algorithm has a sponge structure and the core
of the sponge structure is the round operation which we will
describe in this section.

A. THE SPONGE STRUCTURE
The SHA-3 algorithm has the Hermetic Sponge Strat-
egy (HSS). As shown in figure 2, P is the input and Z is the
output after the hash is done. f is the permutation function. r is
the baud rate. c is the capacity. We need to guarantee that the
sum of r and c is 1600. The input message gets into the input
state through the padding function. The permutation function
operates on the paddedmessage in the state which can be seen
as a 5*5*w array and can be expressed as a[5][5][w]. The w
is the length of the state’s lane. It also can be seen as the w-bit
CPU’s one byte [9], [10].

In this paper, we use the Keccak-512 algorithm. The value
of r is 512 and the value of c is 1088. The details about the
sponge structure are shown as follows.

1) INITIALIZATION AND PADDING
A 1600-bit number is defined and initialized 0. This number
is divided into 25 groups. Each group represents a state and
the value of the initial state is set to 0. We input a message M
and the length of M is L. If L is a multiple of 576 bits, it does
not need to be padded. Otherwise,L is padded as the smallest
multiple of 576 bits. The padding rule has three steps: first,
padding 1 and the number of ones is one; then, padding 0 and
the number of zero is n and the last padding byte is 0x80
(i.e.10000000); after padding, the length of message is the
smallest multiple of 576 bits.

2) ABSORBING PHASE
The absorbing phase divides the padded message into n
576-bit message blocks. Each 576-bit message block is
divided into nine states. These 9 states do the XOR operation
with 9 states which are from 25 initial states and output the
results into these 9 states. The results become the initial states
for processing the next 576-bit message block. The above

VOLUME 6, 2018 40129



Y. Yang et al.: Compact Hardware Implementation of a SHA-3 Core for WBSNs

FIGURE 3. Status of the 25 states.

operations are repeated until all 576-bit message blocks are
absorbed. The final states are used in the round operation.

3) SQUEEZING PHASE
The compression function is the final stage of the output.
As we used a fixed 512-bit output length in this paper,
we need take the 64-bit data from one of 25 states. This
process is repeated 8 times and the 25 states are obtained by
executing the round operation at each iteration.

B. ROUND OPERATION
In the Keccak-512 algorithm, there are 24 rounds in the
compression function and every round has five steps. Asmen-
tioned previously, one of the most important parts in the
compression function is the 25 states at every round (Fig 3).

The pseudo code of the round operation is as follows.
The complete state array is represented by A and A[i,j].
The Rotation Operation (ROT) is used to do the bit-rotation
operation. The r[i,j] and RC are constants [9], [10].

III. RELATED WORK
There are some papers which have recently been pub-
lished on the FPGA implementation of SHA-3. Most of the
research efforts have focused on different iterative archi-
tectures, pipelining and the simple Hardware Descriptive
Language (HDL) implementations. Rao et al. [11] and
Latif et al. [12] proposed an implementation of SHA-3 by
using Xilinx Look-Up-Table(LUT) which has high speed
execution which makes the scheme suitable for supporting
Bump in The Wire (BITW) security for IoT applications.
Gaj et al. [13] proposed the use of pipelining to deliver high
throughput. Provelengios et al. [14] implemented SHA-3

without DSP48E and has high TPA (throughput/area). But
the use of Digital Signal Processor (DSP) devices was an
inefficient method. Baldwin et al. [15] presented all the
proposed designs that participated in the 2nd round of the
SHA-3 competition. Jungk and Stöttinger [16] proposed a
slice-oriented architecture with different data path widths and
they obtained higher throughput when the data path width
is wider. However, to date, little work has been undertaken
on the design of compact hardware implementation of the
SHA-3 for WBSNs.

In this work, we propose a hardware implementation
method of SHA-3 which we describe next.

IV. HARDWARE IMPLEMENTATION
To achieve the lightweight requirement, the main goal of
the proposed hardware implementation of SHA-3 is to have
a compact hardware architecture. The proposed hardware
implementation of SHA-3 for the WBSN involves two steps.
The first step is the primitive design and the second step is
the compact hardware architecture.

