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ABSTRACT Virtual reality (VR), a new type of simulation and interaction technology, has aroused
widespread attention and research interest. It is necessary to evaluate the VR quality and provide a
standard for the rapidly developing technology. To the best of our knowledge, a few researchers have built
benchmark databases and designed related algorithms, which has hindered the further development of the
VR technology. In this paper, a free available data set (VRQ-TJU) for VR quality assessment is proposed
with subjective scores for each sample data. The validity for the designed database has been proved based on
the traditional multimedia quality assessment metrics. In addition, an end-to-end 3-D convolutional neural
network is introduced to predict the VR video quality without a referenced VR video. This method can
extract spatiotemporal features and does not require using hand-crafted features. At the same time, a new
score fusion strategy is designed based on the characteristics of the VR video projection process. Taking
the pre-processed VR video patches as input, the network captures local spatiotemporal features and gets
the score of every patch. Then, the new quality score fusion strategy is applied to get the final score. Such
approach shows advanced performance on this database.

INDEX TERMS Virtual reality quality assessment, benchmark database, 3D convolutional neural networks,
spatiotemporal features, quality score fusion strategy.

I. INTRODUCTION
With the increase of the variety of multimedia, human beings
have more access to receive visual information. As a new
simulation and interaction technology, virtual reality (VR)
technology is used in many fields [1] such as architecture,
military affairs and game. It can create a virtual environment
which is consistent with the real world rules, or build a com-
plete hypothetical environment which is contrary to reality.
At present, the implementation of VR technology is very
challenging. On the one hand, VR requires more complex
implementation conditions [2]. People must be equipped with
specific devices to feel the immersion [3] of VR. The related
equipment and application scenarios restrict the further devel-
opment of VR. On the other hand, VR requires a variety of
perceptual information to match each other to achieve a good

quality of experience, and the content of VR is different from
the traditional media. Therefore, it is necessary to evaluate
the quality of all aspects of VR to promote the more stan-
dardized development of the industry. VR video, also known
as panoramic stereoscopic video, is a video work played by
virtual reality output device. Its purpose is to bring immersive
experience with on-the-spot interaction for users to watch
videos. Good visual information can bring immersion in
the virtual scene, while low quality visual information not
only brings bad experience [4], but also can lead to physical
disease. As the carrier of VR visual information, VR video
requires people to design the appropriate method for virtual
reality video quality assessment (VRVQA).

Similar to other multimedia quality assessment (MQA)
methods, VRVQA can be devided into two types: subjective
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assessment and objective assessment [5], [6]. Particularly,
subjective evaluation is based on the human observers and
objective evaluation provides an index generated by the
machine to fit the human observers. That is, an objective
assessment based on the algorithm is committed to achieve
agreement with subjective results. Similar to video quality
assessment (VQA), the objective VRVQA method is divided
into three types: full-reference (FR), reduced-reference (RR)
and no- reference (NR). FR methods need all the information
of the original video. RR methods need some information of
the original video. NR methods can obtain the video quality
without analyzing any original video information. Therefore,
NR methods have more application value and research sig-
nificance.

In addition, the design of objective evaluation algorithms
for multimedia usually requires an authoritative subjective
database as a benchmark. In image quality assessment (IQA)
and video quality assessment (VQA), there are some famous
datasets to measure the validation for the different evaluators:
LIVE database [7], [8], IVC database [9],MCL database [10],
NBU database [11], NAMA3D database [12] etc. However,
there is only one database for video frame rate, bit rate,
and resolution in the field of virtual reality assessment [13].
Based on the situation, it is necessary to construct a specially
designed dataset for VRVQA, which will be done in this
paper.

What needs to be emphasized here is that the VR video
acquired by this database belongs to 3D panoramic video,
also called 360 degree 3D virtual reality video. In all areas
related to quality assessment, the most significant areas are
stereoscopic image quality assessment (SIQA) and stereo-
scopic video quality assessment (SVQA). Similar to stereo-
scopic video, VR video can be divided into left and right
views for stereo perception. Specially, we can not fully utilize
the method based on stereoscopic video quality assessment
for VRVQA. Because there are many differences between
VR video and traditional stereoscopic video [2], [14], [15].
First of all, the filming and production process of VR video
is more complicated. In comparison with stereoscopic video,
VR video introduces more factors, such as video splicing and
synchronization. Secondly, unlike the little angle of stereo-
scopic video, VR video has a free and all-around perspec-
tive which will provide an immersive experience. Therefore,
it is necessary to consider extracting more complex features.
Finally, VR video’s transmission and playback involve the
transformation of the plane model and the spherical model.
The VR video is in the plane model when it is transmitted,
and it is projected into the spherical model when people
watch it by the helmet. This process is shown in Fig. 1. So it
will bring about more challenges. In order to make readers
understand better, We show a VR video frame and compare it
with a stereoscopic video frame in Fig. 2. Based on the above
discussion, we need to take full account of the complexities
of VR video.

