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ABSTRACT In this paper, an efficient super-resolution (SR) method based on deep convolutional neural
network (CNN) is proposed, namely gradual upsampling network (GUN). Recent CNN-based SR methods
often preliminarily magnify the low-resolution (LR) input to high-resolution (HR) input and then reconstruct
the HR input, or directly reconstruct the LR input and then recover the HR result at the last layer. The
proposed GUN utilizes a gradual process instead of these two commonly used frameworks. The GUN
consists of an input layer, multiple upsampling and convolutional layers, and an output layer. By means of
the gradual process, the proposed network can simplify the direct SR problem to multistep easier upsampling
tasks with very small magnification factor in each step. Furthermore, a gradual training strategy is presented
for the GUN. In the proposed training process, an initial network can be easily trained with edgelike samples,
and then, the weights are gradually tuned with more complex samples. The GUN can recover fine and vivid
results and is easy to be trained. The experimental results on several image sets demonstrate the effectiveness
of the proposed network.

INDEX TERMS Super-resolution, upsampling, convolutional neural network.

I. INTRODUCTION
Single image super-resolution (SISR), which is also known
as image upsampling, upscaling, or magnification, is a
classical problem in computer vision and image process-
ing. Generally, the aim of SISR is to reconstruct a high-
quality (HQ) and high-resolution (HR) image from a single
low-resolution (LR) input. It is a typical ill-posed problem
since the detailed information of LR image is lost. Although
many important progresses have beenmade in the past several
decades, how to recover a HQ and HR image with low cost is
still a fundamental and challenging task.

The basic SISR method is interpolation-based algorithm,
such as nearest-neighbor, bilinear, bicubic [1], [2]. Unfortu-
nately, interpolation often causes blurring, jaggy, and ring-
ing effects. Hence, many methods have been proposed to
suppress these unnatural artifacts by means of different
strategies, such as introducing edge prior knowledge [3]–[5],
altering interpolated grid [6]–[9], and sharpening the

edges [10]–[12], etc. These improved methods refine the
unnatural artifacts, but they still cannot recover extra details.

Reconstruction-based algorithm is another type of clas-
sical SISR method. This kind of method is based on a
fundamental constraint that the reconstructed HR image
should be consistent with the original LR input. In order
to reproduce better results, many extra constraints or image
models have been proposed over the years, e.g., gradient-
based constraints [13]–[18], local texture constraint [19],
total variation regularizer [20], [21], deblurring-based
models [22]–[24], etc. However, the performance of these
reconstruction-based algorithms often degrades rapidly when
the magnification factor increases, because the basic similar-
ity constraint is defined on the LR space.

Example-based or learning-based method has received
increasing attention in recent years. This kind of algo-
rithm tries to reconstruct the missing details via lots of
known LR/HR example-pairs. Learning-based method is first
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presented in [25] and further developed in [26]–[50].
Many typical and effective learning-based models have
been proposed, such as neighbor embedding based
algorithms [26]–[29], sparse representation based meth-
ods [30]–[37], and local self-exemplar models [38]–[41].
Although these methods can recover sharp edges with fine
details, the computation cost of them is often quite high.
The most time-consuming process of these methods is the
patch-by-patch optimization of representation coefficients or
weights. Recently, some fast and high-performance SISR
models have been presented, i.e., anchor neighborhood
regression methods [42], [43], and SISR forests [59], [66].
These models can obtain obvious speedup by means of
pre-computed projection matrix or efficient random forest
algorithm.

In recent several years, deep neural network (DNN) based
methods have been widely applied in computer vision tasks
and have achieved impressive results. Many DNN based
SISR algorithms have also been proposed. Dong et al. [44]
presented an effective SISR method by means of a shallow
convolutional neural network (CNN). Kim et al. [45] further
improve this method by successfully training a narrower and
deeper CNN for SISR. Furthermore,many other DNNmodels
have been applied in super-resolution (SR) scenario, such
as deep residual network [55], sparse convolutional network
[48], [60], recursive convolutional network [46], bidirectional
recurrent convolutional network [54], collaborative local
auto-encoder [53] and so on. In many CNN-based methods,
the SISR is treated as an image reconstruction problem,
and a general convolutional network without pooling and
fully-connected layers is often used. The CNN has a strong
ability to fit a highly nonlinear regression problem, and
thus these CNN-based SR methods have achieved state-of-
the-art results. The upsampling strategies in these CNN-
based methods can be roughly divided into two categories:
some methods preliminarily magnify the LR input to high
resolution and then utilize the network to reconstruct the HR
inputs [44]–[48]; some other methods directly reconstruct
the LR input by means of convolutional networks and then
reform the HR result in the last layer [49], [50].Most recently,
the generative adversarial network (GAN)-based SRmethods
[55], [56] reveal a possible way to recover fine texture details.

