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ABSTRACT The accurate discrimination between bipolar disorder (BD) and schizophrenic patients is
crucial because of the considerable overlap between their clinical signs and symptoms (e.g., hallucination and
delusion). Recently, electroencephalograms (EEGs) measured in the resting state have been vastly analyzed
as a means for classifying the BD and schizophrenic patients, but EEGs evoked by external audio/visual
stimuli have been rarely investigated, despite their high signal-to-noise ratio (SNR). In this study, in order to
investigate whether EEGs evoked by external stimuli can be used for classifying the BD and schizophrenic
patients, we used a visual stimulus modulated at a specific frequency to induce steady-state visual evoked
potential (SSVEP). In the experiment, a photic stimulation modulated at 16 Hz was presented to two groups
of the schizophrenic and BD patients for 95 s, during which the EEG data were recorded. Statistical measures
of SSVEPs (mean, skewness, and kurtosis) described in SNR units were extracted as features to characterize
and classify the variations of brain activity patterns in the two groups. Two brain areas, O1 and Fz, showed a
statistically significant difference between the two groups for SNR mean and kurtosis, respectively. Among
five applied classifiers, k-nearest neighbor provided the highest classification accuracy of 91.30% with the
best feature set selected by Fisher score. An acceptable accuracy for binary classification (>70%) was
retained until analysis time was reduced up to 10 s using a support vector machine classifier, and 20 s for other
classifiers. Our results demonstrate the potential applicability of the proposed SSVEP-based classification
approach with relatively short single-trial EEG signals.

INDEX TERMS Bipolar disorder, diagnosis of psychiatric diseases, electroencephalography (EEG),
schizophrenia, steady-state visual evoked potential (SSVEP).

I. INTRODUCTION

Bipolar disorder (BD) and schizophrenia are psychiatric
disorders that share several signs and symptoms, such as
hallucination and delusion [1], [2]. It is still a big chal-
lenge for psychiatrists to differentiate between them in the
first interviewing session [3] using qualitative criteria, such
as those found in the Diagnostic and Statistical Manual of
Mental Disorders, 5th edition (DSM-V) [4] and the Inter-
national Statistical Classification of Diseases and Related
Health Problems, 10th revision (ICD-10) [5]. The manic
phase is a common episode that occurs in both BD and

schizophrenic patients. When a psychotic patient within
this episode is referred to a psychiatrist, accurate diagno-
sis becomes highly challenging using ICD-10 or DSM-V
because these conventional diagnostic criteria are qualitative
and there is no physiological measurement carried out in this
crucial diagnosis.

To overcome this drawback, researchers have attempted to
characterize electroencephalograms (EEGs) and features of
scalp EEGs were widely used to classify the two psychiatric
disorders. For example, in [6], EEG data were recorded from
18 patients with BD type I in eyes-closed resting state and
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18 patients with schizophrenia. Absolute spectral powers and
coherence features were extracted from their EEGs to differ-
entiate the two groups. The results showed higher coherence
values at six pairs of electrodes on the right hemisphere of
the brain of schizophrenic patients compared with those of
patients with BD type I. Although they implied discriminative
observations on the EEG features of schizophrenic and BD
patients, direct classification using the EEG features between
them was not performed.

In our previous work [7], we introduced a framework to
classify BD from schizophrenic group by analyzing their
EEG data measured in eyes-closed resting state. To clas-
sify BD and schizophrenic group, diverse types of features,
e.g., phase-locking value [8], robust synchronization [9],
and synchronization likelihood [10], were extracted from
the recorded EEG signals. Afterwards, a suitable subset of
discriminative features was selected from the pool of fea-
tures by a proposed greedy-overall-relevancy feature selec-
tion method. Finally, by applying the selected features to the
modified nearest neighbor classifier, a 92.45% classification
accuracy was obtained. We also achieved an increased clas-
sification accuracy of up to 98.95% using a novel covariance
weighting method in the Riemannian space of the covariance
matrices [11]-[13].

Although several studies have been conducted to differen-
tiate psychiatric diseases by analyzing EEGs recorded in the
resting state, recording EEGs in the resting state for a long
time increases the risk of contamination caused by additive
noises, such as electrooculogram (EOG) and electromyo-
gram (EMG). Furthermore, some previous studies [14], [15]
emphasized the importance of EEGs that are evoked by audi-
tory or visual stimuli because of the two following reasons:
1) with evoked potentials, the possibility of removing additive
noises by taking an average over synchronous events becomes
considerably higher than spontaneous EEGs measured in the
resting state; ii) evoked potentials are generated in the visual
and auditory networks of the brain, and any abnormal char-
acteristics can reveal deficiencies in those pathways due to
the psychiatric disease. Therefore, this potential can be used
to identify relevant psychiatric diseases. Moreover, psychi-
atric patients do not generally want to participate in experi-
ments requiring long EEG recording. Thus, it is demanded to
introduce a novel classification framework that can decrease
required EEG recording time while preserving its diagnosing
accuracy.

