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ABSTRACT The ischaemic heart disease has become one of the leading causes of mortality worldwide.
Dynamic single-photon emission computed tomography (D-SPECT) is an advanced routine diagnostic
tool commonly used to validate the myocardial function in patients suffering from various heart diseases.
Accurate automatic localization and segmentation of myocardial regions is helpful in creating a 3-D
myocardial model and assisting clinicians to perform assessments of myocardial function. Thus, image
segmentation is a key technology in preclinical cardiac studies. Intensity inhomogeneity is one of the
common challenges in image segmentation and is caused by image artifacts and instrument inaccuracy.
In this paper, a novel region-based active contour model that can segment the myocardial D-SPECT image
accurately is presented. First, a local region-based fitting image is defined based on the information related
to the intensity. Second, a likelihood fitting image energy function is built in a local region around each
point in a given vector-valued image. Next, the level set method is used to present a global energy function
with respect to the neighborhood center. The proposed approach guarantees precision and computational
efficiency by combining the region-scalable fitting energy model and local image fitting energy model, and
it can solve the issue of high sensitivity to initialization for myocardial D-SPECT segmentation.

INDEX TERMS Myocardium D-SPECT, image segmentation, active contour, level set.

I. INTRODUCTION
According to [1], ischaemic heart disease is one of the
leading causes of death in the world. Coronary macroves-
sel stenosis has long been considered the main cause of
ischaemic heart disease. Additionally, coronary microvascu-
lar dysfunction (CMD) has been demonstrated to play an
important role in the occurrence of myocardial ischaemia,
resulting in major cardiovascular events or death. Early diag-
nosis and surgery are measures that can be used to address
the health concerns mentioned above. Modern functional
medical imaging techniques can contribute significantly to
the diagnosis and, in particular, to the quantitative assess-
ment of these diseases [2], [3]. At present, various modali-
ties are used in common preclinical cardiac diagnosis, such
as single-photon emission computed tomography (SPECT)

scans, positron emission tomography (PET) scans, magnetic
resonance imaging (MRI), and X-ray computed tomography
(CT) [4]–[7]. Dynamic single-photon emission computed
tomography (D-SPECT), which has the capability of esti-
mating extra kinetic information of tissue motion and defor-
mation, is a popular routine diagnostic tool used to evaluate
bodily functions affected by various diseases such as pul-
monary embolism, pneumonia, heart failure, and tumours.

D-SPECT, shown in Fig. 1, is a special myocardial per-
fusion imaging device using radionuclide as an imaging
diagnostic method. By injecting radionuclide into the blood
stream, the blood perfusion and the functional state of
heart can be observed via radionuclide myocardial perfusion
imaging. Although myocardial perfusion imaging is not a
novel technique for the diagnosis of myocardial ischaemia,
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FIGURE 1. Images of D-SPECT.

FIGURE 2. Cardiac D-SPECT images. (a) to (d) are short-axis images, and (e) to (h) are long-axis images.

it is the most reliable and non-invasive method for detect-
ing coronary heart disease by imaging the ischaemia in
the myocardium directly. Figure 2 shows examples of car-
diac D-SPECT images, including a long-axis and short-axis
image. D-SPECT has made considerable progress in imaging
devices. Compared with the traditional SPECT of sodium
iodide (NaI) crystal, the most advanced, fully digital zinc
telluride (CZT) solid-state detector is used in D-SPECT.
InD-SPECT, the coronary flow reserve (CFR) is measured by
the special treatment software for the heart. CFR can integrate
the haemodynamic effects of the epicardial artery, the anterior
arteriole, and the arteriole. Furthermore, a comprehensive
assessment of the coronary and myocardium can be made,
and a reliable basis for the preoperative evaluation and the
evaluation of the postoperative curative effect can be pro-
vided. The fractional flow reserve (FFR) reflects the influence
of the stenosis in an epicardial coronary on the haemody-
namics, which has a guiding significance for the clinical
profile. Moreover, the coronary flow reserve can provide
the comprehensive information of both FFR and microan-
giopathy (IMR). In future, this detection method is likely

to be used more often owing to its safe and reliable non-
invasive examination capabilities, as well as high accuracy
and sensitivity. In addition, D-SPECT can reduce unneces-
sary traumatic examination and the corresponding medical
expenses for many patients.