Most recently, many state-of-the-art deep residual net-
work (ResNet)-based SR methods [51] have been proposed,
and unceasingly refresh the PSNR records [52]. Owing to
efficient residual connection and larger datasets, recent SR
networks become increasingly deeper and better. However,
deeper network also required more computational cost in
many SR applications, such as FHD or UHD video recon-
struction. This paper doesn’t focus on training a very deep
network to chasing the PSNR record, but tries to simplify
traditional CNN-based SR model and make it easier to be
trained. Concretely, a gradual upsampling network (GUN)
is proposed, which gradually reconstructs the LR input to
larger resolution by introducing several upsampling lay-
ers. Different to the methods [44] and [45], which directly

reconstruct the interpolated HR input via deep network,
the proposed GUN can be regarded as the concatenation of
many sub-networks. In each sub-network, the target mag-
nification factor is very small and thus the difficulty of
learning in each step can be reduced. Gradual upsampling
is a commonly used strategy in SR and other similar ill-
posed problems. For example, direct magnifying with large
factor is difficult in local self-exemplar methods, because
merely finite self-examples can be used. Some methods [39]
thus utilize the multistep magnification and adopt a very
small factor (e.g., 1.1×, 1.2×) in each step to reduce the
difficulty of reconstruction. To take another example, it is
also very hard to directly generate a HR image in generative
model, the Laplacian pyramid GAN [57] and a CNN-based
method [58] both enforce gradual upscaling process to yield
a final full resolution output. Compared to the conventional
CNN-based SR networks [44], [45], the proposed GUN has
the following merits,

1) The gradual upsampling can relax the difficult direct
magnification task to several easier upsampling prob-
lems with very small factor. The GUN is thus easier to
be learned.

2) A gradual training method is presented for GUN. The
gradual training process can rapidly train an initial
network with finite simple samples. The GUN is then
gradually optimized to reproduce HQ and HR results
by continually adding more complicated samples to the
training process.

3) Moreover, compared with some direct upsampling
methods [44]–[48], the gradual upsampling can reduce
the resolution of feature maps during the convolutional
process, and therefore can decrease the computational
cost.

The following paragraphs of this paper are organized as
follows. Section II introduces the proposed GUN and grad-
ual training process in details. Section III presents some
implementation details. Experimental results are given in
Section IV, and Section V concludes the paper.

II. GRADUAL UPSAMPLING NETWORK
A. THE PROPOSED NETWORK
As illustrated in Fig.1, the proposed GUN consists of several
layers, i.e., an input layer, multistep upsampling and convo-
lutional layers, and a final output layer. In order to concisely
illustrate the network, the activation and batch normalization
(BN) layers are not shown in Fig.1. Each component of the
GUN is described in the following.

1) INPUT LAYER
Similar to the CNN-based SR methods [44], [45], the input
layer of the GUN is also a typical convolutional (conv.)
layer activated by the rectified linear units (ReLU). Hence,
given a LR input y of size (mL , nL), the output of the input
layer is,

Fin (y) = ReLU (ωin ∗ y+ bin) . (1)
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FIGURE 1. The framework of the proposed GUN.

In this paper, we use 64 filters with the size of 3× 3 in the
first layer, and thus the sizes of weights ωin and bias term bin
are 3×3×1×64 and 1×64, respectively. It should be noted
that all the conv. processes in the GUN are with zero-padding,
so that the resolution is invariant after the conv. process.