In this work, we try to find a VRVQA method that takes
full account of VR video Characteristics. In recent years,

FIGURE 1. The projection process of VR video. When we watch a VR video
of a spherical model, our perspective is at the center of the ball.

the method of deep learning has been widely used in the
field of multimedia quality assessment. In addition to the
most common convolutional neural networks (CNN) models,
many other models have implications for their use, such as
DNN-based methods [16], [17], methods based on Convolu-
tional Restricted Boltzmann Machines [18], methods based
on generating confrontation networks [19]. Considering the
factors that affect the quality of VR video are more com-
plex, we decide to use the deep learning model for quality
assessment rather than manually extracting features. In fact,
VRVQA needs to consider 2D video quality, depth percep-
tion, visual comfort, illusion of immersion and other factors.
In order to fully consider the VR video’s information on the
time domain, we decide to design a 3D CNN architecture
to capture the spatiotemporal features. We propose a freely
available dataset (VRQ-TJU) for VRVQA. A large number of
experiments show that our method has achieved good results.
In summary, our key contributions are as follows:

(1) We present an end-to-end 3D CNN based framework
for VRVQA, which takes VR difference video patches as
input and considers the information among different frames.
This is a NR VRVQA method. We can utilize the 3D CNN
architecture for quality assessment without the sophisticated
preprocessing. To the best of our knowledge, we are the
pioneers to exploit the 3D CNN to evaluate the quality of
VR video.

(2) We construct a dataset, VRQ-TJU, for the virtual real-
ity quality assessment. If there is no reasonable database
as a support, any evaluation algorithm will be meaningless.
In essence, the establishment of the database will promote
the development of virtual reality evaluation.

(3) We design a quality score fusion strategy for VR plane
videos. Different from the spherical model, the spatial dis-
tribution of VR videos are uneven in the plane model. This
characteristic is due to the specific shooting process and
projection process of VR video. Experiments show that the
proposed score fusion strategy can effectively improve the
performance of quality assessment.

In the following sections, we describe related works
(Section II), analyze the data set construction (Section III),
explain our proposed method (Section IV), evaluate our
method (Section V), draw conclusions and discuss future
works (Section VI).
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FIGURE 2. One frame in stereoscopic video is compared with one frame in VR video. The same as stereoscopic video, VR video
produces stereoscopic perception through the left and right views. However, there are varying degrees of warping
in VR video. The greater the vertical distance from the video center, the more warped it is.

II. BACKGROUND ANALYSIS
A. VR VIDEO PRODUCTION AND PROJECTION PROCESS
Unlike ordinary video production processes, VR video pro-
duction requires a professional camera and a matching
post-processing system. First of all, this professional video
camera requires multiple directions of video as input
to ensure panoramic view and stereoscopic performance.
In order to guarantee the complete visual information of all
angles, the video in different directions is strictly fixed at the
corresponding angle. Then these videos need to be projected
the spherical model according to the corresponding angle,
such as equi-rectangular projection (ERP) [14]. Finally, mul-
tiple videos need to be spliced and blended [20], [21], made
distortion correction for each video. In order to ensure that
the splicing will not leave any significant traces, we must
ensure that when shooting the video in each direction there
is redundancy in order to modify [22]. In the splicing and
integration process, the synchronization problems between
different video has to be considered. Usually it is the tech-
nology of genlock from the hardware that is used to solve
this problem. We show the process of VR video production
in Fig. 3. It should be noted that the VR video we made is in
natural scenes.

It was mentioned before that the VR video involved the
transformation between a plane model and a spherical model.
Such the process is called projection. Most VR videos use
the ERP, and the video in our database also adopted this
approach. Taking the world map as an example, the central
idea of this method is stretching each part of latitude as
the length of the equator. Due to the longitude variation

FIGURE 3. The process of VR video production.

of 2pi and latitude variation of pi, such projection video
usually presented in a 2:1 ratio of width to height. Polar
place is greatly stretched after the process of ERP. Therefore,
the space ratio of the poles is pulled in the plane model which
produced more redundant pixels. ERP is as shown in Fig. 4.
The projection relation from sphere to plane is as follows:

Plane(x, y) = ((λ− λ0)cosϕ0, ϕ − ϕ0)sphere (1)
Sphere(λ, ϕ) = (

x
cosϕ0

+ λ0, y+ ϕ0)plane (2)
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FIGURE 4. The spherical model is projected onto the plane model. The
white circle represents varying degrees of warping in the projection
process. We notice that the longer the vertical distance from the video
center, the more the space is stretched.

