IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received May 21, 2018, accepted July 3, 2018, date of publication July 10, 2018, date of current version July 30, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2854754

Robotic Arm-Based Face Recognition

Software Test Automation

DEBDEEP BANERJEE ", (Member, IEEE), AND KEVIN YU

Qualcomm Technologies, Inc., San Diego, CA 92121, USA
Corresponding author: Debdeep Banerjee (debdeepb @qti.qualcomm.com)

ABSTRACT Facial recognition is a feature that uses facial detection algorithms to detect a face and then
invokes facial recognition algorithms to try to match the person’s face. First, a person’s face needs to be
enrolled; during enrollment, the person’s facial details are saved in a database—in this case, a mobile phone.
The facial recognition algorithm uses this database to match the currently presented face with the faces
saved in the database. The efficiency of a facial recognition algorithm depends upon the speed at which it
can detect and recognize faces. The problem we address in this paper is that a reliable, automated method
for testing facial recognition features in mobile phones. Because the multimedia capabilities of smartphones
have expanded phenomenally, the need for thoroughly testing facial recognition algorithms has become
crucial. The uses of facial recognition can range from facial authentication for unlocking phones to security
for a number of other applications. To meet these needs, a reliable, automated test for validating the facial
recognition algorithms must be developed. The challenge for the software test team was to automate the
test cases, which involve tilting the phone at specific angles from the test subject. The permissible angular
movements of the phone are determined by the algorithmic specifications of the facial recognition algorithm.
We tested scenarios involving multiple faces, motion blur, panning the phone in front of the test subject
faces at various speeds, and so on. We adopted a robotic arm to perform the facial recognition test cases
and developed software to program the robotic arm to test the phone’s facial recognition software for
functionality, performance, and stability as well as adversarial tests. This paper discusses the computer vision
use case for facial recognition and describes how we developed an automated facial recognition test suite
using a robotic arm.

INDEX TERMS Software engineering, software test automation, computer vision, software testing, robotics,

robotics, automation.

I. INTRODUCTION

This paper discusses the design, development, and implemen-
tation of a test automation strategy to verify facial recognition
features in mobile phones.

The challenge in facial recognition test automation is to
validate both major steps of the facial recognition algorithm.
These steps include (1) determining whether the facial recog-
nition algorithm is able to correctly identify that a face is
present and (2) whether the face can be recognized correctly.
We use logged messages to identify whether the faces are
being recognized correctly.

Adopting the robotic arm when executing the facial recog-
nition test cases has enabled us to accurately create and repeat
tests that involve tilting the tested device to specific angular
positions or panning the tested device while the algorithm

is running to detect faces while focusing on different test
subjects involving multiple faces, etc.

Based on these goals for designing and developing the
facial recognition algorithm we focused on the following
areas.

A. ROBOTIC ARM-BASED TEST AUTOMATION FOR

FACE OCCLUSION TEST

For the facial occlusion test, the facial recognition software
should correctly recognize the face with the left eye, right
eye or mouth region covered. The robotic arm precisely
positions the device under test in front of the test subject.
A rectangular patch is used to occlude specific portions of
the face. The face recognition algorithm extracts the features
of the partially occluded face and compares them with the

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

37858

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 6, 2018

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4907-3054
https://orcid.org/0000-0001-9224-3891

D. Banerjee, K. Yu: Robotic Arm-Based Face Recognition Software Test Automation

IEEE Access

features saved in the face database. The face database stores
all the facial features of the faces when they are enrolled. This
test case is automated with the help of the robotic arm, and
this test helps in testing adversarial scenarios such as facial
occlusion.

B. TEST AUTOMATION USING A 6-JOINT
PROGRAMMABLE ROBOTIC ARM FOR TESTING

FACE RECOGNITION ALGORITHMS WITH

ANGULAR MOVEMENTS (INCLUDING YAW,

PITCH AND ROLL) WITH HIGH PRECISION

The robotic arm serves to automate the tedious work of
manually testing facial recognition algorithms with angular
movements of device under tests. Moreover, manual testing
is error prone. Therefore, being able to programmatically
control the 6 robot arm motors to achieve a specific angular
movement has increased test efficiency and validity.

C. TEST AUTOMATION FOR VALIDATING FACE
RECOGNITION ALGORITHMS ON LARGE

DATASETS AND WITH HARDWARE

ACCELERATION

We tested the face recognition algorithms with large datasets
containing nearly twelve thousand faces with various angular
movement patterns to assess the precision of the face recog-
nition algorithms. We discuss these test results in the Results
section of this paper. The face recognition algorithms can be
tested with hardware-accelerated solutions.

The test automation also includes on-device test automa-
tion to control the phone’s facial recognition application,
which involves sending Google Android instrumentation-
based commands to the phone to launch, close and applying
various settings in the phone’s software application.

We evaluated the software integration points and ensured
that specific test cases are included at these software integra-
tion points. Adding test automation earlier in the software
development cycle has helped us to identify software faults
earlier in the development life cycle.

Il. MOTIVATION

The goal in designing and developing the facial recognition
test automation using the robotic arm is to ensure that we have
a test framework suitable for accuracy, functionality, stability,
and performance tests.

A. TEST AUTOMATION VALIDATION: PERFORMING FACE
RECOGNITION TESTS AT VARIOUS TEST SUBJECT

FACE ANGLES

We programmed the robotic arm so that it can pick up the test
device and then perform angular motions around the faces
of test subjects. This ability effectively allows viewing the
test subject from various angles and supports determination
of the ability of the software algorithm to detect these faces
at various angles. We followed the software design document
specifications with respect to the exact angles at which the
algorithm should be able to detect and recognize target faces.

VOLUME 6, 2018

Moreover, we programmed the robotic arm to test positive
(within spec) and adversarial (beyond spec) angular move-
ments.