2) UPSAMPLING LAYER
The upsampling layer can resize the input to a slightly larger
resolution, which can be described as,

F lup
(
yl
)
= U ↑

(
yl
)
, (2)

where yl is the input of the layer l, and U ↑ denotes the
upsampling process. The magnification factors of U ↑ are
mainly decided by the depth of the GUN, and are often much
less than 2. In this paper, the traditional bicubic interpolation
is adopted in the upsampling layers. It should be noticed that
other interpolation methods or fast SR methods can also be
applied in the upsampling layer. For a fair comparison with
[44] and [45], which adopt bicubic to magnify the original LR
images, same bicubic interpolation is thus used in this paper.
Correspondingly, the propagated error value passed by this
layer need to be downsampled during the back propagation
process:

δl = D ↓
(
δl+1

)
, (3)

where δl denotes error value of the l-th layer, and D ↓
represents the downsampling process.

Suppose the size of final output HR image x is (mH , nH ),
and the LR input y is gradually reconstructed with total N
steps, then the upsampled resolution of the i-th upsampling
layer is computed as,

(mL + i1m, nL + i1n) , i = 1, 2, · · · ,N − 1, (4)

where,

1m = R
(
mH − mL

N

)
,

1n = R
(
nH − nL

N

)
,

R(·) denotes the round down function. Note that the upsam-
pled resolution of the N -th step is fixed to (mH , nH ), so that
the resolution of the final output is the same with the target.

Note that the de-convolutional (de-conv.) or un-pooling
layer can also enlarge the resolution of the output. However,
the un-pooling layer can merely upscale with a fixed integer
factor, and the enlarged size of de-conv. layer is strictly
determined by the size of filters or the stride of de-conv.
process. Compared to un-pooling layer and de-conv. layer,
the upsampling layer can magnify the input to a specified
resolution more freely.1

3) CONVOLUTIONAL LAYERS
In the proposed GUN, the LR input is gradually upsampled
within many steps. Each step contains an upsampling layer
and several conv. layers. Motivated by the VGG-Net [61] and
the VDSR [45], the stack of many 3×3 conv. layers can have
an effective receptive field of larger sizes, e.g., 5× 5, 7× 7,
and so on. Therefore, we also set the size of filters to 3 × 3.
However, the multiple 3 × 3 convolutions cannot represent
1× 1 convolution. It has been proven that 1× 1 convolution
is valid in the SR problem [44]. We thus add a 1 × 1 conv.
layer as the last layer in each step. Then the output of the
conv. layer l can be calculated as,

F l
(
yl
)
= ReLU

(
ωl ∗ yl + bl

)
. (5)

We also utilize 64 feature maps in all the conv. layers.
Hence, the size of ωl is 1 × 1 × 64 × 64 for the last conv.
layer in each step, and the size of ωl for all the other conv.
layers is 3×3×64×64. The size of bl is therefore 1×64 for
all the conv. layers. In addition, a BN layer is applied after
each conv. layer in the GUN to enhance the capacity of the
network.

4) OUTPUT LAYER
The final output layer is computed as,

x = ωout ∗ yl + bout , (6)

1A gradually de-conv. network is also presented similar to the GUN.More
details and related experimental results can be found in the supplementary
materials: http://yzhaocv.weebly.com/projectpage/gun-supplementary

VOLUME 6, 2018 39365



Y. Zhao et al.: GUN for Single Image SR

where the sizes of ωout and bout are 3× 3× 64× 1 and 1× 1,
respectively.

In the end of this sub-section, we further discuss the rela-
tionship between the GUN and some other gradual/ cascaded
SR methods. For instance, the original sparse coding based
network (SCN) [67] is designed for fixed 2× scale, an effec-
tive cascaded framework is thus introduced to achieve 4×
magnification by twice 2× magnifications. This cascaded
SR process is also proved to be better than direct 4× SR.
In [47] and [68], multiple 2× upsampling processes are used
in a cascade network to magnify image with large scales.
These methods demonstrate the effectiveness of the cascaded
framework, but the magnification factors of the proposed
upsampling layers are much smaller than fixed 2×. These
small factors in the GUN are similar to traditional local
self-exemplar based methods [39] and cascaded collaborative
local auto-encoder (CLA) method [53]. But different to [53],
the proposed GUN fuses the gradual upsampling processes
into an end-to-end network, while the CLA and self-exemplar
blocks in [53] need to be optimized independently.