In the spherical model, λ denotes longitude, ϕ denotes
latitude. λ0 denotes central meridian, it can be modified
as required. ϕ0 denotes standard parallels, which mean the
invariant latitude in the projection process. In VR video
projection, λ0 is often equal to 0. In the plane model,
x denotes the horizontal coordinate, and y denotes the vertical
coordinate.

B. IMAGE AND VIDEO QUALITY ASSESSMENT:DATASETS
AND METHODS
1) DATABASES AND METHODS FOR SIQA
Zhou et al. [11] established an open stereoscopic image
database based on subjective evaluation. In order to reduce
the impact of viewing 3D images, Lee et al. [23] proposed a
subjective experiment of pairing comparisons. On the other
hand, the proposed algorithms [24], [25] can more objec-
tively predict the image quality level. Stereoscopic image
quality assessment is mainly composed of three categories.
Initially, researchers directly used the method of 2D IQA to
evaluate the quality of stereoscopic images, such as PSNR,
SSIM [26], MS-SSIM [27],GSM [28] and others [29]–[31].
The researchers used the IQA methods for the left and
right images of stereo images, and then weighted the
scores [32]–[34]. However, these methods do not take into
account the depth information in the image. Based on previ-
ous work, researchers added depth maps and parallax maps
to the assessment criteria. For example, Benoit et al. [35]
evaluated the distortion of disparity map. Ma et al. [36]
used Natural Scene Statistics and Structural Degradation to
evaluate stereoscopic image quality. Yang et al. [37] com-
bined deep learning models and applied SIQA to multime-
dia analysis towards Internet-of-things. Recently, researchers
have combined SIQA with human binocular vision sys-
tem (HVS) to simulate the attributes of visual perception.
Maalouf and Larabi [38] applied a multispectral wavelet
decomposition to the two cyclopean color images in
order to describe the different channels in the HVS.
Ryu and Sohn [39] introduced a model for binocular quality
perception.

2) DATABASES AND METHODS FOR SVQA
In [40], authors set up a database based on various packet
loss with 2D metrics. Much of SVQA’s work draws on the

thinking of SIQA. Initially, the researchers also evaluated the
left and right views without considering the depth of informa-
tion. These Methods include PSNR based on method [41],
SSIM based on method [40], VQM based on method [42]
and so on. On the basis of evaluating color quality,
Hewage et al. [43] added depth information evaluation.
Malekmohamadi et al. [44] used the gray level co-occurrence
matrix to evaluate the quality of stereoscopic video. In addi-
tion to these methods, people have come up with some new
metrics for stereoscopic video. Xing et al. [45] proposed
three perceptual attributes based on the human visual system
(HVS), which are shadow degree, separation distance, and
spatial position of crosstalk. In [46], a new HVS model with
the phenomena of binocular suppression and recurrent exci-
tation was proposed. In general, all of the above approaches
rely on manual extraction of features to express part of the
characteristics of the assessment object, which is inflexible
and time-consuming. Therefore, the depth learning method
is expected to evaluate VR video more comprehensively.

C. CONVOLUTIONAL NEURAL NETWORK FOR VISUAL
INFORMATION PROCESSING
Nowadays, more and more people choose to use deep
networks to handle computer vision-related tasks. As the
most commonly used network, CNN is utilized to address
detection, classification, tracking and other issues. Recently,
CNN also demonstrated its strength in terms of IQA
and SIQA. Kim et al. [47] made a comprehensive discus-
sion on the field of image quality assessment based on deep
learning and focused on the application of CNN network.
Kang et al. [48] proposed a simple convolutional neural net-
work to predict image quality. This method combines feature
learning with regression. Zhang et al. [49] proposed two
different CNN networks to SIQA. The proposed CNN can
learn the local structures which are sensitive to human per-
ception and representative for perceptual quality evaluation.
Fan et al. [50] performed non-reference IQA based on Multi-
expert Convolutional Neural Networks. Compared with the
way of extracting features by hand, CNN can learn the map-
ping relationship between training data and tag more simply
and more effectively. Quality assessment scores are also eas-
ier to apply by designing an end-to-end CNN.