In this study, we investigated the separability of BD and
schizophrenic patients by analyzing their steady-state visual
evoked potentials (SSVEPs). An SSVEP is a frequency and
phase-locked EEG response to a temporally modulated visual
stimulus (e.g., a light flicker) [16]. Thus, an increased spec-
tral power at a stimulation frequency is generally observed
around the occipital areas a few seconds (> 2 s) after
repetitively presenting a visual stimulus, together with its
harmonic components [16]. The advantage of SSVEP is
its higher signal-to-noise ratio (SNR), compared with rest-
ing state EEGs. Analyzing SSVEP has repeatedly provided
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high classification accuracy for communication purposes
for patients with neurodegenerative diseases, e.g., > 90%
for multi-class brain-computer interfaces [17]-[20]. In addi-
tion, SSVEP has been used to characterize neuronal sub-
strates. For example, it was shown that visual processing
abnormalities are associated with impairments in cogni-
tive functions [21], which affects the SSVEP waveform in
schizophrenic patients [22]-[25]. Moreover, the discrimi-
nation of schizophrenic patients from control subjects by
comparing the SNR of their SSVEPs was investigated from
the statistical point of view [21]. They demonstrated that
SNR was reduced in schizophrenic patients in response to
visual stimuli with low luminance contrast and low spatial
frequency, compared to the control group. Besides the pre-
vious studies showing visual dysfunction in schizophrenic
patients [21]-[25], another study demonstrated that BD
patients also have significantly different neural activities in
their visual systems as compared with healthy subjects [26].
Furthermore, one study directly compared neuronal activi-
ties evoked by visual stimuli between healthy subjects and
patients with BD and schizophrenia. It was demonstrated
in [27] that patients with BD have relatively intact visual
function compared to those with schizophrenia, showing sig-
nificantly different amplitude and latency between the two
patient groups. Thus, it is expected that the two groups
of patients would show different SSVEP responses because
SSVEP is also a neural response modulated by the involve-
ment of visual processing, thereby it can be used as useful
features in automatically classifying the two groups.

Despite active research using SSVEP, to the best of our
knowledge, no SSVEP-based study aimed at distinguishing
between BD and schizophrenia has ever been conducted.
In this study, we introduce a simple SSVEP-based classi-
fication framework, containing relevant feature extraction,
feature selection, and classification. Our contributions in this
paper are briefly listed below:

i) Characterizing the difference of SSVEP responses
between BD and schizophrenia patients.

ii) Choosing proper features and a classifier for classifying
BD from schizophrenia patients.

iii) Investigating the effect of recording length on classifi-
cation accuracy [17]-[19].

The rest of this paper is organized as follows. Materi-
als and methods are explained in Section II. Experimen-
tal results and their corresponding discussions are found in
Sections III and IV, respectively, and followed by the conclu-
sion in Section V.

Il. MATERIALS AND METHODS

A. PATIENTS

Twenty-six patients with schizophrenic and twenty-seven
patients with BD participated in this study. These patients
were selected from the pool of the Pediatric Neurol-
ogy Outpatient Clinics of Hafez hospital in Shiraz, Iran.
We acquired the ethical approval for our study from the
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TABLE 1. Demographic characteristics of the patients with bipolar disorder (BD) and schizophrenia (SZ).

BD Sz p-value

Number of patients 23 23 -

Gender (male/female) 14/9 8/15 0.139
Age (years) 18.57 £3.52 20.39£4.26 0.107
Years since onset 2.73+2.17 476 +3.71 0.073
Family history 7 (30.4%) 6 (26.14%) 1.000
Anguish or depression background 16 (60.9%) 13 (56.5%) 1.000
Headache background 13 (56.5%) 7 (30.4%) 0.137
Tension background 5 (21.7%) 1 (4.3%) 0.189

Values are mean =+ standard deviation in age and years since onset, whereas values are given as the number of subjects with percent in family history,
anguish or depression, headache, and tension background. The p-values are obtained using Wilcoxon rank sum test for age and years since onset, and chi-
squared test for gender, family history, anguish or depression background, headache background, and tension background.