B. TRAINING OF THE GUN
1) NORMAL TRAINING SETTINGS
As in other SR networks, the average mean squared
error (MSE) is also used as the loss function for the GUN.
The MSE loss can restrict that the pixel-wise contents of the
output are exactly consistent with that of the HR sample.
Given a training image set {xn, yn}Nsn=1, the GUN can be
trained by minimizing the following MSE loss function,

L (2) =
1
Ns

Ns∑
n=1

∥∥f (yn;2)− xn∥∥2 , (7)

where f (·) denotes the output of the network, and 2 is the
weight set of the GUN.

In this paper, we adopt the training image set proposed by
Yang et al. [30], which is also used in many other learning-
based methods [30]–[35], [42]–[45]. This training set con-
tains 91 images downloaded from the internet. Many sample
patches are randomly selected from each training image with
overlapping, and these patches are further augmented by
rotating with three orientations (45◦, 90◦, and 180◦).
The proposed GUN is trained by utilizing mini-batch

gradient descent based on backward propagation. Each mini-
batch contains 64 image patches. The momentum parameter
and weight decay are set as in [45]. The learning rate is
initially set to 10−4 and then decreased by a factor of 10 after
several epochs. We implement the GUN2 by means of the
MatConvNet3 package [62].

2) GRADUAL TRAINING: FROM EASY TO DIFFICULT
Image set is very important to train an effective deep network.
Related works often enlarge the quantity of training samples

2The demo codes of the GUN can be downloaded from the following
website: http://yzhaocv.weebly.com/projectpage/gun

3http://www.vlfeat.org/matconvnet/

to refine the performance, e.g., adding more images into the
training set, extracting more patches from one image, and
data augmentation (flipping, rotation, scaling, and so on).
However, all these samples play the same role during the
training process. In traditional learning-based SR methods,
it can be found that the edge-like patterns with stable local
structure are much easier to be learned in the dictionary than
other kinds of patches. For example, most of the dictionary
atoms learned via sparse representation or clustering are
edge-like local patterns. Is it also easier to train the network
bymeans of these edge-like patches? To answer this question,
we adopt a gradual training process. In the gradual training,
the patches which contain sharp edges are firstly chosen as
the initial training set. Patches with flatter structure are then
gradually added into the training set. By using the proposed
training process, the GUN is firstly trained to magnify the
sharp edges, and the details of sharp edge area are relatively
easier to be learned. The network then learns to reconstruct
more difficult situations by gradually fine-tuning the weights
with more training samples.

In this paper, the edge-like patches are selected by means
of the average local gray value difference (ALGD), which can
be computed as,

vALGD =
1
Np

Np∑
p=1

(
gp − g

)
, (8)

where gp(p = 1, 2, · · · ,Np) denotes a pixel in an image
patch, Np is the total number of pixels in that patch, and
g denotes the average gray value of the patch. The edge-
like patches can then be selected by comparing the ALGD
value with the average ALGD value of the whole training
set (vALGD) as follows,

vALGD ≥ λvALGD,

where λ is an artificial parameters, and the λ is orderly set
as 1.2, 1, 0.8, 0.5, and 0 in our training process. At the first,
the sharp-edge-patches with (λ = 1.2) are utilized to form
the initial training set. Take 4× magnification for example,
merely about 29, 000 12 × 12 patches are extracted. This
training stage is convergence very fast within first 3-5 epochs,
and it is much faster than the normal training process since
the size of this initial training set is much smaller. The
reconstructed results of different training stages are illustrated
in Fig.2. From Fig.2(b) we can find that the GUN can learn
to magnify sharp edges with faster training and less samples.
But unfortunately, the flat areas are also over-sharpened.
We then feed more patches with (λ = 1) to the network,
and the number of samples is increased to almost 82, 000 for
4×magnification. This training stage costs another 3 epochs.
The upsampling results after this stage is shown in Fig.2(c).
It can be found that the reconstructed edges become clearer,
and the flat areas are much better than the former results.
Similarly, the patches with (λ = 0.8, 0.5, and 0) are added
into the training set in turn, and finally over 300, 000 samples
are utilized. By comparing the results in Fig.2, we can find
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FIGURE 2. The 4× upsampling results of different training stages, (a) Bicubic results (b) training with λ = 1.2, (c) training with λ = 1, (d) training with
λ = 0.8, (e) training with λ = 0.5, (f) training with λ = 0.

that the gradual training process can reproduce both sharp
edges and natural flat area by gradually tuning the weights.
We implement each training stage about 3 epochs, and totally
use 15-20 epochs to train the GUN. This proposed training
process roughly cost merely 2-3 hours on a PC using a
Titan X GPU.