B. EXECUTION OF STABILITY TEST CASES WITH ANGULAR
MOVEMENTS FOR FACE RECOGNITION

Testing facial recognition algorithms manually with multiple
test subjects at various angular movements over multiple
iterations is both tedious and error prone. Substituting robotic
arm-based test automation for facial recognition is highly
effective in executing the stability test cases and discovering
software issues.

C. EXECUTION OF THE FACE RECOGNITION TESTS BY
INSERTING OF MOTION OR JITTER TO SIMULATE

REAL WORLD SCENARIOS OF CUSTOMERS

USING THE SOFTWARE

The robotic arm was programmed to insert motion and
jitter while the device is pointed toward the faces of the test
subjects. This process helps to simulate real-world testing
scenarios in which the customer using the application on
the phone may shake the device. We carefully quantify the
issues revealed by these tests and then triage the failures as
legitimate failures.

D. DESIGN AND DEVELOPMENT OF END TO END TEST
AUTOMATION ON A DEVICE TO TEST FACE

RECOGNITION ALGORITHMS

The face recognition test automation can launch the facial
recognition application on the phone and it provides an inter-
face to the on-device software to programmatically apply var-
ious application settings. The test automation postprocesses
the logs generated from the tests to determine the results of
each test case.

E. MANUAL TESTING OF FACE RECOGNITION
ALGORITHMS MAY BE ERROR PRONE

Manual testing may be error prone and tedious. Since we
need to test at various yaw, pitch and roll angles for face
recognition performing these tests manually may lead to
errors. The programmatic robotic arm has provided us an
interface to develop test automation to test these angular
movements.

F. PRECISION MAY BE LOST WITH MANUAL TESTING

An important point of testing image processing software is
the precision calculation for performance tests. So, we must
precisely position the mobile phone under test in front of the
test subjects. The robotic arm gives us this feature.

G. MANUAL TESTING MAY HAVE ISSUES WITH TEST
SCALABILITY

Executing multiple software products may be an issue with
manual testing as it may be time consuming. Using a robotic
arm can help us scale up test execution over several hours.

37859

IEEE Access

D. Banerjee, K. Yu: Robotic Arm-Based Face Recognition Software Test Automation

Ill. BACKGROUND AND RELATED WORK

Robots have long been employed by industry to automate
repetitive tasks [1]. Software testing has also greatly bene-
fited end-users through GUI (graphical user interface)-based
testing using robots.

Using a robotic arm for software testing [2] is a preva-
lent approach, as the robot can be made to repeat a spe-
cific test sequence precisely [3]. Black-box testing involves
testing a software program without knowing its inter-
nal implementation or its architecture. Software can be
tested using black-box techniques when the inputs and the
expected output are known. A robot setup can be effi-
ciently used for software testing because it can precisely
repeat the test sequences and the test results can then be
analyzed [4]-[9].

Robots can be used as flexible, reconfigurable model.
The robot achieves rectilinear locomotion by coupling
structural deformation and directional friction, promoting
a locomotion strategy that is ideal for traversing nar-
row channels [11], [12]. However, testing software using
robot-based systems is challenging because it is nec-
essary to test many of the characteristics of physical
systems [13], [14].

The Robot Framework is open source software based on
the Python language and comprises a keyword-driven auto-
mated test framework [14]. The challenges of robotic soft-
ware testing extend beyond conventional software testing.
Valid, realistic and interesting tests must be generated
for multiple programs and hardware running concur-
rently and that are intended for deployment into dynamic
environments [15].

Manual testing is a time-consuming process. In addi-
tion, regression testing, because of its repetitive nature,
is error-prone; therefore, automation is highly desirable.
Robot Framework is a simple but powerful and eas-
ily extensible tool that utilizes a keyword-driven testing
approach [16].

A robot-based remote testing platform for mobile appli-
cations is presented in [17] that allows a tester to remotely
interact with a mobile device by controlling a robot. Profil-
ing tests must be executed for software, including executing
conformance tests [18].

As an example, [19] presents an approach for behavioral
specification mining based on sets of predetermined patterns
observed over the collected data. Summarizing user sessions
into probabilistic user models and their use for test generation
is discussed in [20].

With respect to Android test automation, the automa-
tion efforts that have been developed such as [21]-[23].
Automated testing efforts have been applied to symbolic exe-
cution [24]-[26] to generate inputs for Android apps. Model-
based testing has been widely studied in testing GUI-based
programs [27]-[30].

In general, model-based testing requires users to provide
a model of the app’s GUI [31], [32], although automated

37860

GUI model inference tools tailored to specific GUI frame-
works exist as well [33], [34].

For mobile applications, the analysis types can be clas-
sified as static and dynamic; there is growing interest in
performing dynamic analyses of mobile apps (e.g., [35]-[37].

The approach to Android-based application testing enables
test engineers to effectively automate the testing process and
achieve comprehensive test coverage.

IV. SOLUTION

A. OVERVIEW

The face recognition software under test in this study has
a standard algorithmic flow. It first takes a snapshot of the
human face and then performs face detection to determine
the location of the face in the acquired image. Then, it creates
face patches and extracts features from these patches. Finally,
depending on whether the task being tested is an enrollment
task or a recognition task, the software either saves the fea-
tures to the face database or matches the features against the
existing database entries to display the best-matched face ID.
Fig. 1 depicts the software’s algorithm workflow.

Launch software and take a snapshot of
a human face.

Perform face detection on the snapshot
image.

Create face patches and perform
feature extraction.

Enrollment
Save set of face features to

database and associate
with face ID.

Perform
enroliment or
recognition?

Recognition

Scan the face database to match

features. display the face ID with the
highest matching score.