Institutional Review Board Committee of Hafez Hospital.
The exclusion criteria included a past or current history of
substance dependence, clinically estimated mental retarda-
tion, significant neurological disorder such as epilepsy, or his-
tory of head injury causing a loss of consciousness for at least
1 h. The patients were diagnosed using the Structured Clinical
Interview for DSM-V [4].

To ensure the labeling procedure that assigns all patients
to either BD or schizophrenia, we did not ask the patients
who referred to the psychiatrists for the first time, instead,
we selected patients who had positive responses to their
prescribed drugs. This is because there is no guarantee that
the labeling of the patient performed by the psychiatrist in the
first interview session is accurate, considering that there is a
high overlap between the clinical signs manifested by BD and
schizophrenic patients. A total of 26 patients with schizophre-
nia and 27 patients with BD originally participated in the
measurements. However, one of the schizophrenic patients
had to be excluded from further analysis because of technical
problems in the EEG recording, resulting in unusable EEG
data. Moreover, the two oldest patients with schizophrenia
and four youngest patients with BD were also excluded in
order to match the two groups based on age from the statis-
tical point of view, thereby enhancing the confidence in our
analysis results. In total, 23 patients with schizophrenia and
23 patients with BD were included for the analysis. Table 1
summarizes the demographic characteristics of all patients
who participated in this study. The p-values were obtained
using Wilcoxon rank sum test for age and years since onset,
and the chi-squared test was used for gender, family history,
anguish or depression background, headache background,
and tension background. No demographic factors showed any
statistically significant difference between the two groups
(p > 0.05).
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B. EEG RECORDING PROCEDURE

The patients were individually evaluated in the Clinical
Neurophysiology Laboratory at the Medical School of the
University of Shiraz. They were seated in a reclined chair
in an electrically shielded and sound-attenuated room. The
scalp EEG data were recorded using a Scan LT system
(Compumedics, Inc.) from 21 Ag/AgCl scalp electrodes
(Fpl, Fp2, F3, F4, F7, F8, Fz, C3, C4, Cz, T3, T4, T5, T6,
P3, P4, Pz, Ol, 02, Al, and A2) according to the inter-
national 10-20 system. The average value between Al and
A2 was used as the reference. The ground electrode was
located on the left cheek, which was used by the record-
ing software to reject the power line noise. The EEG data
were recorded at a sampling rate of 250 Hz with an online
bandpass of 0.01 —40 Hz (40 dB decay rate of the side
lobe).

For SSVEP recordings, a photic stimulator (Compumedics,
Inc.) containing light diodes (15 x 5 c¢m in size and 17 x 4
white diode array) was placed at a view of approximately 45°.
The distance between the stimulator and patients was about
50 cm. The stimulus frequency was selected as 16 Hz because
this frequency generally exhibits higher SNR than other fre-
quencies do [28]. In addition, this frequency is outside of
the alpha band (8 — 13 Hz), which generally shows many
false positives due to relatively strong spontaneous alpha
power [29], [30]. The EEG data were recorded for each
patient during the photic stimulation that was presented for a
relatively long period of time (107 & 18 s) to obtain high SNR
of SSVEPs [23]. We selected a fixed time range of 95 s from
the stimulus onset time for the analysis to ensure the same
amount of data for all patients. However, we used only 37.5 s
of data from only one particular patient with schizophrenia
because of technical problems during the measurement. The
amount of data of this patient was smaller than those of the
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FIGURE 1. Mean power spectral densities evoked by 16 Hz visual stimulation for each group.
The shaded regions indicate the standard errors for bipolar disorder (BD) and

schizophrenia (SZ). Black line: BD; red line: SZ.

others, but all analysis methods, which will be presented in
the following sections, were identically applied.

C. FEATURE EXTRACTION

To better detect the SSVEP peaks, we used SSVEP SNR,
which is calculated by dividing the SSVEP amplitude at
the stimulus frequency (f = 16 Hz) by the sum of SSVEP
amplitudes over neighboring frequencies [26]:

SNR =

X
—" ) 1)