The average PSNR values of 2×, 3×, and 4× magnifica-
tions of different training stages are listed in the Table 1. From
which we can find that the initial training with small training
set can already obtain fine PSNR results. These results are
then slowly improved by tuning the network with more and
complex training samples. Furthermore, the results of the
gradual training also verify the prior knowledge about the
training of SR network, i.e., the reconstruction of sharp edges
with stable local structure are easier to be learned, and gradual
training can make the network learn the SR task better, from
easy to difficult.

TABLE 1. Average PSNR (DB) on ‘set14’ with different gradual training
stages.

Similarmultistep training strategies have been successfully
applied for many applications. For example, in a texture
synthesis network [69], Li et al. observed the deep net-
work has the following two properties, i.e., the network can
learn one texture and then gradually learn other textures,
and the network does not forget what is already learned.

The proposed gradual training process for the GUN also
partially verifies this opinion.

C. DISCUSSION OF THE COMPUTATION COMPLEXITY
The computation complexity of the GUN can be computed
as,

O

{(
f 21 q1

)
S1 +

N∑
i=1

(
D∑
l=1

pl f 2l ql

)
Si +

(
pL f 2L

)
SL

}
(9)

where S1, Si, and SL denote the size of the LR image, the size
of the i-th step maps, and the size of the HR output, respec-
tively. The fl is the filter size of the l-th layer, pl/ql represents
the number of input/output feature maps of the l-th layer, and
D denotes the depth of the sub-network in each step. It can
be observed that the complexity is proportional to the size of
image, the number of feature maps in each layer, filter size,
and the depth of the network. As mentioned before, the pl/ql
is fixed as 64, and the filter size is set as small as 3 or 1 in
the proposed network to avoid high computation complexity.
Furthermore, the GUN has lower computation complexity
than the direct upsampling network [44], [45], since the Si
is smaller than the SL .

III. IMPLEMENTATION DETAILS
A. SELECTION OF THE DEPTH
In [45], Kim et al. have proven that deeper network can
obtain better SR results. Hence, it is important to select an
appropriate depth of the network. In theGUN, the depth of the
network ismainly decided by two parameters, i.e., the number
of upsampling steps, and the depth of the sub-network in
each step. In the following, we test the selection of these two
parameters separately.
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FIGURE 3. Average PSNR values with different depths in each step on ‘Set14’, (a) 2× magnification, (b) 3× magnification, (c) 4× magnification.

FIGURE 4. Average PSNR values with different number of steps on ‘Set14’, (a) 2× magnification, (b) 3× magnification, (c) 4× magnification.

1) SELECTION OF DEPTH IN EACH STEP
Fig.3 illustrates the average PSNR values on ‘Set14’ with
different depths in each step. The total number of steps is
fixed as 4, and the size of input patch is 12 × 12. Each step
consists of several 3 × 3 conv. layers and one last 1 × 1
conv. layer. As shown in Fig.3, it can be found that the deeper
network also performs the better. However, the PSNR results
increase slowly when the depth is larger than 4, presumably
because of the fixed training settings and finite training sam-
ples. The deeper network also costs more training and testing
time. The depth in each step is thus set to 4 in the following
experiment.

2) SELECTION OF STEPS
Fig.4 shows the relationship between the average PSNR
results and the total number of steps. The input patch size
is also 12 × 12, and the depth in each step is fixed to 4.
On the whole, increasing the number of steps can improve the
performance. This also demonstrates the deeper the network
the better the results. Note that the number of steps is also
influenced by the increased resolution between the LR and
HR training patches. In this paper, the numbers of steps
are experimentally set as 5, 8, and 9 for 2×, 3×, and 4×
magnification, respectively.

B. SIZE OF THE INPUT PATCH
The average PSNR values with different patch sizes are
shown in Fig.5. We can find that enlarging the patch can
also slightly increase the PSNR results. It should be noticed
that the quantity of samples are fixed as 200, 000 to train
the networks. In practice, larger patch size also leads to the
reduction of total training samples. As a result, the patch
sizes are selected by considering both the performance and
the total number of training samples. In our experiment,
the patch sizes are chosen as 20, 16, and 12 for 2×, 3×, and
4× magnification, respectively.