However, when video is used as training data ([51]–[53]),
CNN cannot fully consider the information between adjacent
video frames. For this reason, some improvements have to
be made to CNN. One solution is to extract the features with
temporal information as the input of CNN, but this method
is difficult to generalize the quality of video and makes
the algorithm more tedious. In order to solve this problem,
3D CNN is used for video field. Ji et al. [54] used 3D CNN
to capture the motion information of adjacent frames, and
then the data with advanced features were regularized and
combined with a variety of models to identify human move-
ments. Diba et al. [55] also proposed an end to end 3D CNN
model to classify videos. The model combined deep motion
features into appearance model with optical flow features
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FIGURE 5. 12 original video reference frames in the database(there are altogether 13 original videos, one of which is shown in Figure. 7). (a) Chat.
(b) Cook. (c) Demonstartion. (d) Experience. (e) Pedestrien. (f) Photograph. (g) Riverside. (h) Scenic Spot. (i) Sign in. (j) Tourist. (k) Traffic. (i) Wait.

inside the network. In summary, 3D CNN can effectively
extract time domain information in VR video. Compared
with the traditional method of extracting features manually,
3D CNN can extract higher level and more comprehensive
features. Naturally, these features are more suitable for the
quality assessment of VR video.

III. VRQ-TJU: DATASET CONSTRUCTION
It is a multi-faceted and complex task to conduct a human
study on research of visual multimedia perceptual quality.
However, it is necessary and desirable to have a diverse
dataset on which the different evaluation performance can
be analyzed. In this paper, we build the designed database
(VRQ-TJU)1 towards the VRVQA development. The details
on creating process will be given in this section.

A. SEQUENCES ACQUISITION FOR THE SOURCE DATA
As the first step of building a database, how to construct
sample structure is the primary problem. Multimedia qual-
ity evaluation database building needs to follow some basic
principles, and VRVQA is no exception. First of all, the num-
ber of lossless benchmark sources should be more than 10.
In addition, resolution and frame rate need to be taken into
account. Finally, we must give full consideration to the needs
of subsequent studies. In addition, we will give a further
detailed description on the content, which can also be referred
in Table 1.

In Fig. 5, we plot 12 reference VR sources that will be
used for the perception. In addition, the sample in Fig. 7 is
also included in the VRQ-TJU dataset. So the total refer-
enced VR source number is 13. Here, we have fixed names
for each set of benchmark VR: chat, cook, demonstration,
experience, field, pedestrian, photograph, riverside, scenic

1ftp://eeec.tju.edu.cn/VR (Username:123; Password:123)

TABLE 1. Detail parameters for sequences acquisition of the source data
to build VRQ-TJU.

spot, sign in, tourist, traffic and waiting. Resolution is critical
to visual perception. In order to provide convenience to the
future assessment methods and expand its application value,
we keep the sequences resolution in 2560×2560. The particu-
lar resolution setting canmeet the normal demand. In addition
to the spatial domain, changes in the temporal domain also
affect the perceived quality of theVR. Just as traditional video
display, VR frame rates need to meet certain requirements to
match the visual memory of the experiencers. In VQA-TJU,
the frame rates are set as 30 fps, and the total frames for each
VR source is 507.

B. DISTORTION SIMULATION
The distortions that used in this database are based on the
application research in virtual reality. All the degradation in
visual quality on each source VR is achieved with a control
parameter in a particular range, which is shown in Table 2.

In this paper, H.264 compression and JPEG2000 compres-
sion are mainly considered as the distortion factors. Specially,
H.264 distortion is simulated using the Vegas media software.
JPEG2000 distortion is simulated in Kakadu software.
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TABLE 2. Distortion levels of different video.

Just as the stereo image quality assessment, VR should be
considered in symmetrical design and asymmetrical design.
For stereoscopic signals, there are some research activities
in asymmetric compression [32], [56]. However, the visual
quality based on asymmetric distortions should be pushed as
an interesting avenue. In the designed database, we applied
the different distortion degree in left image and right
image.

In total, 104 pieces of virtual reality in symmetric distortion
and 260 pieces of virtual reality in asymmetric distortion are
obtained. Based on the acquired data, the subjective study can
be made on this project.