FIGURE 1. Workflow of the face recognition algorithm.

Our facial recognition test automation is designed to objec-
tively determine whether faces are correctly recognized by
the algorithm. The test automation process involves both
on-device test automation development to control the appli-
cation running on the phone’s software and robotic arm
programming.

VOLUME 6, 2018

D. Banerjee, K. Yu: Robotic Arm-Based Face Recognition Software Test Automation

IEEE Access

B. OBJECTIVE

According to the facial recognition software documentation,
the specified limitations for recognizing faces are as follows:
pitch angles from —15° to 15°, roll angles from —45° to 45°,
and yaw angles from —20° to 20°, as shown in Fig. 2.

- --

- -

FIGURE 2. Supported angular ranges for the facial recognition software.

To properly test this software, we need to verify the facial
recognition results within and at the supported angular limits.
However, it is challenging for a human tester to manually
move the test device to these angles without using proper
measuring equipment. Thus, manual testing usually lacks
precision and is very time consuming. Therefore, we devel-
oped automated tests using a robotic arm, which is able to
move the test device precisely to the specified angles and test
the facial recognition feature automatically.

C. TEST SETUP

We have a dedicated lab for computer vision use-case
automation equipped with a DENSO VS-Series six-axis artic-
ulated robot. Using this robotic arm in our test automation has
some clear advantages: it features high precision, which is
important because we require it to be able to rotate a device
to a certain angle. The robotic arm can be programmed to
maintain the device at a precise distance from the objects for
some test cases, and its compact design saves lab space. The
six-axes-of-motion design makes the robotic arm highly flex-
ible; it can perform continuous motions and angular motions
that a human arm would find difficult. On test bench next to
the robotic arm, are mannequins that we use as facial recog-
nition test subjects. The mannequins are placed at fixed posi-
tions relative to the robotic arm: we can use these positions
to program the robotic arm (see Fig. 3). On the opposite side
of the test bench, there is a seat for testing facial recognition
with a real person. In these live scenarios, the robotic arm
moves the test device to the same face angles as when using a
mannequin. We also implemented controllable lighting con-
ditions and safety features for operating the robotic arm in
this feasible testing environment.

D. AUTOMATION WORKFLOW
The design methodology for the high-level automation flow
and the software we use is shown in figure 4.

VOLUME 6, 2018

FIGURE 3. Robotic lab test setup.

Use WINCAPS
Use Espresso software for
library roboticarm
instrumentation programming.
to automate Physically move
application Ul the device to
control. desired test
position.

Use log parser
and Matlab
software to
postprocess
logcats and

snapshot
images for
results.

Use Python
programming
language to

write the
main
automation
script.

FIGURE 4. Design methodology for face recognition test automation.

To automate the complete test process, the software con-
trol sequence for the facial recognition app must also be
automated. We use the Espresso library to instrument this
software because it provides the ability to simulate user
clicks, scrolling, selection and other actions through com-
mands. These simulates actions are implemented by our main
automation script.

When the main automation script starts, the PC first sends
a signal to the robot controller to execute the robot problem
that picks up the test device. Then, it begins to execute the
main robotic program that instructs the robot to move the
device to precise pitch/roll/yaw angles depending on the test
case requirements. After the device is in the assigned position,
the automation script triggers the facial recognition software.
The app will launch, focus on the face detected in the pre-
view image, begin the recognition process and display the
recognized name on the preview image. The instrumentation
then takes a snapshot of the preview and exits the app. All
these processes are logged through logcat and saved to the
PC running the automation test. This automated test can
repeat multiple times while moving the device from the
positive to the negative angular limit. For example, in the
pitch angle test, we repeat these steps at 15°, 10°, 5°, 0°,
—5°, —10° and —15° angles, which ensures that the different
angles within the limits are covered and thoroughly tested
by the test automation script. After the robot arm has moved
the device through all the required angles, it releases the test
device at the point where it was picked up and moves back

37861

IEEE Access

D. Banerjee, K. Yu: Robotic Arm-Based Face Recognition Software Test Automation

to a resting position. The automation script saves the result
snapshots and purges the logcat for postprocessing. At the
end of the automation process, the script returns a result of
“pass” or “fail” depending on whether the facial recognition
software was able to correctly recognize the mannequin,
or a real person enrolled prior to the test. The automation
flowchart is depicted in Fig. 5.

Start Program

PC starts test automation
triggers robot controller for
picking up test device

Test automation triggers
robot program for robot to
move the test device to the

specific pitch/rollfyaw angle.

Automation script starts
instrumentation on the
software for launch,
recognition, snapshotand
close app sequence.

Does the device
move through all
the anglas?

Robotic arm safely
releases the test device to
where it was picked up.

Automation script exports
the snapshots and logs to
the PC for post-
processing.

Stop Program

FIGURE 5. Robotic arm test automation script workflow for facial
recognition.

37862

E. PROGRAMMING THE ROBOTIC ARM

The robotic arm plays a major role in this test automa-
tion scenario. We programmed the robotic arm using
WINCAPS 3 software, which makes programming the robot
easier through its built-in 3D arm view, where it simulates the
robotic arm position and movements and displays the cor-
responding coordinates. Thus, a developer can know where
the robotic arm is and how the program will move the arm.
It is also very helpful to create 3D models in this simulated
environment to provide a good simulation of both the robotic
arm and the test subject. Because we are programming the
robot arm to scan a mannequin, we create a 3D model that
has a similar shape and size. The model’s position is mea-
sured using the same scale as the simulation coordinates.
Consequently, we can use simple math and trigonometry to
calculate the coordinates required by the robot arm.