The myocardium is a three-dimensional structure, which
cannot be directly visualized using two-dimensional images.
With the improvement of temporal and spatial resolution
of medical images, D-SPECT images contain substantial
information, which makes image processing time-consuming
and labourious. Accurate automatic localization and seg-
mentation of myocardial regions is helpful in establishing
a three-dimensional myocardial model and assisting clini-
cians to perform an assessment of myocardial function. How-
ever, intensity inhomogeneity, which is caused by image
artefacts and instrument inaccuracy, is one of the common
issues in image segmentation. Since the introduction by
Kass et al. [8], active contour models have become increas-
ingly popular in the field of image segmentation in the past
years and can yield closed and smooth contours of the desired
objects with promising accuracy [9]. At present, a variety
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of active contour models have been proposed, such as the
Chan-Vese (C-V) model, the geodesic active contour (GAC)
model, the active contour model based on cross entropy
(CEACM), the local binary fitting (LBF) model, the region-
scalable fitting energy (RSF) model, the local image fit-
ting energy (LIF), and the hybrid model with global and
local intensity fitting energy (LGIF) model [10]–[14]. In the
C-V model, the global information related to the image, com-
prising the variances of the pixel greyscale values inside the
object region and the background region, is used to guide
the curve evolution [15]. However, the interference regions
are not separated, which leads to unsatisfactory segmentation
results. The global information gained by an edge detector
function to drive the evolution of the curve is used in the
GAC model. However, the complexity of edge information
results in the non-convergence of the GAC model [16]. Com-
pared with the C-V model, the CEACM model replaces
the variances with the cross entropies of pixel greyscale
values inside the object region and the background region
to guide the curve evolution. This model can accurately
segment images that are relatively homogeneous, although
over-segmentation will occur if the images are less homo-
geneous. The LBF model, which utilizes the local image
information as constraints, can segment objects with intensity
inhomogeneities accurately [17]–[20]. The RSF model, a
typical local model, chooses the Gaussian function as the
kernel function to calculate the local intensity information.
Nevertheless, the convolution is performed in each iteration
during the curve evolution, causing massive computational
cost. Unlike the RSF model, the convolution is performed
before the iteration; thus, the segmentation results of the LIF
model are relatively better. The LGIF model is a combination
of the C-V model and RSF model, and a series of relatively
good segmentation results can be obtained by the LGIF
model. However, the computational complexity of hybrid
models such as the LGIF model is fairly high. In addition,
a heuristic process occurs because several parameters of the
hybrid models must be set manually, which leads to increased
work [21]–[23].

In this study, we propose a new model combining the
RSF model and LIF model. First, two local intensity fitting
functions are defined through the intensity information and
local regional differences, which can locally approximate
the image intensities on the two sides of the contour in the
neighbourhood of every pixel. Next, a likelihood fitting image
energy functional is built in a local region around each point.
Finally, the level set method is used to present a global energy
functional with respect to the neighbourhood centre. The seg-
mentation results are demonstrated by a series of contrasting
experiments and a set of metrics, which are used to measure
the accuracy of the novel model.

The rest of the paper is organized as follows: Related work
is introduced in Section II. Our proposed method is described
in Section III. The experimental results and discussions are
given in Section IV. Finally, we conclude this paper and
discuss future work in Section V.

II. RELATED WORKS
A. THE RSF MODEL
Consider a vector valued image mapping � → <d , where
� ⊂ <n is the image domain, and d ≥ 1 is the dimension
of a vector I (x). In particular, d = 1 indicates grey level
images, while d = 3 defines colour images. C is defined
as a contour in the image domain �[24]. In the RSF model,
the local intensity fitting energy for a given point is defined by

Ex = λ1

∫
in(C)

Kσ (x − y) |I (y)− f1(x)|2 dy

+ λ2

∫
out(C)

Kσ (x − y) |I (y)− f2(x)|2 dy (1)

where f1(x) and f2(x) are two fitting functions that locally
approximate the intensity inside and outside the contour C ,
respectively. λ1 and λ2 are two positive constants, and K (v)
is a Gaussian kernel function. The total energy function is
described as