C. SUBJECTIVE EVALUATION
In order to make a complete quality evaluation in single-
stimulus with hidden reference study [6], the study was con-
ducted at Tianjin University, which took about 20 weekly
days. First of all, the subjective evaluation team with
30 people is set up, which takes into account many subjec-
tive evaluation principles. Specifically, the number of male
and female in the evaluation team is the same. And it also
includes a number of non professionals. Before the subjec-
tive evaluation, we conducted verbal instructions, to make
participants more clear in visual content evaluation [57].
In order to prevent subject fatigue, the evaluation time for
each participate should be less than 30 minutes. Of course,
the subjective assessment in our work is consistent with the
principles.

In the process, two major issues need to be specifically
addressed: playing equipment and number of participants.
Based on the exist recommendations, some researchers in
this field have published some study results on the maxi-
mum number for subjects. It is believed that enough sub-
jects can be a more accurate metric. This paper designs that
each VR should be rated by 30 participates. Based on [57],
we can get the averaged across subjects into mean opinion
scores (MOS). Particularly, the subject rejection was used
for recommendations, in which two subjects scores were
rejected [57].

The designed database consists of 13 referenced VR,
104 pieces of virtual reality in symmetric distortion and
260 pieces of virtual reality in asymmetric distortion are with

associated MOS. A histogram of MOS is shown in Fig. 6a.
The standard deviation of subjective ratings is an important
measure of the degree of dispersion of subjective ratings.
For different types of samples, we calculate the standard
deviation of the subjective ratings of each type of VR video as
σ {Sym,Asym,H.264, JPEG2000} = {0.39, 0.47, 0.45, 0.44}.
We note that these standard deviations are in line
with previous studies of this nature for images and
videos [6], [7], [58]. Further, the MOS distribution is uni-
form through a large portion of the scale indicating that the
distortions in the VRQ-TJU database span a wide range of
visual quality.

D. PRIMARY EVALUATION BASED ON TRADITIONAL
MULTIMEDIA QUALITY ASSESSMENT METRICS
As the two most basic evaluation indicators of multimedia
data, structural similarity (SSIM) and peak signal to noise
ratio (PSNR) are widely used in primary evaluation for the
subjective database building.

For the newly createdVRQ-TJU database, the SSIMvalues
and the PSNR values of all samples are computed. And its
histogram distribution are shown in Fig. 6b. and Fig. 6c.
According to this situation, the distributional rationality is
judgable.

IV. PROPOSED METHOD
We first perform a simple preprocessing of the video and then
utilize an end-to-end 3D CNN to get the local quality score
containing the space-time information. Finally, we use a qual-
ity score fusion strategy to get the overall video score. This
section is divided into three parts to introduce our method in
detail.

A. DATA PROCESSING
In the plane model, the VR video consists of two 2D
panoramic videos with parallax. Two 2D panoramic videos
respectively correspond to the left view and the right view.
In VRVQA, the depth perception information and stereo
perception information must be considered between the two
videos. The two types of information are essential to improve
the immersion of VR video. Based on the following two rea-
sons, we decide to extract data from the difference video and
then put it into 3D CNN. On the one hand, difference video
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FIGURE 6. The histogram statistical results of subjective MOS, PSNR and SSIM.

FIGURE 7. Difference frames from VR video frames. (a) 50th frame of a reference VR video and the corresponding difference frame, MOS=4.90.
(b) 50th frame of a distored VR video and the corresponding difference frame, MOS = 1.20.

FIGURE 8. The process of splitting VR video.

is mainly for the depth perception information and stereo
perception information. This type is exactly what we need.
Zhang et al. [49] and Ma et al. [59] concluded that the differ-
ence image is more valuable than the left and right views in
SIQA. In our previous work [60]–[62], the difference image

calculated from left and right views has been demonstrated
to retain stereoscopic perception information, which can be
used to represent the quality of stereoscopic image. There is
no difference between VR video and stereoscopic video in
this respect. On the other hand, because VR videos contain
panoramic view, complex preprocessing of VR video will
bring more challenges. To make our approach more practical
and efficient, we decide to get the data from the difference
video. Firstly, extracted video frames are transformed into
gray image. We calculate the value of the difference video
Vd at position (x, y, z) as

Vd (x, y, z) = |Vl (x, y, z)− Vr (x, y, z) | (3)

where Vl and Vr are the left and right view frames. In order
to demonstrate this concept more intuitively, several samples
are enumerated in Fig. 7. The VR video is projected as a
spherical model when viewed, with the view of the viewer
focused only on one part of it. This is equivalent to VR video
being magnified when viewed, so small changes in the plane
model can greatly affect the normal viewing rating.
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FIGURE 9. The end to end 3D CNN architecture. Each video has 800 video patches as input.