When programming a pitch angle of 15°, the tip of the
robotic arm that holds the device must be raised 15° above the
level of the mannequin’s eyes. In this test program, we want
to maintain a constant distance of 50cm between the device
and the mannequin. Given the known distance between the
robotic base and the mannequin (75 cm) and the distance
between eye level height and the robot arm base (60 cm) we
need to calculate the desired x-axis and z-axis coordinates
of the robotic arm’s tip. Because the mannequin is aligned
directly in front of the robotic arm, the y-axis coordinate is
set to 0. Please refer to Fig. 6 for the calculation diagram.

FIGURE 6. Simulation of robotic arm at a 15° pitch angle above eye level.

To calculate the x-axis coordinate (line DF in Fig. 5)
because the length of CD is known, we need to find the length
of CF which is equal to the length of BE. Since triangle
ABE is a right triangle and the length of its hypotenuse is
known (50 cm), one of its angles is known (15°), we can use
trigonometry to calculate the length of BE:

BE = AB x cos 15° ~ 448.3 cm,

After obtaining the length of BE, we know the coordinates
along the x-axis (DF):

DF =CD—-CF =CD—BE =75—-483=26.7cm

Our next goal is to calculate the z-axis coordinate (AF’). Using
the same approach, the length of AE (the other side of the

VOLUME 6, 2018

D. Banerjee, K. Yu: Robotic Arm-Based Face Recognition Software Test Automation

IEEE Access

right triangle ABE) can be calculated, thus also allowing the
determination of the length of AF:

AE = AB x sin15° ~ 12.9 cm
AF = AE+EF =AE+BC =129+60=729cm

Given the X, y, and z coordinates of the tip of the robotic
arm {26.7, 0, 72.9}, the simulation software can calculate the
rotational angles of each of the 6 robot joints required to move
the arm’s tip to the specified coordinates.

Using the same approach, we can program the robotic arm
to move to positions at pitch angles of 10°, 5°, 0°, —5°, —10°
and —15°. For yaw angles, rather than moving up and down,
the robot needs to move from left to right in an arc path at the
mannequin’s eye level, as shown in Fig. 6. For roll angles,
the robotic arm needs to rotate its last joint to the desired
angle while holding the device parallel to the mannequin’s
face, as shown in Fig. 7.

FIGURE 7. Robotic arm at a 20° yaw angle and a 45° roll angle.

After setting all the angular positions, we then program the
robotic arm to move between each angle. A pause interval
is added at each stopping point to allow time for the face
recognition software to launch the app, execute the recogni-
tion test and close the app. This approach ensures that the
software exercises a fresh recognition at every angle instead
of simply tracking a recognized face from other angles.
Fig. 8 demonstrates how the program controls the robotic arm
to move the test device to the pitch, yaw and roll angles on
mannequin No. 1.

In our case, we want to increase test coverage by placing
a second, male mannequin on the setup bench, as shown
in Fig. 9. The same calculation method can be used to position
the robotic arm for the second mannequin—we just need
to add the coordinates of this mannequin to the reference
positions during the calculation. This addition adds some
complexity to the math; however, it also allows a substantial
expansion of the test models when space allows while still
using a single robotic arm. Using two mannequins eliminates
the effort needed to manually switch test models, and the
entire automated process can be triggered remotely. This
robotic arm can also turn 180° and repeat the same set

VOLUME 6, 2018

FIGURE 8. Robotic arm at pitch, yaw, roll angles on mannequin No. 1.

FIGURE 9. Robotic arm at pitch and yaw angles on mannequin No. 2.

of angles. In addition, a real person can sit at a fixed position
and launch a live recognition, thereby making the automation
setup even more practical.

F. TEST AUTOMATION ON FACE OCCLUSION USE CASE
Another key use case for applying robotic arm automation
is when testing facial occlusion. Facial occlusion scenarios
have always been a challenging test for facial detection and
facial recognition algorithms. In many real-life scenarios, not
all parts of the human face can be clearly seen. Sometimes,
the eyes and ears are partially covered by hair, the mouth and
nose may be covered by a pollution mask, and hands may
also interfere and block part of the face when performing
facial recognition on images, videos or live subjects. Thus,
occlusion forms a challenge to facial recognition algorithms’
precision and performance.

Facial feature extraction is one of the software algorithm
processes previously mentioned. During feature extraction,
the algorithm locates the facial regions unique to each indi-
vidual, called facial patches, as shown in Fig. 10. The
extracted patches are either stored or compared to the facial
database during facial matching.

In facial recognition testing, we want to block each of
these regions of the face in turn to simulate facial occlusion
scenarios that occur in real-life to evaluate how the facial
recognition software performs. With 2-dimensional images,
it is easy to block any region of the face with image editing
tools and therefore automate the process. However, blocking
these facial regions with a 3-dimensional face model is more
challenging without manually covering the face. Using the
robotic arm makes it possible to automate this process.

In our lab, we use a mannequin in a fixed position as
the facial model and use a rectangular light-blocking mate-
rial as cover that is also fixed in position relative to the

37863

IEEE Access

D. Banerjee, K. Yu: Robotic Arm-Based Face Recognition Software Test Automation

—
o o e o o e

FIGURE 10. Diagram of the facial patches of a mannequin.

mannequin’s face. By positioning the test device with the
camera at specific angles with respect to the face, the covering
will block an exact region of the facial image with respect to
the camera. As shown in Fig. 11, position P1 will cover the
left eye region, P2 will cover the right eye region, P3 will
cover the nose region, and P4 will cover the mouth region.

FIGURE 11. Diagram of the four camera positions for testing facial
occlusion with a single cover.