ERSF (φ, f1 (x) , f2 (x))

= λ1

∫ [∫
Kσ (x − y) |I (y)− f1 (x)|2 H (φ (y)) dy

]
dx

+ λ2

∫ [∫
Kσ (x − y) |I (y)− f2 (x)|2 H (φ (y)) dy

]
dx

+ ν

∫
|∇H (φ (x))|dx + γ

∫
�

1
2
(|∇φ (x)| − 1)2 dx (2)

where φ is a level set, H (x) is the Heaviside function, and ν
and γ are non-negative constants.

The Heaviside function H (x) can be approximated by a
smooth function Hε(x). It is defined by

Hε (x) =
1
2

[
1+

2
π
arctan

(x
ε

)]
(3)

and the derivative of Hε is defined as

δε (x) = H ′ε (x) =
ε

π
(
ε2 + x2

) (4)

For a fixed level set φ, we minimize the energy functional
in (2) with respect to f1(x) and f2(x), and easily obtain

f1 (x) =
Kσ (x) ∗ [Hε (φ (x)) I (x)]

Kσ (x) ∗ Hε (φ (x))
(5)

f2 (x) =
Kσ (x) ∗ [(1− Hε (φ (x))) I (x)]

Kσ (x) ∗ [1− Hε (φ (x))]
(6)

Keeping f1(x) and f2(x) fixed and using the standard gradient
descent method to minimize the energy function with respect
to φ, the gradient flow function can be obtained as shown
below.

∂φ

∂t
= −δ (φ)

(
λ1e1 − λ2e2 − νdiv

(
∇φ

|∇φ|

))
+ γ

(
∇

2φ − div
(
∇φ

|∇φ|

))
(7)
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where div is the divergence operator, and e1 and e2 are func-
tions defined as

e1(x) =
∫
�

Kσ (y− x) |I (x)− f1(y)|2 dy (8)

e2(x) =
∫
�

Kσ (y− x) |I (x)− f2(y)|2 dy (9)

The RSF model has the advantage of accurately seg-
menting the images with intensity inhomogeneity. However,
the segmentation requiresmore iterations and consumesmore
time for a poor initial contour because the RSF model largely
relies on the initialization of the contour.Moreover, themodel
is prone to fall into local minimum owing to the non-
convexity of its energy function if the initial position of the
contour is set far away from the actual boundary.

B. THE LIF MODEL
The LIF energy function is introduced by minimizing the
difference between the fitted and original images [25], [26].

ELIF (φ) =
1
2

∫
�

∣∣∣I (x)− ILFI (x)∣∣∣2 dx, x ∈ � (10)

ILFI is given as following:

ILFI = m1Hε(φ)+ m2(1− Hε(φ)) (11)

where m1 and m2 are defined as follows:

m1 = mean (I ∈ ({x ∈ �|φ (x) < 0} ∩Wk (x))) (12)

m2 = mean (I ∈ ({x ∈ �|φ (x) > 0} ∩Wk (x))) (13)

where Wk (x) is a rectangular window function with standard
deviation σ . The function has a size of 4k+1 by 4k+1, where
k is the nearest integer to σ . By using the calculus of variation
and steepest descent method, ELIF (φ) can be minimized with
respect to the corresponding gradient descent flow.

∂φ

∂t
=

(
1− ILFI

)
(m1 − m2) δε (φ) (14)

The LIF model is similar to the RSF model, in which
the local intensity information is used to segment the image.
Unlike the RSF model, for minimizing the energy function,
image segmentation is achieved by minimizing the difference
between the local fitted image and original image; thus,
the LIF model is less sensitive to the settings of the initial
contour.

III. HYBRID ACTIVE CONTOUR SEGMENTATION
In this section, we propose a hybrid method combining the
RSF model and LIF model to improve the segmentation
accuracy for D-SPECT images.