PIXE++X (-]

where f is the stimulus frequency, X(f) is the amplitude at
f Hz, and n is the number of neighboring frequency points.
In fact, the employed SNR measures the ratio of SSVEP
amplitude at the stimulus frequency over the mean of SSVEP
amplitudes at adjacent frequencies. In our analysis, we con-
sidered f at 16 and 32 Hz because the second harmonic of
SSVEP response is also informative [17], [29]. With further
consideration, we will see that the stimulus frequency and its
second harmonic are both visible around the occipital areas
(see Fig. 1 in advance). We empirically set the parameter
n = 6, because no consensus has been reached at finding an
optimum value for n. In previous literature, n has different
values ranging from 6 to 16 [17], [30]-[32].
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The SSVEP amplitude, X(f), was calculated by taking
a fast Fourier transform from successive windowed signals
with 50% overlap, where each window had a length of
one second. This approach was identically applied to the
schizophrenia patient with only 37.5 s of EEG data. In this
study, the mean, skewness, and kurtosis of the SNR values
of SSVEPs at 16 and 32 Hz were proposed as suitable fea-
tures for classifying BD patients from schizophrenic ones.
The skewness is the third order statistics of a signal which
measures the asymmetry of a distribution. The kurtosis is
the fourth order statistics of a signal, measuring the flat-
ness or sharpness of the signal distribution. The total number
of the features was 114, since 6 features (the mean, skewness,
and kurtosis of SNR values of SSVEPs at 16 and 32 Hz) were
extracted for each channel (19 electrodes were used).

D. FEATURE SELECTION

The feature selection is an essential stage for classification
problems when the input dimension is high compared to
the number of trials. At this stage, an excessive number
of irrelevant features are removed, thereby both avoiding
the overfitting and decreasing the computational complex-
ity. To reduce the dimensionality and select subsets of
relevant features, we used the Fisher score [35] as a feature
selection criterion, which has been widely used in pattern
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FIGURE 2. Mean topographic maps for the mean, skewness, and kurtosis of SSVEP-SNRs at 16 and 32 Hz for each group (BD: bipolar disorder;
SZ: schizophrenia). The difference between BD and SZ are shown in the third row. Yellow squares denote statistically significant channels
(two-sample t-test; p < 0.01, Bonferroni correction): O1 in SNR mean at 16 Hz and Fz in SNR kurtosis at 16 Hz. Note the different range of the

color bars.

classification [36]-[41]. The Fisher score is defined as:

|mi — my|*

2, 2
S —i—sj

; @

(Fisher score);, =

where k is the index of the k-th feature, m represents a mean,
s% represents a variance, and the subscripts i and j denote
two different classes (BD and schizophrenia in this study).
A higher Fisher score means that the distance between the
mean values of the two classes is larger than the lower Fisher
scores, whereas the variance within each class is smaller
than lower Fisher scores, thus ensuring better discrimination
between two classes.

After computing the Fisher score for each feature, the top
N features with the highest Fisher scores were selected for
classification, whereas the other features were discarded.
In this study, we evaluated the classification performance for
different values of N, ranging from 1 to 10 in order to observe
the effect of the number of features.

E. CLASSIFICATION

The classification of schizophrenic and BD patients was car-
ried out using the following five classifiers that are widely
used in classification problems [42]-[43]: linear discriminant
analysis (LDA), quadratic discriminant analysis (QDA), sup-
port vector machine (SVM) with a second order polynomial
kernel, k-nearest neighbors (KNN), and logistic regression
analysis (LRA) based on binary logistic model. The clas-
sification accuracy was evaluated using the leave-one-out
cross-validation (LOOCYV). In LOOCYV, the feature vectors
of patients are split into a training and test set. All selected
features of one patient are considered as the test set, and
the rest of the features belonging to the other patients are
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considered as the training set. This loop is repeated until
the set of features of each patient was used as a test set
once. The classification accuracy was calculated by divid-
ing the number of correctly classified trials by the number
of total trials. The above procedure was performed using
the MATLAB R2012b (MathWorks). Classifiers used in the
procedure were applied using the PRTools (available from
http://37steps.com/software/), which is a MATLAB toolbox
for pattern recognition. The main idea of the KNN classifier
is to find the K nearest neighbors to a test sample according
to the Euclidean distance in the feature space, and the test
sample is then assigned to a class based on whichever had the
shorter distance. The number of the nearest neighbors for the
KNN classifier was selected by optimizing the leave-one-out
error on selected features.

Ill. RESULTS
The mean power spectral densities of SSVEP segments over
the two groups within the range of 1 to 40 Hz for each channel
are depicted in Fig. 1. The plots are arranged according to
the international 10-20 system, and EEG channel labels are
shown in the top right of each plot. Large SSVEP peaks are
found in the brains of both BD and schizophrenic patients at
the stimulus frequency of 16 Hz in their parietal and occipital
areas. Although the amplitude is relatively small, SSVEP
peaks can be also observed at 32 Hz, the second harmonic
frequency of 16 Hz. The SSVEP amplitudes for BD are gener-
ally larger than those for schizophrenic patients. Specifically,
a large amplitude difference can be visually observed in Ol
at 16 Hz.