A. THE PRIMITIVE DESIGN
In this section, we present the logic circuit of the round oper-
ation and the running processes of the finite-state machine
(FSM) for the primitive design. We use a FSM called FSM-
SHA3 to control the logic module of SHA3 and another FSM
called FSM-Round to control the round operation. Through
the primitive design, we can better understand how to opti-
mize a compact hardware architecture.

FIGURE 4. State transition diagram of the FSM-SHA3.

The state transition diagram of the FSM-SHA3 (Fig 4)
shows how the FSM-SHA3 works. When the values of these
signals change, the states also change. Using these states,

40130 VOLUME 6, 2018



Y. Yang et al.: Compact Hardware Implementation of a SHA-3 Core for WBSNs

the FSM-SHA3 can control the logic operations to output the
result:

1) The state ‘‘idle’’ means the logic module is idle. If the
value of ‘‘start’’ is zero, we stay in this state. When the value
of ‘‘start’’ is one, the state transitions to 2).

2) The state ‘‘buffer-state’’ means the logicmodule is ready
to work.When the value of ‘‘Data-valid’’ and ‘‘first’’ are both
one, the state goes to 3). When the value of ‘‘Data-valid’’ and
‘‘first-is-last’’ are both one, the state goes to 4). When the
value of ‘‘Data-valid’’ and ‘‘updata’’ are both one, the state
goes to 5). When value of ‘‘Data-valid’’ and ‘‘last’’ are both
one, the state goes to 6).

3) The state ‘‘first-state’’ means the logic module is going
to handle the first message block. If the value of ‘‘Done-
OneTimes’’ is zero, we stay in this state. When the value of
‘‘Done-OneTimes’’ is one, the state goes to 2).

4) The state ‘‘first-is-last-state’’ means the logic module
is going to handle only one message block. If the value of
‘‘Done-OneTimes’’ is zero, we stay in this state. When the
value of ‘‘Done-OneTimes’’ is one, the state goes to 2).

5) The state ‘‘updata-state’’ means that the logic module
is going to update the message block. If the value of ‘‘Done-
OneTimes’’ is zero, we stay in this state. When the value of
‘‘Done-OneTimes’’ is one, the state goes to 2).

6) The state ‘‘last-state’’ means logic module is going
to handle the last message block. If the value of ‘‘Done-
OneTimes’’ is zero, we stay in this state. When the value of
‘‘Done-OneTimes’’ is one, the state goes to 7).

7) The state ‘‘finish’’ means the logic module has already
handled all messages. If the value of ‘‘start’’ is zero, we stay
in this state. When the value of ‘‘start’’ is one, the state
transitions to the 1).

The core operation which is the round operation has been
described clearly for the primitive hardware design in THETA
step (Fig 5), RHO and PI step (Fig 6), CHI and IOTA
step (Fig 7). They are steps of the SHA-3 core. In this design,
only five outputs (A[0, 0], A[0, 1], A[0, 2], A[0, 3], A[0, 4])
are shown out of the 25 possible outputs. Other outputs can
be obtained by the same operation. Each input, output, and
individual line is a 64-bit word.

Since the core operation is the round operation, the
core module that runs the round operation is called the round
module. When the message block is handled, the Round
module is executed. It is important to design the Round mod-
ule to guarantee the correctness of the message block pro-
cessing. It includes two parts: the FSM to control the
round operation called FSM-Round, and the round logic
module.

The state transition of the FSM-Round (Fig 8) shows
how the FSM-Round works. When the value of these sig-
nals change, the states change. Through these states, the
FSM-Round can control the logic operation to output the
result:

1) The state ‘‘idle’’ means the round logic module is idle.
If the value of ‘‘star’’ is zero, we stay in this state. When the
value of ‘‘start’’ is one, the state goes to 2).

FIGURE 5. THETA step.

2) The state ‘‘buffer1’’ means the round logic module is
ready to work. This state moves to 3).

3) The state ‘‘run’’ means the round logic module is
running. If the value of ‘‘Round’’ is 22, the state goes
to 4). When the value of ‘‘Round’’ is less than 22, the state
goes to 2).

4) The state ‘‘finish’’ means the round logic module has
already worked. This state moves to 1).