A. ACTIVE CONTOURS WITH LOCAL IMAGE
FITTING ENERGY
The energy of each point x ∈ � is mathematically given as
below:

Ex =
∫
Kσ (x − y) |I (y)− [f1(x)H (φ(y))

+ f2(x)(1− H (φ(y)))]|2 dy (15)

where K is a weighting function with a localization property
that K (v) decreases and approaches to zero as |v| increases.
f1(x) and f2(x) are two numbers that fit image intensities
near the point x. H (y) is the Heaviside function. Meanwhile,
the point is described as the centre point of the above integral,
and the energy Ex is defined as the local image fitting (LIF)
energy. ELIFx (C, f1(x), f2(x)) is used to represent (15) because
the contour C , the centre point x, and two fitting values f1(x)
and f2(x) influence the energy Ex . Ex and ELIFx (C, f1, f2) is
minimized by the numbers f1 and f2, which vary with the
centre point x.
In our study, a Gaussian kernel is used to describe the

weighting function K (x), where σ > 0 is a scale parameter.

Kσ (x) =
1

(2π )
n
2 σ

e−
|x|2

2σ2 (16)

The values of f1 and f2 are influenced apparently by the
image intensities at the points y near the centre point x,
because the weighting function K (x − y) takes larger values
at the points y near the point x and decreases to zero as y goes
away from x. By contrast, because K (x − y) approaches zero
for a large distance |x − y|, the values of f1 and f2 are scarcely
influenced by the image intensities at the points y far away
from the point x. The fitting energy in (15) is localized in the
sense that the values f1 and f2 only fit the image intensities
near each centre point x in the proposed model, owing to
the spatially varying weighting function K with the above
localization property.Moreover, when the fitting values f1 and
f2 are chosen optimally and the contour C is exactly on the
object boundary, the local fitting energy ELIFx is minimized
for each centre point x.

However, ELIFx as defined above is local for a centre point
x ∈ �. ELIFx is minimized for all the centre points x in the
image domain � in order to find the entire object boundary.
It can be achieved by minimizing the integral of all the centre
points in the image domain �. The external energy that is
computed from the image data is given by the equation

E(C, f1, f2) =
∫
�

ELIFX (C, f1(x),f2(x))dx (17)

B. VARIATIONAL LEVEL SET FORMULATION
OF THE MODEL
In level set approaches, a contour C ⊂ � is represented
by the zero level set of a Lipschitz function φ : � → <.
With the level set representation, the energy functional can
be rewritten as

ELIF (φ, f1, f2) =
∫
�

ELIFX

=

∫∫
�

Kσ (x − y) |I (y)− [f1(x)H (φ(y))

+ f2(x)(1− H (φ(y)))]|2 dydx (18)

The distance regularizing term is added in order to ensure
stable evolution of the level set function φ. The deviation of
the level set function φ from a signed distance function is
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FIGURE 3. A series of contrasting experiments on short-axis images. (a), (d), (g) and (j) are the original images. (b), (e), (h) and (k) are the
segmentation results based on the RSF model, while (c), (f), (i) and (l) are the segmentation results based on our proposed model.

given as follows:

D (φ) =
∫
�

1
2
(|∇φ (x)| − 1)2 dx (19)

The length of the zero level curve of φ, which is used
to regularize the zero level contour of φ is expressed as

follows:

L (φ) =
∫
�

δ (φ (x)) |∇φ (x)| dx (20)

The entire energy functional is then given by
the following equation, where β and µ are nonnegative
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FIGURE 4. A series of contrasting experiments on long-axis images. (a), (d), (g) and (j) are the original images. (b), (e), (h) and (k) are the
segmentation results based on the RSF model, while (c), (f), (i) and (l) are the segmentation results based on our proposed model.

constants.
F (φ, f1, f2) = ELIF (φ, f1, f2)+ βD (φ)+ µL (φ) (21)

To achieve good approximation of H and δ by Hε and δε, ε is
set to 1.0 in the equations (3) (4). The energy functions ELIF

and L are regularized as ELIFε and Lε by replacing H and δ
in (18) and (20) with Hε and δε. Thus, the energy function
can be approximated as
Fε (φ, f1, f2) = ELIFε (φ, f1, f2)+ βD (φ)+ µLε (φ) (22)
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FIGURE 5. Evolution of contour curve of our proposed model. (a) to (d) respectively show the initial contour,
20 iterations, 100 iterations, and final contour of short-axis images. (e) to (h) respectively show the initial contour,
200 iterations, 400 iterations, and final contour of long-axis images.