Generally, the use of deep network to obtain satisfactory
indicators requires a large amount of labeled data. However,
due to the scale of VR video data set, if the data is not
enhanced, the network model will not get a good generaliza-
tion performance. At the same time, compared with the spher-
ical model, the spatial distribution of VR video is uneven in
the plane model. Therefore, it is necessary to evaluate the
local video first and then to evaluate the quality of the video
as a whole. We will elaborate the reason later. Taking into
account these two points, we decide to split VR video to
increase the size of the sample data. A lot of small VR video
patches are obtained by splitting video in time and space
dimensions. Specifically, ten frames are taken evenly from
each video, and are divided into the image patches with the
resolution of 32× 32 at the same position in each frame.
Ten image patches constitute a 32× 32× 10 video patch as
input. Then the patch is marked with the subjective score of
the video that contains the patch. By splitting the VR video
without overlapping, each of the database’s VR videos can
get 800 video patches. The specific process is shown in Fig. 8.
So this way effectively improves the sample size, satisfies the
needs of 3D CNN, and provides a new thought for the quality
score fusion strategy. Thus better adapt to the characteristics
of VR video.

B. 3D CNN
The end to end 3D CNN architecture is shown in Fig. 9.
Our 3D CNN architecture consists of two 3D convolution
layers, C1, C2, two 3D pooling layers, S1, S2, and two fully-
connected layers, FC1, FC2. In this section, the structure
of 3D CNN is described in order.

1) 3D CONVOLUTION
In 2D CNN, convolution can only express two-dimensional
feature maps. Therefore, The information on the time domain
will be lost after every 2D conolution operation. Compared
with 2D convolution, 3D convolution preserves the input
time information, and is more suitable for video analysis.
3D convolution can be understood as convolution of adjacent
multiple frame images with multiple different convolution
kernels. All convolution results are summed to obtain the

FIGURE 10. In 3D convolution, each location of the 3D feature maps
obtained by the convolution of the same location in several adjacent
input frames and 3D kernels. The shared weights are in the same kind of
straight line. So the time domain feature of the video can be extracted.

feature mapping. The convolution process is actually a linear
operation between the input data and the kernel function. The
calculation of 3D convolution can be expressed as

Conv(x, y, z)

= AF(b+
∑
p

∑
q

∑
r

h(x + p, y+ q, z+ r) ·Wpqr ) (4)

AF is on behalf of the activation function, such as Sigmoid,
Tanh and ReLU. The ReLU is used for the activation function
to increase the nonlinearity after each convolution layer. The
b is the bias for the feature map. Wpqr represents the param-
eter of the convolutional kernel. Where h(x + p, y+ q, z+ r)
stands for the input pixel value at position (x + p, y + q) in
the (z+ r)th frame. This paper uses a 3× 3× 2 convolution
kernel. The process of 3D convolution is shown in Fig. 10.
The ReLU expression is as follow:

ReLU (x, y, z) = max(0,Conv(x, y, z)) (5)

2) 3D POOLING
3D pooling is the process of aggregating the statistics. These
aggregated statistics not only have much lower dimensions,
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but also effectively prevent over-fitting. Take the 3D maxi-
mum pooling used in this paper as an example. If a 3× 3× 3
max-pooling operator is performed on a W × H × T feature
map, we collect the max value in each 3× 3× 3 non-overlap
regionswhich form a new featuremapwith size of W3 ×

H
3 ×

T
3 .

The formula for 3D maximum pooling is as follows:

Pool(x, y, z) = max(ReLU (x, y, z)) (6)

where Pool(x, y, z) represents the feature value obtained after
pooling.

3) ARCHITECTURE ANALYSIS
Take a video input patch for example. Video patch size is
32× 32× 10. In the C1 with a kernel size of 3× 3× 2,
the output is 3D feature map whose size is 30× 30× 9.
Then the 3D feature map through the S1 with a kernel
size of 3× 3× 2 and get the 3D feature map which size
is 10× 10× 3. Next into the C2 whose is the same as the
C1. So the output is 8× 8× 2 3D feature map. Then the 3D
feature map through the S2 with a kernel size of 8× 8× 2.
Finally, 3D feature map passes through FC1 and FC2. The
output is a 512-D feature vector and the final score in turn.
The specific parameters are shown in Table 3.

TABLE 3. The detailed parameters of our proposed method .