The area of the primitive design is nearly 1500 slices and
it is not small for the implementation of the sensors in the
WBSN. First, the 5 inputs of the XOR operation need to store
intermediate values which could take up many areas at the
THETA step. Second, the XOR operation, the NOT operation
and the AND operation also need to store intermediate values
at the CHI step. Third, the basic logic circuit could take up a
lot of area. In addition, at the RHO and PI step, we waste a lot
of time calculating the value of the r[i,j] which slows down
the speed of the implementation.

VOLUME 6, 2018 40131



Y. Yang et al.: Compact Hardware Implementation of a SHA-3 Core for WBSNs

FIGURE 6. RHO and PI step.

B. COMPACT HARDWARE ARCHITECTURE
In this work, the SHA-3 implementation is for the sensors of
the WBSN. For the manufacturer, it is important to guarantee
low cost and a few other benefits. For users, it is important to
ensure the availability of WBSN. So it is necessary to ensure
that all sensors fit a small area.Since the primitive design
which has a big area is inadequate, we design a compact
hardware architecture to optimize the implementation. The
compact hardware architecture uses the ARM to store the
operating instructions and operating numbers. This method
can minimize the area.

1) OVERALL FRAME
The implementation of SHA-3 algorithm is consists of 3mod-
ules which are the controlling module, operating module and
storing module. We propose a flowchart of modules (Fig 9) to
complete the basic logic operation of the SHA-3 algorithm.
First, the control module sends the controlling instruction
to the operating module and the storing module. Next, the
storing module sends the data to the operating module
which performs the corresponding logic operations according
the control instruction. Finally, the operating module sends
the result to the storing module. Based on the flow chart,
we design the overall frame of SHA-3 for the hardware
implementation.

Based on the flowchart of the modules, we design
the overall frame for SHA-3 (Fig 10) which consists of

FIGURE 7. CHI and IOTA step.

FIGURE 8. State transition diagram of the FSM-round.

the RAM-256-64 module, the SHA3-ALU module and the
SHA3-FSM module. The SHA3-ALU module and the
SHA3-FSM module are the core of the SHA-3 and they
calculate the data as well as, send and receive data to the
RAM. In figure 11, there are many interfaces after the opti-
mization. The functions of these interfaces are key to under-
standing the implementation of SHA-3.

The input signal interfaces of the SHA3-FSM are as
follows:
•clk: the clock signal.
•rst-n: the reset signal.

40132 VOLUME 6, 2018



Y. Yang et al.: Compact Hardware Implementation of a SHA-3 Core for WBSNs

FIGURE 9. Flowchart of modules.

FIGURE 10. Overall frame of the SHA-3 implementation.

•opercode[31:0]: the 32-bit instruction.
•Start: the starting signal.
The output signal interfaces of the SHA3- FSM are as

follows:
•load-a: the control signal storing the input data into the a.
•load-b: the control signal storing the input data into the b.
•load-r: the control signal that sends the corresponding

operating result.
•done: the sign signal that indicates the operation has been

completed.
•addr-ram[7:0]: the control signal of the storage’s address.
•write-ram: the control signal of reading and writing.
In figure 10, the SHA-Logic consists of the SHA3-ALU

module and the SHA3-FSM module. The outer part of the

red line is a single port RAM with a depth of 256-bit and a
width of 64-bit. The external machine can read from RAM
and write to RAM when the controller is in the idle state.
When the controller is in the operating state, the RAM is
totally controlled by the controller and it will notified by the
‘‘done’’ signal. When the value of ‘‘done’’ is 1, we are in the
‘‘operating’’ state. When the value of ‘‘done’’ is 0, the state
is idle. Most of the time, the value of ‘‘done’’ is 1. It is easy
for the message block to be written to the RAM at any time.

2) ROUND OPERATION
This method has a compact hardware architecture and stores
the intermediate results into the Random Access Mem-
ory (RAM). It needs to split the intermediate logic of the algo-
rithm and arrange the data for the address in RAM. The core
of the SHA-3 is the round operation. From the pseudo code of
the round operation described above, we note that the basic
logical operations of the SHA-3 algorithm are AND, XOR,
NOR and SHIFT. By dividing the round operation into the
concrete logic operationswe can show the specific optimizing
process. In this design, only five outputs (A[0, 0], A[0, 1],
A[0, 2], A[0, 3], A[0, 4]) are shown out of the 25 possible
outputs. Other outputs can be obtained by the same operation.