Topographic maps for the mean, skewness, and kurtosis of
SSVEP-SNRs at 16 and 32 Hz are shown in Fig. 2, which
were obtained by averaging all patient data for each group.
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The configuration of EEG electrodes in topographic maps
is same as Fig. 1. Similar to the amplitude values shown
in Fig. 1, the SNR mean values at 16 Hz in the BD group
are generally larger than those in the schizophrenic group.
A significantly smaller SNR mean in the schizophrenic group
compared with that of the BD group is observed specifically
at Ol at 16 Hz, which agrees with the result exhibited in
Fig. 1 (yellow square, two-sample t-test, Bonferroni corrected
p < 0.01). Even though a similar topographical pattern is
observed for the second harmonic component (32 Hz), there
is no case showing statistical difference between the two
groups. Note that the number of channels (19) was used for
Bonferroni correction (0.01/19 =~ 0.0005). The SNR skew-
ness and kurtosis show similar spatial distribution in each
patient group. The SNR skewness and kurtosis in occipital
channels are not as large as the SNR mean. At 16 Hz, SNR
skewness and kurtosis in fronto-central areas for BD patients
are smaller than those in schizophrenic patients. Morever,
SNR kurtosis at Fz provides a statistically significant value
between the two groups (yellow square, two-sample t-test,
Bonferroni corrected p < 0.01). At 32 Hz, SNR skew-
ness and kurtosis of BD patients are smaller than those of
schizophrenic patients in frontal and temporal areas. For both
the skewness and kurtosis of SNR at 32 Hz, a statistically
significant difference is not observed.
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FIGURE 3. Classification accuracies (%) of five different classification
algorithms with respect to the number of selected features (LDA: linear
discriminant analysis; QDA: quadratic discriminant analysis; SVM: support
vector machine; KNN: k-nearest neighbors; LRA: logistic regression
analysis). Mean classification accuracies are denoted by ‘Mean’ for each
number of features in the figure. Leave-one-out cross-validation was
applied to compute classification accuracy. Note that the range of
classification accuracy is between 50 and 95%. The maximum accuracy
(91.30%) is found for KNN when four features are used. Classification
accuracy was estimated using 95 s EEG data from stimulus onset for all
patients, except one patient with schizophrenia for whom 37. 5 s data
were used due to technical problems during the measurement. The mean
classification accuracy of the five classifiers is statistically higher when
using 5 and 6 features than using only 1 feature (Friedman test,
Bonferroni corrected p < 0.01).

Figure 3 presents the classification accuracies evaluated
through the LOOCYV for the five classification algorithms
with respect to the number of features selected by the Fisher
score. As mentioned, the number of selected features varied
from 1 to 10 to see the effect of the number of features. The
mean classification accuracies of the five classifiers are plot-
ted with a black dashed line for different numbers of selected
features in Fig. 3. The classification accuracy continuously
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increases until the number of selected features is six on the
average, and it decreases after that, showing the curse of
dimensionality phenomenon. The maximum mean accuracy
of 84.78% over the five classifiers is achieved when six fea-
tures are selected. In line with this result, classification per-
formance is statistically higher when using five or six features
than using one feature (Friedmann test, Bonferroni corrected
p < 0.01). For KNN, the maximum classification accuracy
of 91.30% is achieved when four features are selected, and
LRA also showed a comparable accuracy of 89.13 % when
six feature are used. The classification accuracies of over
80% are achieved for all classifiers when suitable numbers of
features are used (6 features for LDA; 5-8 features for QDA;
5-7 features for SVM; 2-9 features for KNN; 3-8 features
for LRA). For the KNN classifier, classification accuracies
obtained are greater than or at least equal to approximately
85%, except when the numbers of features are 1 and 10.
The performance of KNN is significantly higher than that
of LDA and QDA, and SVM also showed statistically higher
performance compared with LDA (Friedman test, Bonferroni
corrected p < 0.01).

Table 2 summarizes the features selected by the Fisher
score sorted in descending order. The most commonly
selected features by LOOCV were SNR mean at Ol and
SNR kurtosis at Fz, both at 16 Hz. This result coincided
with the statistical results shown in Fig. 2. The highest mean
classification accuracy was obtained for the following eight
features: SNR mean at O1, Pz and P3, SNR kurtosis at Fz,
SNR skewness at Fz at 16 Hz; SNR mean at F3, Cz and
C4 at 32 Hz. Note that skewness was also selected as a
useful feature even though there was no channel showing a
statistically significant difference between the skewness of
the two groups (Fig. 2). This means that the skewness feature
can provide additional discriminative information, together
with the mean and kurtosis features showing a statistical
difference between the two groups.