Since we only need to move the test device to achieve
the desired facial occlusion scenarios, this test process can
be automated by programming the robotic arm to move the
device to positions P1, P2, P3 and P4. Depending on the
mannequin’s position and the cover’s position, height and
distance, the angle and position required for the device can
be calculated or estimated visually by checking the preview
image. The angle formed between the camera and the center
of the cover will be the same angle as that from the center
of the cover to the covered facial region. The size of the
covered region depends on the size of the covering material
and the distance ratio of the cover position between the
mannequin and the camera. After determining the 4 positions
of the camera that yield the desired facial occlusions, we store
them into the robotic arm’s script and move the robotic arm

37864

FIGURE 12. Robotic arm moves the device to each position for face
occlusion testing.

through each of these positions to perform the automated
facial occlusion test illustrated in Fig. 12.

G. TEST AUTOMATION ON 2D IMAGES

Although face recognition automated software testing garners
major benefits from using robotic arm in angular and occlu-
sion use-cases on 3D faces, there is a limit to the number
of 3D test subjects we can test to validate the performance of
the facial recognition software. Therefore, we also designed
robotic arm-based automation testing on 2D face images by
focusing the device on a monitor screen, as shown in Fig. 13.

FIGURE 13. 2D face image testing on display monitor.

The advantage of using a monitor screen is that it allows
facial recognition testing on a large face image dataset. The
FERET dataset [38], [39] is one of the commonly used
datasets for evaluating facial recognition software. It contains
images of 1,200 individuals for face enrollment, with a total
of 12,827 face images from these individuals that can be used
to test facial recognition. The FERET recognition images
were divided into 5 groups based on face yaw-angle ranges.
We display the enrollment images on the monitor as a slide
show and then use the end-to-end face recognition software
to enroll the faces in its database. Subsequently, we display
the recognition images to test the software’s recognition per-
formance. The results are parsed by the automation script for
analysis. Using this automation setup, we can evaluate and
compare devices with different face recognition solutions.

VOLUME 6, 2018

D. Banerjee, K. Yu: Robotic Arm-Based Face Recognition Software Test Automation

IEEE Access

Face image manipulation testing is another use case that
can benefit from this robotic arm and monitor setup. For
example, we can easily blur the face images or zoom-in and
zoom-out on the face images, and then run the test automation
suite on the altered images to evaluate the facial recognition
software’s performance on these types of scenarios, as shown
in Fig. 14.

Standard Face Image

Blurred Face Image Zoom-out Face Image

FIGURE 14. Face image manipulation scenarios.

The brightness of the monitor display can also be changed
to introduce another factor that can alter the performance
results. Our test setup allows multiple test option possibili-
ties using both 2D face images and 3D face models. These
testing options will benefit the coverage and quality of facial
recognition software.

V. RESULTS

Using the automation setup with the robotic arm, we can
easily perform functional and performance tests using the
facial recognition software in different scenarios. We collect
the results in term of true positives, true negatives, false
positives and false negatives. The facial recognition time limit
is set to 300 milliseconds. If the software cannot display the
correct name associated with a face within that time limit,
it will generally be treated as a false negative.

A. 3D FACE MODELS WITH ANGLES

Facial recognition tests at various angles are functional tests;
for these, it is best to use the robotic arm with the 3D man-
nequin setup. We ran the test automation at 15° to —15° pitch
angles, 45° to —45° roll angles and 20° to —20° yaw angles.
At each angle, we executed the recognition process 100 times
to determine how many times the software correctly iden-
tified the mannequin. After the test script completed, we
reviewed the collected test results, which consist of the test
logs and the screenshots as shown in Fig. 15. The screenshots
help us confirm that the application is displaying the recog-
nized names correctly at the end to end level. At every angle,
the face remains correctly positioned in the preview image,
which means that the robotic arm positions were calculated
and executed precisely as intended.

We preserved only the true positive rates because these
were functional test cases, and we enrolled only two man-
nequins to test whether the software could recognize them at
the specific angles. From the test results shown in Table 1,
the face recognition succeeded every time within £10° pitch

VOLUME 6, 2018

Roll 45°

Pitch 15°

FIGURE 15. Test result screenshots at different angles from
mannequin 1 & 2.

TABLE 1. Performance test results at the various pitch, yaw, and roll
angles.

Pitch True Roll True Yaw True
Angles Positive Angles Positive Angles Positive
15° 99% 45° 98% 20° 95%
10° 100% 30° 99% 15° 97%
5° 100% 15° 100% 10° 99%
-5° 100% -15° 100% -10° 99%
-10° 100% -30° 100% -15° 98%
-15° 99% -45° 98% -20° 96%

angles and failed only twice at +15° pitch angles. the roll
angles had a true positive rate of 98% at +45°. A slight
performance impact occurred as the yaw angles approached
the specification limits: the recognition success rate was 95%
for 20° yaw angles, and 96% for —20° yaw angles. The yaw
angles proved to be more challenging for facial recognition
compared to the pitch and roll angles. Thus, the software
should undergo further testing for facial recognition perfor-
mance evaluation. However, this issue can be overcome by
enrolling faces from both frontal and side views.

Using this robotic arm automation setup, we can expand
the test cases to recognize faces at angles beyond the sup-
ported limits. Being able to precisely push these limits will
help software developers test solutions that may improve
facial recognition performance and, therefore, enhance their
algorithms.

B. 3D FACE MODELS WITH OCCLUSIONS

On the facial occlusion test, the facial recognition software is
able to correctly recognize the mannequin’s face with the left
eye, right eye and mouth region covered. However, we dis-
covered that when the nose region is covered, the software
can no longer detect the face, as illustrated in Fig. 16. This
may be because the nose region is essential for the facial
detection algorithm. Additionally, because the nose region is

37865

IEEE Access

D. Banerjee, K. Yu: Robotic Arm-Based Face Recognition Software Test Automation

FIGURE 16. Test result screenshots of facial occlusion scenarios on a
mannequin.

the highest point of human face geography, it is the optimal
viewing position for human facial recognition.