The THETA step (Fig 11) needs to be divided into an XOR
of two input values inputting because of C[i] and D[i] which
consist of the XOR of five input values. The process is as
follows:

1) Calculate A[i, 0]⊕A[i, 1] and put the result into a cache
address of the RAM. Then call the cache data Temp. Then,
Temp = A[i, 0]⊕ A[i, 1].

2) Use the value stored in Temp and do anXORwithA[i, 2]
and store the result into the cache address which stores the
Temp. Thus, Temp = A[i, 0]⊕ A[i, 1]⊕ A[i, 2].
3) Use the value stored in Temp and do anXORwithA[i, 3]

and store the result into the cache address which stores the
Temp. Thus, Temp = A[i, 0]⊕ A[i, 1]⊕ A[i, 2]⊕ A[i, 3].
4) Use the value stored in Temp and do an XOR with

A[i, 4]. Then the result is C[i].
5) CalculateC[i+1] <<< 1which needs a rotate left-shift

and put the result into the cache address.
6) Take the data of the cache address and do an XOR with

C[i− 1]. Then the result is D[i].
7) Get A[i, j] which needs an XOR of two input values.
The RH0 and PI step only needs SHIFT. It can increase

the computing speed through pre-computation (such as com-
puting all numbers of the shifting operation before the step).
These numbers include 0, 36, 3, 41, 18, 1, 44, 10, 45, 2, 62,
6, 43, 15, 61, 28, 55, 25, 21, 56, 27.

The CHI step(Fig 12) needs the operations of XOR, AND
and NOR. The CHI step also need to be divided in order to
optimize the logic operations. The process is as follows:

1) Perform the operation of NOR and store the result into
the cache address, that is, Temp = (∼ B[i+ 1, j]).

2) Take the data from the cache address and do an AND
with B[i + 2j]. Then store the result into the cache address,
that is, Temp = (∼ B[i+ 1, j])

∧
B[i+ 2j].

VOLUME 6, 2018 40133



Y. Yang et al.: Compact Hardware Implementation of a SHA-3 Core for WBSNs

FIGURE 11. THETA step.

3) Take the data from the cache address and perform an
XOR with B[i, j]. Then, the result is A[i, j].

For the IOTA step, the operation is XOR with the constant.
The IOTA step needs to add an XOR of constant input.

The controller, arithmetic unit and storage in the schematic
diagram (Fig 13) correspond to with the controlling module,
operating module and storing module respectively in the
flowchart of the modules. Since the most frequently used
logic operation is XOR, we choose to do an XOR operation
as an example to show the detailed data processing of the
schematic diagram. First, the controller and the arithmetic
unit receive the instruction from the external machine and the
format of the instruction is shown in Table-1. The controller
sends the corresponding control signal according to the for-
mat of the instruction. The arithmetic unit parses the eighth
bit of the operating instruction to execute the correspond-
ing operation, which will receive the command of the XOR
operation. The arithmetic unit performs the XOR operation
and sends the result after receiving the control signal called
‘‘load-r’’.

The flow of an XOR operation of the controller is as
follows:

FIGURE 12. CHI step.

TABLE 1. Format of the instruction.

1) The controller sends the address of the operand ‘‘a’’ to
the storage and reads the data from the address location.

2) The controller sends the control signal called ‘‘load-a’’
to the arithmetic unit. Then the arithmetic unit sends the data
to the register ‘‘a’’.

3) The controller sends the address of the operand ‘‘b’’ to
the storage and reads the data into the address location.

4) The controller sends the control signal called ‘‘load-b’’
to the arithmetic unit. Then the arithmetic unit sends the data
to the register ‘‘b’’.

5) The data for the operation of the XOR is now ready.
The controller sends the control signal called ‘‘load-r’’. It is

40134 VOLUME 6, 2018



Y. Yang et al.: Compact Hardware Implementation of a SHA-3 Core for WBSNs

FIGURE 13. The schematic diagram.

used to instruct the arithmetic unit to send the result to the
storage. In addition, the controller sends the address of the
result and the written instruction to the storage at the same
time.