IV. EXPERIMENTAL RESULTS
A. TESTING IMAGE SETS
For testing, three typical and largish image sets are used,
i.e., subset of ‘Set14’ [36], ‘B100’ [42], and Kodak PhotoCD
dataset.4 ‘B100’ selects 100 images from the Berkeley Seg-
mentation dataset (BSD) [54]. The Kodak PhotoCD dataset
consists of 24 lossless true color images without compres-
sion artifacts, and is used as a standard testing set for many
image processing works [66]. Note that ‘Set14’ even contains
zero-padded 6-bit image (e.g. the ‘bridge’) [70], which is
unreasonable to be used for 8-bit image SR experiment.

4http://r0k.us/graphics/kodak/
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FIGURE 5. Average PSNR values with different patch sizes on ‘Set14’, (a) 2× magnification, (b) 3× magnification, (c) 4× magnification.

FIGURE 6. 3× and 4× upsampled results of ‘kodim08’ image with different methods, (a) with bicubic, (b) with the ASDS [32], (c) with the ANR [42],
(d) with the A+ [43], (e) with the SRCNN [44]. (f) with the VDSR [45], (g) with the GUN.

Hence, 11 color images are selected from original ‘Set14’ to
constitute a subset in our experiment.

B. COMPARISON WITH OTHER METHODS
In this section, we compare the proposed GUN with some
learning-based methods, such as the LLE [26], the ScSR [30],
the ASDS [32], the ANR [42], the A+ [43], the SRCNN [44],
and the VDSR [45]. In t experiment, the color testing images
are firstly converted fromRGB toYCrCb, and these SRmeth-
ods are applied only on Y (intensity) component. The rest two
channels are simply reconstructed with bicubic interpolation.
In our experiment, the LR inputs are obtained by down-
sampling the original HR images with bicubic interpolation.
Note that the ASDS firstly filtered and then downsampled the
HR image to obtain the LR input, which is slightly different
to other methods. The magnification factors in this paper are
set as 2, 3, and 4.

Fig.6 compares the 3× and 4× magnified results with
different SR methods. The zoom-up area is marked with
blue rectangle, and the HR ground truth is also given.
By comparing the upsampled edges of the roof, we can
make the following observations. First, these learning-
based methods can recover much better lines than bicubic.

Second, the two CNN-based methods, i.e., the VDSR and
the GUN, can reproduce sharp edges for 4× SR. Last,
by comparing the details around the roof edges, the pro-
posed GUN obtains clearer and sharper results than other
methods.

Fig.7 also illustrates the 3× and 4× upsampled results of
‘monarch’ image with different methods. Two area on the
wings of the monarch are shown, from which we can get the
following findings. First, the bicubic interpolated results are
very jaggy and blurring, and the learning-based methods can
reconstruct sharper edges. The results of the GUN are the
sharpest among them. Second, the VDSR and the GUN can
reproduce fine flat area than other methods, and that make
their results much cleaner and clearer. Last, by comparing
the tiny lines in the 4× results, the GUN can recover more
natural and better details by means of the gradual learning
and upsampling.

Fig.8 compares the 3× and 4× SR results on another
image. We can get some findings similar to Fig.6. The A+,
the SRCNN, the VDSR and the proposed GUN can recon-
struct clear and smooth edges. By comparing the necklace
area, the GUN still recovers sharper and clearer edges than
other comparisons.
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FIGURE 7. 3× and 4× upsampled results of ‘monarch’ image with different methods, (a) with bicubic, (b) with the ASDS [32], (c) with the ANR [42],
(d) with the A+ [43], (e) with the SRCNN [44]. (f) with the VDSR [45], (g) with the GUN.

FIGURE 8. 3× and 4× upsampled results of ‘kodim18’ image with different methods, (a) with bicubic, (b) with the LLE [26], (c) with the ASDS [32],
(d) with the ANR [42], (e) with the A+ [43], (f) with the SRCNN [44]. (g) with the VDSR [45], (h) with the GUN.