To evaluate the effect of the length of analysis time on
the classification accuracy, a classification performance is
assessed by continuously reducing the analysis time length
by 10 s using the same analysis framework. As described
in Section 2, only 37.5 s of data were available for one
patient with schizophrenia. These data were used although
a time length of more than 37.5 s was required for this
patient. Fig. 4 represents changes in the mean classification
accuracies of five classifiers and their averages with respect
to different time lengths. The highest classification accuracies
are illustrated with the best features for each classifier. The
results for 95 s are also included in Fig. 4. A monotonic
increase trend in the classification accuracy for the five clas-
sifiers is found by increasing the time length. An acceptable
classification accuracy for a binary classification (>70% as
described in [42]) was obtained when the time length was
10 s by using SVM, while it was 20 s by using all classi-
fiers, except QDA (69.56 %). A mean accuracy of over 80%
was obtained when the time length was 70 s. LRA shows
statistically higher classification performance than the other
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TABLE 2. Ten most selected features by the Fisher score in the leave-one-out cross-validation for ten different number of selected features.

Number of selected features

1 2 3 4 5 6 7 8 9 10
0116 m Fz16 k 0116 m 0116 m 0116 m 0116 m 0116 m 0116 m 0116 m 0116 m
(83.6%) (50%) (33.3%) (25%) (20%) (16.7%) (14.3%) (12.5%) (11.1%) (10%)
Fz16 k 0116 m Fz 16 k Fz 16 k Fz 16 k Fz16 k Fz16 k Fz16s Fz16s Fz16s
(17.4%) (48.9%) (33.3%) (25%) (20%) (16.7%) (14.3%) (12.5%) (11.1%) (10%)

) Fz16s F332m F332m F332m F332m F332m Fz16 k Fz16 k Fz16 k

(1.1%) (28.3%) (24.5%) (20%) (16.7%) (14.3%) (12.5%) (11.1%) (10%)

) ) Fz16s Fz16s C432m C432m Fz16s F332m F332m F332m

(3.6%) (12%) (16.1%) (15.2%) (14 %) (12.5%) (11.1%) (10%)
) ) P316m C432m Fz16s Fz16s C432m C432m C332m C332m
(0.7%) (11.4%) (13.5%) (13.4%) (14%) (12.5%) (11.1%) (10%)
) Pz16 m Pz16 m C332m C332m C332m C332m C432m C432m
(0.7%) (1.1%) (6.1%) (10.9%) (12.4%) (12%) (11.1%) (10%)
B B ) P3 16 m P3 16 m Cz32m Cz32m P316m P3 16 m Cz32m
(0.5%) (1.7%) (5.4%) (9.6%) (9.8%) (10.4%) (9.7%)
) ) Cz32m Cz32m P316m P316m Cz32m Cz32m P316m
(0.5%) (1.3%) (2.9%) (4%) (9.8%) (10.4%) (9.3%)
) ) ) Pz16 m Pz16 m Pz 16 m Pz16 m P332m P332m
(0.9%) (1.1%) (0.9%) (1.6%) (5%) (6.7%)
) ) ) F832m Fz 16 m Cz 16 m P332m F4 16 Pz 16 m
(0.4%) (0.4%) (0.6%) (1.4%) (1.9%) (4.1%)

Each column is sorted in descending order, and each entry represents channel label, stimulus frequency (16: 16 Hz; 32: 32 Hz), statistical measures of SSVEP-
SNR values (m: SNR mean; s: SNR skewness; k: SNR kurtosis), and percentage in total (rounded to 1 digit after the decimal point). The two features denoted
by bold font (O1 16 m and Fz 16 k) are the most important (selected) features for classification.
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FIGURE 4. Classification accuracies (%) of five different classification
algorithms with respect to different time lengths. The maximum
classification accuracies of each classification algorithm are shown after
considering the different numbers of features varying from 1 to 10 for
each analysis time length, and thus the number of features used for
classification varies between the classification algorithms as well as
different analysis time lengths. ‘Mean’ represents the mean classification
accuracies of each classification algorithm. Note that the range of
classification accuracy is between 50 and 95%. The mean classification
accuracy of the five classifiers is statistically higher when using 90 s data
length than 10 s and 95 s data length than 10 and 20 s, respectively
(Friedman test, Bonferroni corrected p < 0.01).