FIGURE 14. State transition diagram of the FSM.

In this method, the controller is implemented by a
FSM which is shown in the state transition diagram of
the FSM (Fig 14). The FSM has 7 states which include:

the idle state (IDLE), the state of selecting the operat-
ing command (CHOOSE-OPERCODE-STATE), the state of
loading the address of the operand ‘‘a’’ (LOAD-A-ADDR-
STATE), the state of loading the operand ‘‘a’’ (LOAD-A
-STATE), the state of loading the address of the operand
‘‘b’’ (LOAD-B-ADDR-STATE), the state of loading the
operand ‘‘b’’ (LOAD-B -STATE), and the state of loading the
result (LOAD-R-STATE).

When the starting signal (start) is invalid, the FSM in the
IDLE state. When the ‘‘start’’ is valid, the FSM moves to the
‘‘CHOOSE-OPERCODE-STATE’’. At this state, the FSM
moves to the corresponding state according to the low 8-bit
of the operating instruction. When the value of the low
8-bit of the operating instruction is 0 or 1, the FSM moves
to the ‘‘LOAD-A-ADDR-STATE’’. When the value of the
low 8-bit of the operating instruction is between 2 and 28,
the FSM moves to the ‘‘LOAD-B-ADDR-STATE’’. When
the FSM moves to the ‘‘LOAD-A-ADDR-STATE’’, it will
be an unconditional transfer to the ‘‘LOAD-A-STATE’’. The
‘‘LOAD-A-STATE’’ performs an unconditional transfer to
the ‘‘LOAD-B-ADDR-STATE’’ and the ‘‘LOAD-B-ADDR-
STATE’’ performs an unconditional transfer to the ‘‘LOAD-
B-STATE’’. At this time, the ‘‘LOAD-B-STATE’’ performs
an unconditional transfer to the ‘‘LOAD-R-STATE’’. Finally,
the state switches back to the ‘‘IDLE’’ state from the
‘‘LOAD-R-STATE’’.

By using RAM to store intermediate values and FSM
to control the logic module, the area of compact hardware
architecture are 278 slices.

V. AREA EVALUATION AND AREA COMPARISON
WITH PREVIOUS WORKS
We synthesized our method with Virtex 5 on the FPGA.
Table 2 presents the area utilization of LUTs, registers, block
RAM and occupied slices in our method. It shows that
our hardware implementation has a compact architecture.
As mentioned in Section 3, our hardware implement methods
for the proposed SHA-3 that use the FPGA and different
architectures for better performance. When implementing
the sensors on the WBSN, the most important performance
characteristic is the area. Table 3 shows the area comparisons
which are judged by occupied slices between our method and
other previously proposed approaches. Our method reduces
the area by almost 74.7% compared with the other recently
proposed technique by Latif et al. [12] which has the smallest
area.

TABLE 2. Area utilization.

In this paper, the proposed method is for the WBSN where
in a compact hardware architecture is needed to satisfy the
small area requirements. In contrast to recently proposed

VOLUME 6, 2018 40135



Y. Yang et al.: Compact Hardware Implementation of a SHA-3 Core for WBSNs

TABLE 3. Comparison with other proposed SHA-3 implementations.

methods, our proposed compact hardware implementation of
SHA-3 has higher practical performance and benefits.

VI. CONCLUSION
In this work, we have proposed a compact hardware
implementation of SHA-3 which makes use of a controlling
module, an operating module and a storing module. The
controlling module will, according to the external instruc-
tions, send the controlling signals to the operating module
and the storing module by using RAM and it also optimizes
the logic operations through pre-computations. Thus, this
approach results in a compact hardware architecture. The
reliable hardware structure along with the enhanced FSM,
the compact hardware FPGA implementation of SHA-3 is
more suitable for deployment in the sensors of the WBSN.

REFERENCES
[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, ‘‘Internet of

Things (IoT): A vision, architectural elements, and future directions,’’
Future Generat. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 2013,
doi: 10.1016/j.future.2013.01.010.

[2] S.-L. Chen, H.-Y. Lee, C.-A. Chen, H.-Y. Huang, and C.-H. Luo, ‘‘Wire-
less body sensor network with adaptive low-power design for biometrics
and healthcare applications,’’ IEEE Syst. J., vol. 3, no. 4, pp. 398–409,
Dec. 2009, doi: 10.1109/JSYST.2009.2032440.