From these results, we can see that the robotic arm is
a reliable and effective solution for fully automated facial
occlusion testing. It is also possible to expand the use cases
by altering the size of the facial covering material to assess
the software’s limitations with regard to facial occlusions.

C. TESTING 2D FACE IMAGES IN THE FERET DATASET
Large 2D face image datasets such as FERET are ideal
for performing facial recognition performance evaluations.
Using the robotic arm and the display monitor setup, we exe-
cuted automated tests on the 5 categories of face data
sets based on face yaw angles. There were 4,010 face
images within the 0-20-degree yaw angles, 1,926 images
within 20-30-degrees, 1,013 images within 40-50 degrees,
2,935 images within 60-70 degrees and 2943 images
within 80-90-degree yaw angles. The test results are shown
in Table 2.

TABLE 2. Face recognition performance result on the FERET dataset.

FERET Face True True False False
Database Detectio Positive | Negativ Positive | Negativ
Face Yaw | n Rate e e
Angles

0-20 99.18% 94.74% 1.63% 1.73% 1.89%
Degree

20-30 90.81% 69.07% 11.72% 0.80% 18.41%
Degree

40-50 68.41% 39.83% 19.05% 0.14% 40.98%
Degree

60-70 41.26% 11.31% 12.55% 0.00% 74.82%
Degree

80-90 1.90% 0.00% 1.79% 0.00% 98.21%
Degree

As Table 2 shows, the face detection success rate
reaches 99% within the 0-20-degree yaw angles with an
approximately 95% true positive recognition rate. The false
positive rate is at 1.7%. These angles are well within the sup-
ported yaw angle range of the face recognition software we
tested, and the performance is good at this range. The other
4 yaw-angle categories are outside of the supported range;

37866

thus, the performance can be expected to decrease, as shown
in Fig. 17.

Face Recognition Performance on
FERET Database

80%
60%
40%
20% I
0% - —

0-20 20-30 40-50 60-70 80-90
Degree Degree Degree Degree Degree

W Detection Rate True Positive M False Positive

FIGURE 17. Graph of the face recognition software performance results.

This graph shows the face detection, true positive and false
positive rates; these 3 are the key performance metrics for face
recognition. At 20-30-degree face yaw angles, the face detec-
tion rate is still good, reaching approximately 91%; however,
the true positive rate drops to 69%, almost a 25% decrease
compared to the previous category. This is expected, because
the more a face turns, the fewer facial features it reveals,
which makes it harder for a facial recognition algorithm to
recognize the face. From the graph in Fig. 16, we can see
a consistent rate of decrease in both the face detection rate
and the true positive recognition rate throughout the first
4 categories. At 80-90-degree yaw angles, only one side of
the face is visible; at this point face detection and face recog-
nition are expected to fail. The false positive rate remains
low for all the test images, which is good, because the facial
recognition software should not falsely accept an incorrect
face—especially when the facial recognition software is used
for security purposes. Overall, we obtained meaningful and
reliable results from test automation.

VI. CONCLUSION

Facial recognition algorithms require a comprehensive test-
ing strategy to evaluate the effects of algorithmic code
changes at both the application programming interface (API)
level and at the end-to-end application level. The developed
facial recognition test automation using the robotic arm pro-
vides us with a testing framework that can efficiently test
churning software code to uncover software issues.

The facial recognition algorithm is tested using function-
ality, stability, performance and adversarial tests. The test
automation involves on-device testing of the algorithms and
provides test results based on log postprocessing as well
as other characteristics. The usage of the robotic arm is a
method for testing the face recognition algorithms and it can
be implemented with other manipulating platforms also. The
inclusion of the robotic arm has helped us to scale the test

VOLUME 6, 2018

D. Banerjee, K. Yu: Robotic Arm-Based Face Recognition Software Test Automation

IEEE Access

automation process and execute tests across multiple software
products.

VII. ADVANTAGES OF USING FACE RECOGNITION

TEST AUTOMATION

In this study, we used a programmable robotic arm setup to
perform panning movements in front of test subjects at differ-
ent angles and speeds. The arm allows us to precisely control
yaw, pitch and roll movements of the device under test in front
of the test subjects, and the test scripts include postprocessing
support to extract the names associated with recognized faces.
Comparisons with the ground truth of the face detected in the
image helps us to evaluate the test results. The test automation
enables us to test real-life facial recognition scenarios (such as
the inclusion of automated tests involving hand jitter motions)
using the robotic arm. This capability helps us to effectively
catch issues that can customers might experience.

The ability to pick up the phone under test and focus the
phone on several test subjects to involve multiple faces in
a session helps in testing prolonged sessions with multiple
test vectors. The test automation is also used for stability
testing by programming the robotic arm to perform multiple
iterations holding the device under test in front of the test
subjects’ faces at various angles. This capability has helped
us catch multiple race condition, memory corruption, and
memory leak issues that occur only after several testing
iterations.

Overall, the inclusion and deployment of the facial recog-
nition test automation has increased our test coverage and
helped us to catch software regressions.

REFERENCES

[1] K. Mao, M. Harman, and Y. Jia, “Robotic testing of mobile apps for
truly black-box automation,” IEEE Softw., vol. 34, no. 2, pp. 11-16,
Mar./Apr. 2017.

[2] D. Banerjee, K. Yu, and G. Aggarwal, “Hand jitter reduction algo-
rithm software test automation using robotic arm,” IEEE Access, vol. 6,
pp- 23582-23590, 2018, doi: 10.1109/ACCESS.2018.2829466.

[3] D. Banerjee, K. Yu, and G. Aggarwal, “Robotic arm based 3D
reconstruction test automation,” IEEE Access, vol. 6, pp. 7206-7213,
2018.