The 2× results on image ‘PPT’ with various methods are
shown in Fig.9. We can find all these learning-based meth-
ods can recover fine edges for small magnification factor.
To facilitate the comparison of subjective quality, the resid-
ual map between each result and the original HR image
is multiplied by 20 and then illustrated. By comparing the
details around the digits, we can obtain some observations.
First, the result of bicubic interpolation is blurry but without
fake edges. Second, the VDSR and the GUN can reproduce
clear edges, while other methods suffer from either ringing
effects or fake edges. Last, by comparing the residual compo-
nents, the GUN achieves the least difference to the HR ground
truth.

For objective quality assessment, we utilize two common
evaluation metrics of the PSNR and the SSIM [63]. However,
the information fidelity criterion (IFC) [65] is proved to have
higher correlation with human ratings for SR evaluation than

PSNR and SSIM [64]. Thus we also adopt the IFC in the
experiment to estimate the subjective quality of different
SR results. Table 2, Table 3, and Table 4 list the objective
assessment results on three datasets of the ‘B100’, the subset
of ‘Set14’, and the Kodak dataset, respectively. From these
tables, it can be found that the proposed GUN can achieve
higher PSNR and SSIM values than other methods for differ-
ent magnification factors and different datasets. By compar-
ing the IFC values, the proposed GUN also obtains better IFC
results than other methods. These results also demonstrate the
effectiveness of the proposed network and the training pro-
cesses. Note that the SRCNN and VDSR are also trained with
Yang’s 91 images [30] to make a fair comparison with tradi-
tional learning-based methods. Indeed, CNN-based methods
can achieve much better results by means of larger training
sets [47]. In Table 2, we also list upsampling results of the
SRCNN trained on subset of ImageNet [44], and the VDSR
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FIGURE 9. 2× SR results of ‘PPT’ image with different methods, (a) with bicubic, (b) with the LLE [26], (c) with the ASDS [32], (d) with the ANR [42],
(e) with the A+ [43], (f) with the SRCNN [44]. (g) with the VDSR [45], (h) with the GUN. The residual map between each result and the original
HR image is illustrated.

TABLE 2. Average PSNR (dB), SSIM, and IFC of different methods on image set ‘‘B100’’.

trained with 91 images and 200 BSD images [45]. It can be
easily found that the CNN-based models benefit a lot from
sufficient training data, and the upsampling results of the
proposed GUN can also be further improved by means of
more training images.

C. FURTHER ANALYSES
Finally we again describe the benefits and further analyze the
limitations of the proposed GUN. The gradual upsampling

can reduce the difficulty of training a direct upsampling
network. Furthermore, the proposed training process can
rapidly train an initial network and then gradually optimize
the weights. By comparing with the efficient deep network
VDSR [45], although the residual-training and gradient clip-
ping strategies are not used in the proposed network, the GUN
is still converged very fast in the first several epochs. The
GUN can be regarded as a variant of the VDSR which is
specially designed for the SR scenario. But for other image
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TABLE 3. Average PSNR (dB), SSIM, and IFC of different methods on ‘‘Subset of Set14’’.

TABLE 4. Average PSNR (dB), SSIM, and IFC of different methods on image set ‘‘Kodak’’.

reconstruction problems, such as denoising and deblocking,
the VDSR is still much easier to be applied than the GUN,
since the upsampling process maybe not needed in these
tasks. Recently, especially in recent SR competition [52],
many state-of-the-art ResNet-based SR methods have been
proposed and outperform traditional CNN-based models by
means of deeper network and skip connections. Since CNN
is the basic model of SR network, the proposed gradual
structure can naturally be applied for ResNet-based models.

V. CONCLUSIONS
In this paper, an efficient deep convolutional neural network
based super-resolution method has been proposed, namely
Gradual Upsampling Network (GUN). The proposed GUN
consists of an input layer, multistep upsampling and con-
volutional layers, and an output layer. The difficult direct
upsampling problem is relaxed to several easier gradual
upsampling processes with very small magnification factors.
Hence, the GUN can efficiently learn to reconstruct the
HR results, step-by-step. Furthermore, we present a gradual
training process for the GUN, in which the simple edge-
like patches are firstly utilized to train an initial network and
then more complex patches are added to tuning the weights.
Experimental results on three representative image datasets
demonstrate that the proposed gradual structure and training

strategy can promote the performance of conventional
CNN-based method, and make the training phase much
easier.
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