We use the Stochastic Gradient Descent (SGD) algorithm
in 3D CNN, which can optimize parameters. The learning
rate is initialized to 0.001. An objective function is adopted
as follows:

minθ
1
N

N∑
i=1

(f (xi)− yi)2 + λ||θ ||2F (7)

where f (xi) and yi denote predicted score and ground-truth
score. λ is the regularization parameter. The linear activation
function is used at the output. In order to avoid over-fitting,
the dropout strategy is used, with parameter of 0.5 after each
pooling layer. In the first full connection layer, we use the
dropout strategy with parameter of 0.25. The principles of
dropout are as follows:

ỹ = P(0, 1) · y (8)

P(0, 1) represents a random generation of 0 or 1. y is the
input of the dropout layer, ỹ is the output of the dropout
layer. For the sample data, 60% were used for training,
20% were used for validating and 20% were used for
testing.

C. QUALITY SCORE FUSION STRATEGY
Because the spatial distribution of VR video becomes uneven
during projection, a new scoring strategy needs to be devel-
oped to match this characteristic. By 3D CNN, evenly dis-
tributed and non-overlapping video patches are numerously
acquired. Each video patch has an objective score. It is
important to emphasize that when the network is trained,
the fraction of the patch is based on the subjective perception
of the whole video in the spherical model. Because these
video patches are based on the plane model, the closer to
the poles, the smaller proportion of the patch in the actual
viewing space. Therefore, a score fusion strategy is designed
as follows:

Sf = (
∑
x

∑
y

SxyWxy)/
∑
x

∑
y

Wxy (9)

W = cos(π
h′

h
) (10)

Sf denotes the final score, Sxy denotes the objective fraction
of all video patches in the VR video. The objective fraction
is multiplied, of each video patch by the weighted Wxy.
h′ denotes the vertical distance between the center point of
the video patch and the whole video center. h denotes the
vertical height of VR video. It is worth noting that the value of
the weight W is only related to the vertical distance between
center position of video patch and the central position of
VR video. This feature is determined by the VR video pro-
jection process.

V. EXPERIMENT
In this section, the efficiency of our algorithm will be evalu-
ated and our approach will be compared with some traditional
MQA methods in VRQ-TJU.

A. COMPARISON OF 3D CNN PARAMETERS
We select some parameters and design a contrast experiment
to choose the best network. In addition to the parameters
used in the article, we also use two comparison values.
These parameters include learning rate (lr), epoch (ep), batch
size (bs) and number of convolution cores (nocc). It needs
to be explained that the parameters of the final model are
as follows. The learning rate is 0.001, epoch is 200, batch
size is 128, number of convolution cores is 50. The specific
parameters are shown in Table 4.

B. COMPUTATIONAL ENVIRONMENT AND COST
The proposed 3D CNN model are developed by the Python
deep learning library Keras which uses the Theano back-
end. Hardware configuration has a single 3.2GHz CPU
and a single GTX1080 GPU. The sample size has a total
of 301,600 video patches with a size of 32× 32× 10. Our
3D CNN model only consists of six layers. For the entire
database, our model’s training time is 3.61 hours. In other
words, the running time of a video is 43.03 seconds, and a
video patch has a runtime of 0.054 seconds. This index shows
that our method is efficient. The training obtained model can
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FIGURE 11. Predicted MOS vesus subjective MOS. (a) the sample based on symmetric distortion. (b) the sample based on the asymmetric distortion.
(c) the sample based on the H.264 distortion type. (d) the sample based on the JPEG2000 distortion.

TABLE 4. Comparison of 3D CNN parameters.

directly obtain the objective score of the corresponding video
patch, so there is almost no time cost. At the same time,
our method does not need to refer to the original VR video,
The above two points show that our algorithm has very good
practical value.

C. OVERALL PERFORMANCE
This evaluation uses four indicators, which are Pearson linear
correlation coefficient (PLCC), Spearman rank order corre-
lation coefficient (SROCC), Kendall rank-order correlation
coefficient (KROCC) and Root mean squared error (RMSE).

In order to bemore comprehensive in response to the exper-
imental results, five different experiments will be performed:
experiment based on all samples, experiment based on
symmetrical distortion samples, experiment based on
asymmetrical distortion samples, experiment based on
JPEG2000 distortion samples, experiment based onH.264 dis-
tortion samples. And the PLCC, SRCC KRCC and RMSE
are shown in Table 5. As can be seen from the data, the four
indexes are well represented in the whole experiment.

In order to observe the methods consistency with the sub-
jective feeling more intuitively, the scatter diagram is chosen
to do it. In Fig. 11, it shows the four different pairs of data
based on the subjective perception and objective scores.