classifiers, indicating that LRA would be the best choice
with a small amount of EEG data (Friedman test, Bonferroni
corrected p < 0.01). Classification performance is statisti-
cally higher when using 90 s data length than 10 s and 95 s
data length than 10 and 20 s, respectively (Friedman test,
Bonferroni corrected p < 0.01).
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IV. DISCUSSION

In the present study, we demonstrated that discriminating
between BD and schizophrenia with a high accuracy can be
possible by using our proposed simple SSVEP-based clas-
sification framework. A maximum classification accuracy
of 91.30% was obtained when the number of features selected
by the Fisher score is four with KNN. We also showed that
a reasonable accuracy for a binary classification (> 70% as
described in [42]) can be obtained with only 10 s of EEG data
with a proper classifier (SVM in this study), demonstrating
the potential clinical use of our SSVEP-based framework to
quantitatively classify different psychiatric disorders (BD vs.
schizophrenia) with a relatively small amount of EEG data.

The reason for using the SSVEP is that it has been known
to have high SNR [16] and is less susceptible to artifacts
produced by EOG [45] and EMG noises [46]. Therefore,
we can obtain SSVEP peaks in the frequency domain without
any complicated preprocessing steps for noise reduction and
artifact correction, as shown in [17]-[20]. On the other hand,
for the analysis of resting state EEG [6], [7], we generally
need manual editing and additional algorithms (e.g., inde-
pendent component analysis) for noise reduction and artifact
correction.

Another advantage of the high SSVEP-SNR is that it can
reduce EEG recording time and the number of electrodes,
which are extremely important for clinical use. Thanks to
the high SSVEP-SNR, a relatively small amount of data can
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be used to quantitatively discriminate between schizophrenic
and BD patients with an acceptable classification perfor-
mance, as demonstrated in this study; only 10 s of EEG data
were required for the SVM classifier to obtain reasonable
accuracy for two class classification (>70%).

The classification accuracy obtained in this study is con-
siderably precise compared to those of previous research
findings, which used 180 s of recording in the resting
state [7]. Even though we used 21 electrodes that cover the
international 10-20 system, only three or four electrodes (or
features) (e.g., Fz, O1, and F3) can be used to achieve a rea-
sonable classification accuracy according to the feature selec-
tion result listed in Table 2. However, because characteristics
of features generally change if data length used to extract
features varies, proper features would change depending on
the length of analysis time. We confirmed this effect when
investigating the effect of the length of analysis time, where
four mostly selected features were fixed for classification
(O1 16 m, Fz 16 k, Fz 16 s, and F3 32 m). As a result,
similar to Fig. 4 showing classification accuracies obtained
using the best features for each analysis data length, classifi-
cation accuracies increased as analysis time length increased,
but they more fluctuated and showed lower performance
in general, compared to those shown in Fig. 4. (detailed
results are not shown here). Also, note that only two channels
showed a statistically significant difference between BD and
schizophrenic patients (O1 for SNR mean and Fz for SNR
kurtosis). However, this does not mean that only the two
channels can be fully used for classifying the two groups,
but that they contain the most discriminative information. The
required time and number of electrodes for EEG recording are
crucial for clinical use, especially for impatient psychiatric
patients because they cannot concentrate on the experiment
and keep stayed for a long time in general. Thus, it is expected
that our proposed analysis framework using SSVEP might
be practically introduced for clinical use in view of its rel-
atively short EEG recording time using only a few number of
electrodes.

Deviations in SSVEP responses, such as reduced spec-
tral power in the alpha or beta frequency bands, have been
reported in schizophrenic patients, compared to healthy con-
trol subjects [22]-[25], which have been shown in thalamus,
frontal and occipital regions [28], [47]. A similar observa-
tion was also revealed in this study, though we compared
schizophrenia with BD. In the topographic maps of the SNR
mean (Fig. 2), larger SNR values were mainly observed over
the occipital lobe in both BD and schizophrenic patients,
but overall SNR mean values in the schizophrenic group are
lower than those in the BD group at 16 Hz.

Mean powers of SSVEP-SNRs have been used in previous
studies to distinguish schizophrenic patients from other psy-
chiatric disorders or normal subjects [22]—[25]. In the present
study, skewness and kurtosis, as higher order statistics of
SSVEP-SNRs, were also used as novel features to classify the
two psychiatric diseases. Note that the classification accuracy
of up to 91.30%, which was obtained using the three features
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(mean, skewness, and kurtosis), was significantly higher than
that obtained by using only the mean features: a maximum
mean classification accuracy of 75.65% is achieved when the
number of features selected by the Fisher score is three, and
a maximum classification accuracy of 80.43% is obtained
when the number of selected features is 10 with SVM (not
shown here in detail).