[4] V. Garousi and M. Felderer, “Worlds apart: Industrial and academic
focus areas in software testing,” IEEE Softw., vol. 34, no. 5, pp. 38-45,
Sep. 2017.

[S] M. Harman, “Search based software testing for Android,” in Proc.
IEEE/ACM 10th Int. Workshop Search-Based Softw. Test. (SBST),
May 2017, p. 2.

[6] J. Guiochet, M. Machin, and H. Waeselynck, ‘Safety-critical
advanced robots: A survey,” Robot. Auton. Syst., vol. 94, pp. 43-52,
Aug. 2017.

[7]1 C. Yu and J. Xi, “Simultaneous and on-line calibration of a robot-based
inspecting system,” Robot. Comput.-Integr. Manuf., vol. 49, pp. 349-360,
Feb. 2018.

[8] M. Jasiniski, J. Maczak, P. Szulim, and S. Radkowski, ‘“Autonomous
agricultural robot—Testing of the vision system for plants/weed clas-
sification,” in Automation, vol. 743, R. Szewczyk, C. Zielifiski, and
M. Kaliczyriska, Eds. Cham, Switzerland: Springer, 2018.

[9] J. Brookes et al., “‘Robots testing robots: ALAN-Arm, a humanoid arm for
the testing of robotic rehabilitation systems,” in Proc. Int. Conf. Rehabil.
Robot. (ICORR), Jul. 2017, pp. 676-681.

[10] N. Cramer et al., “Design and testing of FERVOR: FlexiblE and recon-
figurable voxel-based robot,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Sep. 2017, pp. 2730-2735.

VOLUME 6, 2018

(11]

[12]

[13]

(14]

(15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

(24]

(25]

(26]

(27]

(28]

(31]

(32]

(33]

J.-H. Lim, S.-H. Song, J.-R. Son, T.-Y. Kuc, H.-S. Park, and H.-S. Kim,
“An automated test method for robot platform and its components,” Int.
J. Softw. Eng. Appl., vol. 4, no. 3, pp. 9-18, Jul. 2010.

M. Mossige, A. Gotlieb, and H. Meling, “Testing robotized
paint system using constraint programming: An industrial case
study,” in Proc. 26th IFIP Int. Conf. Test. Softw. Syst., 2014,
pp. 145-160.

M. Mossige, A. Gotlieb, and H. Meling, “Test generation for robotized
paint systems using constraint programming in a continuous integration
environment,” in Proc. IEEE 6th Int. Conf. Softw. Test., Verification Vali-
dation, Mar. 2013, pp. 489-490.

L. Jian-Ping, L. Juan-Juan, and W. Dong-Long, “Application analysis of
automated testing framework based on robot,” in Proc. 3rd Int. Conf. Netw.
Distrib. Comput., Oct. 2012, pp. 194-197.

D. Araiza-Illan, A. G. Pipe, and K. Eder, “Intelligent agent-based stimula-
tion for testing robotic software in human-robot interactions,” in Proc. 3rd
Workshop Model-Driven Robot Softw. Eng., Leipzig, Germany, Jul. 2016,
pp. 9-16.

S. Stresnjak and Z. Hocenski, “Usage of robot framework in automa-
tion of functional test regression,” in Proc. 6th Int. Conf. Softw. Eng.
Adv. (ICSEA), Barcelona, Spain, Oct. 2011, pp. 30-34.

K. B. Dhanapal, “‘An innovative system for remote and automated testing
of mobile phone applications,” in Proc. Service Res. Innov. Inst. Global
Conf., 2012, pp. 44-54.

S. Elbaum and M. Diep, “Profiling deployed software: Assessing strate-
gies and testing opportunities,” IEEE Trans. Softw. Eng., vol. 31, no. 4,
pp. 312-327, Apr. 2005.

G. Reger, H. Barringer, and D. Rydeheard, “A pattern-based approach
to parametric specification mining,” in Proc. 28th IEEE/ACM Int. Conf.
Autom. Softw. Eng. (ASE), Nov. 2013, pp. 658—663.

P. A. Brooks and A. M. Memon, “Automated GUI testing guided by
usage profiles,” in Proc. 22nd IEEE/ACM Int. Conf. Autom. Softw.
Eng. (ASE), Nov. 2007, pp. 333-342.

A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for Android apps,” in Proc. ESEC/FSE 9th Joint Meeting Found.
Softw. Eng., 2013, pp. 224-234.

S. Anand, M. Naik, H. Yang, and M. J. Harrold, “Automated concolic
testing of smartphone apps,” in Proc. ACM Conf. Found. Softw. Eng. (FSE),
2012, Art. no. 59.

N. Mirzaei, S. Malek, C. S. Pésareanu, N. Esfahani, and R. Mahmood,
“Testing Android apps through symbolic execution,” ACM SIGSOFT
Softw. Eng. Notes, vol. 37, no. 6, pp. 1-5, Nov. 2012.

C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proc. 8th USENIX Symp. Oper. Syst. Design Implement. (OSDI), 2008,
pp. 209-224.

P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed auto-
mated random testing,” in Proc. ACM Conf. Program. Lang. Design
Implement. (PLDI), 2005, pp. 213-223.

J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, no. 7, pp. 385-394, Jul. 1976.

R. C. Bryce, S. Sampath, and A. M. Memon, ‘“Developing a single model
and test prioritization strategies for event-driven software,” IEEE Trans.
Softw. Eng., vol. 37, no. 1, pp. 48-64, Jan./Feb. 2011.

A. M. Memon, M. E. Pollack, and M. L. Soffa, “Automated test ora-
cles for GUIs,” in Proc. ACM Conf. Found. Softw. Eng. (FSE), 2000,
pp. 30-39.