[3] X. Lai, W. Zou, D. Xie, X. Li, and L. Fan, ‘‘DF relaying networks with
randomly distributed interferers,’’ IEEE Access, vol. 5, pp. 18909–18917,
2017, doi: 10.1109/ACCESS.2017.2751105.

[4] Y. Li, G. Wang, L. Nie, Q. Wang, and W. Tan, ‘‘Distance metric opti-
mization driven convolutional neural network for age invariant face recog-
nition,’’ Pattern Recognit., vol. 75, pp. 51–62, Mar. 2018, doi: 10.1016/
j.patcog.2017.10.015.

[5] Y. Sun, C.Wong, G.-Z. Yang, and B. Lo, ‘‘Secure key generation using gait
features for body sensor networks,’’ in Proc. 14th IEEE Int. Conf. Wear-
able Implantable Body Sensor Netw., (BSN), Eindhoven, The Netherlands,
May 2017, pp. 206–210, doi: 10.1109/BSN.2017.7936042.

[6] T. Hwang and P. Gope, ‘‘Robust stream-cipher mode of authenticated
encryption for secure communication in wireless sensor network,’’ Secur.
Commun. Netw., vol. 9, no. 7, pp. 667–679, 2016, doi: 10.1002/sec.1388.

[7] L. Fan, X. Lei, N. Yang, T. Q. Duong, and G. K. Karagiannidis, ‘‘Secrecy
cooperative networks with outdated relay selection over correlated fading
channels,’’ IEEE Trans. Veh. Technol., vol. 66, no. 8, pp. 7599–7603,
Aug. 2017, doi: 10.1109/TVT.2017.2669240.

[8] K. E. Friedl, J. D. Hixson, M. J. Buller, and B. Lo, ‘‘Guest editorial—
13th body sensor networks symposium,’’ IEEE J. Biomed. Health Inform.,
vol. 22, no. 1, pp. 3–4, Jan. 2018, doi: 10.1109/JBHI.2017.2779898.

[9] M. Li and L. Cheng, ‘‘Distinguishing property for full round keccak-
f permutation,’’ in Proc. Conf. Complex, Intell., Softw. Intensive Syst.,
Torino, Italy, 2017, pp. 639–646, doi: 10.1007/978-3-319-61566-0_59.

[10] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, ‘‘Keccak,’’
Bull. Board Syst., Tech. Rep., 2015, p. 389. [Online]. Available:
http://eprint.iacr.org/2015/389

[11] M. Rao, T. Newe, I. Grout, and A. Mathur, ‘‘High speed implementation of
a SHA-3 core on virtex-5 and virtex-6 fpgas,’’ J. Circuits, Syst., Comput.,
vol. 25, no. 7, p. 1650069, 2016, doi: 10.1142/S0218126616500699.

[12] K. Latif, A. Aziz, and A.Mahboob, ‘‘Look-up table based implementations
of SHA-3 finalists: Jh, keccak and skein,’’ KSII Trans. Internet Inf. Syst.,
vol. 6, no. 9, pp. 2388–2404, 2012, doi: 10.3837/tiis.2012.09.024.

[13] K. Gaj, E. Homsirikamol, M. Rogawski, R. Shahid, and M. U. Sharif,
‘‘Comprehensive evaluation of high-speed and medium-speed imple-
mentations of five SHA-3 finalists using xilinx and altera fpgas,’’
Bull. Board Syst., Tech. Rep., 2012, p. 368. [Online]. Available:
http://eprint.iacr.org/2012/368

[14] G. Provelengios, P. Kitsos, N. Sklavos, and C. Koulamas, ‘‘FPGA-based
design approaches of Keccak hash function,’’ in Proc. 15th Euromicro
Conf. Digit. Syst. Design, (DSD), Izmir, Turkey, Sep. 2012, pp. 648–653,
doi: 10.1109/DSD.2012.63.

[15] B. Baldwin et al., ‘‘FPGA implementations of the round two SHA-3
candidates,’’ inProc. Int. Conf. Field Program. Logic Appl., (FPL),Milano,
Italy, Aug./Sep. 2010, pp. 400–407, doi: 10.1109/FPL.2010.84.