The energy function above is minimized to find the object
boundary.

C. GRADIENT DESCENT FLOW
Keeping the level set function φ fixed and minimizing the
energy functional Fε (φ, f1, f2) with regard to functions f1(x)
and f2(x), f1(x) and f2(x) can be obtained through a partial
derivative of x.

f1 (x) =
Kσ (x) ∗ [Hε (φ (x)) I (x)]

Kσ (x) ∗ Hε (φ (x))
(23)

f2 (x) =
Kσ (x) ∗ [(1− Hε (φ (x))) I (x)]

Kσ (x) ∗ [1− Hε (φ (x))]
(24)

BecauseHε > 0 and 1−Hε > 0 through the definition ofHε,
the denominators in (23) and (24) are always positive.

Next, the energy functional Fε (φ, f1, f2) is minimized
with regard to a level set function φ for fixed functions
f1(x) and f2(x).

∂φ

∂t
= −δε (φ)

∫
Kσ (x − y) [I (y)− (f1 (x)H (φ (y)))

+ f2 (x) (1− H (φ (y)))] (f1 (x)− f2 (x)) dy

+β

(
∇

2φ − div
(
∇φ

|∇φ|

))
+ µδε (φ) div

(
∇φ

|∇φ|

)
(25)

The above equation (25) is the proposed model in our study.

IV. RESULTS
A. SUBJECTIVE EVALUATIONS OF
EXPERIMENTAL RESULTS
A series of segmentation results on short-axis and long-axis
images based on the RSF model and our proposed model
are shown in Fig. 3 and Fig. 4, respectively. It can be seen

that the segmentation results based on our proposed model
are more precise than those based on the RSF model, where
fewer redundant segmentation results occur. Furthermore,
the evolution of contour curve based on our proposedmodel is
shown in Fig. 5. In Fig. 5, irrespective of whether the images
are long-axis or short-axis images, the segmentation results
become more accurate with the increase in the number of
iterations.

B. OBJECTIVE EVALUATIONS OF EXPERIMENTAL RESULTS
A set of metrics is used to measure the accuracy of the
proposed automatic method for segmentation, considering
the manual segmentation as a reference. The measures are
mathematically expressed as follows:

a) Jaccard similarity coefficient (JS)

JS =
|SG ∩ SM |
|SG ∪ SM |

(26)

b) Dice similarity coefficient (DSC)

DSC = 2 ·
|SG ∩ SM |
|SG |+| SM |

(27)

c) True positive rate (TPR)

TPR =
|SG ∩ SM |
|SG|

(28)

d) False positive rate (FPR)

FPR =
|SG ∪ SM − SM |

|SG|
(29)

where SG stands for the foreground of the ground truth image
and SM indicates the foreground obtained by the models.
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TABLE 1. Performance evaluations on images of LONG-axis matter segmentation quality between different methods.

TABLE 2. Performance evaluations on images of short-axis matter segmentation quality between different methods.

FIGURE 6. Evaluation of segmentation accuracy.

Performance evaluations on long-axis and short-axis
images are shown in Table 1 and Table 2, respectively. It can
be demonstrated that our model performs better than the RSF
model does in DSC, JS, TPR, and FPR.

The pixel values of segmentation regions are shown
in Fig. 6, where manual segmentation and automatic segmen-
tation are included. It can be seen that when the image layers

range from 9 to 24, the pixel values of manual segmentation
and automatic segmentation are approximately equal.

V. CONCLUSION
In this study, we proposed a new hybrid model for automatic
myocardium D-SPECT images segmentation. In the model,
two fitting functions are used to fit the grey level inside
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and outside the curve. The new model is robust on the ini-
tialization of the contour. A set of experiments demonstrate
the accuracy of output segmentation results. The method
solved the issues of image artefacts and inaccuracy of instru-
ments, which can lead to intensity inhomogeneity in the
image. In future, more local information of the image will be
introduced into the energy functional of the proposed model
to further improve the segmentation accuracy. In addition,
themodel will be implemented using narrow-band techniques
to increase the computational speed.
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