A. M. Memon and M. L. Soffa, “‘Regression testing of GUIs,” in Proc.
ACM Conf. Found. Softw. Eng. (FSE), 2003, pp. 118-127.

X. Yuan, M. B. Cohen, and A. M. Memon, “GUI interaction testing:
Incorporating event context,” IEEE Trans. Softw. Eng., vol. 37, no. 4,
pp. 559-574, Jul./Aug. 2011.

L. White and H. Almezen, “Generating test cases for GUI responsibilities
using complete interaction sequences,” in Proc. 11th IEEE Int. Symp.
Softw. Rel. Eng. (ISSRE), 2000, p. 110.

X. Yuan and A. M. Memon, “Generating event sequence-based test cases
using GUI runtime state feedback,” IEEE Trans. Softw. Eng, vol. 36, no. 1,
pp. 81-95, Jan./Feb. 2010.

D. Amalfitano, A. R. Fasolino, S. De Carmine, A. M. Memon, and
P. Tramontana, “Using GUI ripping for automated testing of Android
applications,” in Proc. 27th Int. Conf. Autom. Softw. Eng. (ASE), 2012,
pp. 258-261.

37867

IEEE Access

D. Banerjee, K. Yu: Robotic Arm-Based Face Recognition Software Test Automation

[34] T. Takala, M. Katara, and J. Harty, “Experiences of system-level model-
based GUI testing of an Android app,” in Proc. 4th Int. Conf. Softw. Test.,
Verification Validation (ICST), 2011, pp. 377-386.

[35] W. Enck et al., “TaintDroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proc. 9th USENIX Symp.
Oper. Syst. Design Implement. (OSDI), 2010, pp. 393—407.

[36] P. Gilbert, B.-G. Chun, L. P. Cox, and J. Jung, *“Vision: Automated security
validation of mobile apps at app markets,” in Proc. 2nd Int. Workshop
Mobile Cloud Comput. Services (MCS), 2011, pp. 21-26.

[37] L.K. Yan and H. Yin, “DroidScope: Seamlessly reconstructing the OS and
Dalvik semantic views for dynamic Android malware analysis,” in Proc.
21st USENIX Secur. Symp., 2012, pp. 1-16.

[38] P.J.Phillips, H. Wechsler, J. Huang, and P. J. Rauss, “The FERET database
and evaluation procedure for face-recognition algorithms,” Image Vis.
Comput. J, vol. 16, no. 5, pp. 295-306, 1998.

[39] P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss, “The
FERET evaluation methodology for face recognition algorithms,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 10, pp. 1090-1104,
Oct. 2000.

37868

DEBDEEP BANERJEE received the master’s degree in electrical engineering
from the Illinois Institute of Technology. He has approximately 10 years
of industry experience in the field of software/systems engineering. He is
currently a Senior Staff Engineer and an Engineering Manager with Qual-
comm Technologies, Inc., USA. He is also a Software/Systems Development
Engineer and the Test Lead for the Computer Vision Project. He is respon-
sible for the test automation design, planning, development, deployment,
code reviews, and project management. He has been with the Software Test
Automation Team since the inception of the computer vision project with
Qualcomm Technologies, Inc. He is involved in managing and developing
software for the computer vision lab using the robotic arm.

KEVIN YU is currently a Test Engineer with Qualcomm Technologies, Inc.,
USA, and has contributed to the test automation validation for the continuous
integration of computer vision algorithms. He has also validated computer
vision engine features such as image rectification for the Android software
products.

VOLUME 6, 2018

	INTRODUCTION
	ROBOTIC ARM-BASED TEST AUTOMATION FOR FACE OCCLUSION TEST
	TEST AUTOMATION USING A 6-JOINT PROGRAMMABLE ROBOTIC ARM FOR TESTING FACE RECOGNITION ALGORITHMS WITH ANGULAR MOVEMENTS (INCLUDING YAW, PITCH AND ROLL) WITH HIGH PRECISION
	TEST AUTOMATION FOR VALIDATING FACE RECOGNITION ALGORITHMS ON LARGE DATASETS AND WITH HARDWARE ACCELERATION

	MOTIVATION
	TEST AUTOMATION VALIDATION: PERFORMING FACE RECOGNITION TESTS AT VARIOUS TEST SUBJECT FACE ANGLES
	EXECUTION OF STABILITY TEST CASES WITH ANGULAR MOVEMENTS FOR FACE RECOGNITION
	EXECUTION OF THE FACE RECOGNITION TESTS BY INSERTING OF MOTION OR JITTER TO SIMULATE REAL WORLD SCENARIOS OF CUSTOMERS USING THE SOFTWARE
	DESIGN AND DEVELOPMENT OF END TO END TEST AUTOMATION ON A DEVICE TO TEST FACE RECOGNITION ALGORITHMS
	MANUAL TESTING OF FACE RECOGNITION ALGORITHMS MAY BE ERROR PRONE
	PRECISION MAY BE LOST WITH MANUAL TESTING
	MANUAL TESTING MAY HAVE ISSUES WITH TEST SCALABILITY

	BACKGROUND AND RELATED WORK
	SOLUTION
	OVERVIEW
	OBJECTIVE
	TEST SETUP
	AUTOMATION WORKFLOW
	PROGRAMMING THE ROBOTIC ARM
	TEST AUTOMATION ON FACE OCCLUSION USE CASE
	TEST AUTOMATION ON 2D IMAGES

	RESULTS
	3D FACE MODELS WITH ANGLES
	3D FACE MODELS WITH OCCLUSIONS
	TESTING 2D FACE IMAGES IN THE FERET DATASET

	CONCLUSION
	ADVANTAGES OF USING FACE RECOGNITION TEST AUTOMATION
	REFERENCES
	Biographies
	DEBDEEP BANERJEE
	KEVIN YU