There are several evidences on the improper connections
between the cerebral hemispheres in schizophrenic patients,
leading to deteriorate the normal EEG patterns [48]-[51].
In this study, the skewness and kurtosis of SSVEP-SNR
were used to precisely measure the effect of schizophrenia
on the shape of SSVEP in terms of non-Gaussianity and
the amount of sharpness/flatness. Because the distribution
of SSVEP-SNR captures data variability, these statistical
indexes demonstrate both the variability of SSVEP-SNR
during a long trial recording and the disease-related differ-
ence in the response of their visual processing systems. The
achieved results implied higher skewness and kurtosis in the
fronto-parietal areas in schizophrenic patients compared to
those of BD ones. This result implies a potential deficit in the
visual processing path of schizophrenic patients, leading to
the generation of unstable VEP patterns.

In our previous study [26], we used a visual evoked
potential (VEP) paradigm similar to our SSVEP one for
quantitatively discriminating between patients with BD and
attention deficit hyperactivity disorder (ADHD). Because
of the significantly different neural responses to the VEP
paradigm between BD and ADHD patients, we could dis-
criminate between BD and ADHD patient groups with a
high accuracy of up to 92.85 %. As our proposed SSVEP
approach is also based on the fact that different psychiatric
disorders present different neural characteristics during visual
processing, it is expected that our proposed approach could
similarly be applied to the discrimination between BD and
ADHD patients. In this sense, our SSVEP approach could be
extended to classify any type of psychiatric disorders if they
manifest the different degrees of visual function. In particular,
to increase diagnostic accuracy, our quantitative diagnostic
method could be incorporated in the first stage of disease
identification using traditional qualitative methods, such as
ICD-10 or DSM-V.

In the present study, we used five different classifiers to get
as high classification accuracy as possible. The performance
of KNN was statistically higher than that of LDA and QDA,
and SVM also showed statistically higher performance than
LDA (Fig. 3). Moreover, LRA showed statistically higher
classification performance than the other classifiers when
investigating the impact of the length of analysis time (Fig. 4).
However, it is hard to provide a proper reason why a partic-
ular classifier shows better performance than others because
classification accuracies of different classifiers highly depend
on given datasets. For example, although KNN showed the
highest classification accuracy (91.3 %), the classification
accuracy of KNN also varied depending on the number of
selected features and time length. Thus, a classifier showing
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higher performance might change if some experimental vari-
ables change, such as number of samples, type of psychiatric
disorders employed in the experiment, and so on. Unfortu-
nately, to the best of our knowledge, only the way to find
the best classifier for given dataset is to undergo trial and
error with different classifiers. For our SSVEP dataset, KNN,
SVM, and LRA showed higher classification performance
than other classifiers in general.

V. CONCLUSION AND FUTURE WORKS

In this research, we proposed an SSVEP-based framework for
the classification of BD and schizophrenic patients. In addi-
tion, because possible deficits in the interhemispheric inter-
action of the brain of schizophrenic patients would affect
visual pathways, skewness and kurtosis of SSVEP SNRs were
suggested as new classification features in order to detect
the deterioration. Using high SNR of SSVEP amplitude,
we do not need to apply a heavy preprocessing, making
this method computationally inexpensive. Moreover, short
recording times with a relatively small number of electrodes
for SSVEP in this framework is an advantage over other
methods requiring long recording time with more number of
electrodes (e.g., at least 19 for the international 10-20 system)
in the resting state. Therefore, our proposed classification
framework can be easily incorporated into routine clinical
practice (e.g., in the first interviewing session) as an assistant
diagnostic tool with conventional qualitative criteria, such as
DSM-V and ICD-10 for a more accurately discrimination
between BD and schizophrenia.

The present study had a few shortcomings that can be
compensated in future studies. One limitation is that we
cannot control the possible confounding effects of antipsy-
chotic drugs taken by the patients. Second, we used only
one frequency (16 Hz) for modulating a visual stimulus in
testing our framework. Because it has been well-documented
that SSVEPs can be induced between 1 and 100 Hz [52]
and there are subject-specific frequencies that yield higher
SNR SSVEPs [31], various frequencies can be considered
not only to investigate different neuronal substrates in terms
of the modulation frequency, but also to increase diagnostic
accuracy.
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