[16] B. Jungk and M. Stöttinger, ‘‘Among slow dwarfs and fast giants: A sys-
tematic design space exploration of KECCAK,’’ in Proc. 8th Int. Work-
shop Reconfigurable Commun.-Centric Syst. Chip (ReCoSoC), Darmstadt,
Germany, Jul. 2013, pp. 1–8, doi: 10.1109/ReCoSoC.2013.6581527.

YI YANG received the bachelor’s degree from
Yunnan University, China. She is currently pur-
suing the master’s degree with the Key Lab-
oratory of Aerospace Information Security and
TrustedComputing,Ministry of Education, School
of Cyber Science and Engineering,Wuhan Univer-
sity, Wuhan, China. Her research interests are in
the areas of cryptographic algorithm implementa-
tion and side channel attacks.

DEBIAO HE received the Ph.D. degree in applied
mathematics from the School of Mathematics and
Statistics, Wuhan University, in 2009. He is cur-
rently a Professor with the Key Laboratory of
Aerospace Information Security and Trusted Com-
puting, Ministry of Education, School of Cyber
Science and Engineering, Wuhan University. His
main research interests include cryptography and
information security, in particular, cryptographic
protocols.

NEERAJ KUMAR (M’16) received the Ph.D.
degree in CSE from Shri Mata Vaishno Devi Uni-
versity, Katra, India. He has guided many students
leading to M.E. and Ph.D. He is currently an
Associate Professor with the Department of Com-
puter Science and Engineering, Thapar University,
Patiala, India. He has authored over 100 technical
research papers in leading journals such as-IEEE
TII, IEEE TIE, IEEE TDSC, IEEE ITS, IEEE
TWPS, IEEE SJ, IEEE ComMag, IEEE WCMag,

IEEE NetMag, and conferences. His research is focused on mobile com-
puting, parallel/distributed computing, multi-agent systems, service oriented
computing, routing and security issues in mobile ad hoc, sensor, and mesh
networks. His research is supported from DST, TCS, and UGC.

SHERALI ZEADALLY received the bachelor’s
degree in computer science from the University of
Cambridge, U.K., and the Ph.D. degree in com-
puter science fromTheUniversity of Buckingham,
U.K. He is currently an Associate Professor with
the College of Communication and Information,
University of Kentucky. He is a fellow of the
British Computer Society and the Institution of
Engineering Technology, U.K.

40136 VOLUME 6, 2018

http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1109/JSYST.2009.2032440
http://dx.doi.org/10.1109/ACCESS.2017.2751105
http://dx.doi.org/10.1016/j.patcog.2017.10.015
http://dx.doi.org/10.1016/j.patcog.2017.10.015
http://dx.doi.org/10.1109/BSN.2017.7936042
http://dx.doi.org/10.1002/sec.1388
http://dx.doi.org/10.1109/TVT.2017.2669240
http://dx.doi.org/10.1109/JBHI.2017.2779898
http://dx.doi.org/10.1007/978-3-319-61566-0_59
http://dx.doi.org/10.1142/S0218126616500699
http://dx.doi.org/10.3837/tiis.2012.09.024
http://dx.doi.org/10.1109/DSD.2012.63
http://dx.doi.org/10.1109/FPL.2010.84
http://dx.doi.org/10.1109/ReCoSoC.2013.6581527

	INTRODUCTION
	OUR CONTRIBUTIONS
	ORGANIZATION OF THE REST PAPER

	THE SHA-3 ALGORITHM
	THE SPONGE STRUCTURE
	INITIALIZATION AND PADDING
	ABSORBING PHASE
	SQUEEZING PHASE

	ROUND OPERATION

	RELATED WORK
	HARDWARE IMPLEMENTATION
	THE PRIMITIVE DESIGN
	COMPACT HARDWARE ARCHITECTURE
	OVERALL FRAME
	ROUND OPERATION


	AREA EVALUATION AND AREA COMPARISON WITH PREVIOUS WORKS
	CONCLUSION
	REFERENCES
	Biographies
	YI YANG
	DEBIAO HE
	NEERAJ KUMAR
	SHERALI ZEADALLY