The method of averaging the objective score of all
VR video patches, is named the ‘‘3D CNN+AVG’’. The
3D CNNmethod which uses the quality score fusion strategy
is named ‘‘3D CNN+QSFS’’. In Fig. 12, the scatter plot is

TABLE 5. Performance on the whole dataset.

FIGURE 12. Predicted MOS vesus subjective MOS. (a) the scatter plot
of 3D CNN+AVG. (b) the scatter plot of 3D CNN+QSFS.

TABLE 6. Performance comparison with traditional MQA methods.

shown between the predicted score and the objective score
of 3D CNN+AVG and 3D CNN+QSFS. These scatter plots
illustrate that the subjective score has a good linear correla-
tion with the objective score.

In order to ensure the reliability of the experimental results,
we conduct the train-test process 30 times and calculate the
average value of all the results as the final indicator. In Fig. 13,
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TABLE 7. Performance comparison with traditional MQA methods on each sample.

FIGURE 13. (a) the mean value of PLCC after different times of iterative.
(b) the mean value of SROCC different times of iterative.

taking PLCC and SROCC as examples, the index is plotted,
of the proposed method after a number of iterations. At the
same time, each retraining will reset the weight of the model,
so there is a slight difference in the indicators obtained from
each iteration. Here, we need to explain the degree of dis-
persion of different indicators in all iterations, so as to prove
the stability and scientificity of the model. The range of the
four indicators evaluated by this method is {PLCC, SROCC,
KROCC, RMSE} = {0.0108, 0.0128, 0.0109, 0.1781}

D. DATA COMPARISON WITH THE TRADITIONAL METHOD
In order to make the data more convincing, this paper chooses
6 typical methods of MQA as comparison. PSNR and SSIM

are considered first as a classic method for comparison. The
method proposed in the literature [28] represents the method
of IQA. The method proposed in the literature [35] was
chosen as the representative method of SIQA methods. The
method proposed in the literature [6] represents the method of
VQA. The method proposed in the literature [63] represents
the method of SVQA. The reason for choosing these methods
is that by contrast, the pertinence of our method can be
better highlighted. In order to prove the effectiveness of our
proposed fractional fusion strategy, a contrast experiment is
added. Detailed results are shown in Table 6. Black numbers
represent the best indicators. Compared with the method of
SVQA, the index of 3D CNN+QSFS increased by 0.0691,
0.0744, 0.0084, 1.1567 on PLCC, SROCC, KROCC and
RMSE. Compared with 3D CNN+AVG, the index of 3D
CNN+QSFS increased by 0.0115, 0.0117, 0.0064, 0.0153 on
PLCC, SROCC, KROCC and RMSE. These experimental
results show that our proposed method of 3D CNN can
effectively extract the local spatiotemporal information in
VR video. Our quality score fusion strategy can also further
improve the performance of the algorithm.

The data demonstrate that our method is more suitable for
VR video than other methods. The best of these six contrast-
ing methods is the method of SVQA. This result is in line
with our guess. VR video has the same left and right views
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as stereoscopic video. Therefore, the evaluation of stereo-
scopic perception is also applicable to VRVQA. However,
these methods do not take into account the unique features
of VR video, such as immersion, production processes and
playback methods. So these contrasting methods cannot be
fully applied to VR video.

We test the four types of samples with 3D CNN and other
traditional MQA methods, and then list their indicators in
table 7. The experimental results also show that the method
proposed by us has a good correlation for different kinds of
samples.

VI. CONCLUSION AND FUTURE WORK
In this paper, a NR quality assessment method for VR video
was proposed. This work will help VR technology develop
more mature. Before this, no one has assessed the quality
of VR video and used 3D CNN to the field of qual-
ity assessment. We propose a method of using 3D CNN
to assess the quality of VR video. Unlike traditional
NR-VQA methods, this method does not require com-
plex preprocessing or hand-crafted features. The objective
prediction score of the VR video is obtained by the com-
bination of the local spatiotemporal features and the qual-
ity score fusion strategy. Experiments show that the results
of the algorithm are consistent with the subjective quality
assessment.

In the future work, it is expected to use more advanced net-
works to extract more local spatio-temporal features. At the
same time, we hope to combine saliency and projection dis-
tortion analysis in future work, not just spatial distribution
changes. In addition, it will be continuous to explore the
characteristics of VR video to design more targeted algo-
rithms. Finally, we will consider improving the richness of
the experiment.
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