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ABSTRACT When localizing wireless sensor networks, estimating the distances of sensor nodes according
to the known locations of the anchor nodes remains a challenge. As nodes may transfer from one place to
another, a localization technique that can measure or determine the location of a mobile node is necessary.
In this paper, the distance between a bicycle when moves on the cycling track and a coordinator node
(i.e., coach), which positioned on the middle of the cycling field was estimated for the indoor and outdoor
velodromes. The distance was determined based on two methods. First, the raw estimate is done by using
the log-normal shadowing model (LNSM) and later, the intelligence technique, based on adaptive neural
fuzzy inference system (ANFIS) is applied to improve the distance estimation accuracy, especially in an
indoor environment, which the signal is severely dominated by the effect of wireless multipath impairments.
The received signal strength indicator from anchor nodes based on ZigBee wireless protocol are employed
as inputs to the ANFIS and LNSM. In addition, the parameters of the propagation channel, such as
standard deviation and path loss exponent were measured. The results shown that the distance estimation
accuracy was improved by 84% and 99% for indoor and outdoor velodromes, respectively, after applying the
ANFIS optimization, relative to the rough estimate by the LNSM method. Moreover, the proposed
ANFIS technique outperforms the previous studies in terms of errors of estimated distance with minimal

mean absolute error of 0.023 m (outdoor velodrome) and 0.283 m (indoor velodrome).

INDEX TERMS Accuracy, ANFIS, propagation channel, WSNs, ZigBee.

I. INTRODUCTION

Inaccurate estimation of node locations in a wireless sensor
network (WSN) is a principal problem in WSN localization.
Many range-free and range-based techniques are employed
in WSN localization. Range-based techniques are used to
determine the angles and distances among WSN nodes. Some
examples of these techniques are time difference of arrival
(TDoA), angle of arrival (AoA), time of arrival (ToA) [1],
global positioning system (GPS) [2], received signal strength
indicator (RSSI) [3], and acoustic energy [4]. Meanwhile,
distance estimation and localization accuracy are crucial fac-
tors for WSN applications [5], because they can reduce the

power consumption of the WSN nodes. When the distances
among the WSN nodes are measured accurately, the trans-
mitted radio frequencies of the transceivers of the sensors
and mobile nodes can be modified to reduce their power
consumption, thereby prolonging the battery lifetime [6].
Among the range-based techniques, the RSSI is the most
employed for the measurement of the distances among WSN
nodes [7]. In the current cycling or any sports application,
the mobile node had limited energy sources and minimal
equipment requirement. Thus, by using RSSI, we were able
to minimize power consumption because it did not require
additional hardware. In the current work, a path loss model
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known as Log-Normal Shadowing Model (LNSM) will be
adopted to determine the distance between network nodes
based on RSSI measurements. On the contrary, the range-
free technique has low accuracy and is less cost-effective.
It assumes that information about the angle or distance is
unavailable and rely on the communication link between
stationary nodes, known as anchor nodes, and mobile nodes
to estimate the node locations.

WSNs have played a significant role in sports applications
for monitoring the athlete’s activities. One such application
is in track cycling. In the track cycling, the physiological
and biomechanical parameters of both cyclist and bike can
be monitored to evaluate the performance and fitness of the
cyclist, such as speed, cadence and torque [8]. In this work,
the RSSI of a ZigBee sensor node is used to determine the
bicycle position on the cycle track, because it does not require
any extra hardware [9]. The RSSI can be used together with
a derived LNSM for distance estimation between the coordi-
nator node (i.e., coach) and the movable bike on the cycling
track. Additionally, channel factors, such as the standard
deviation and path loss exponent are measured. The reason for
using LNSM is that it is a conventional wireless propagation
model [10]. Moreover, much research has adopted LNSM
for channel modeling, in indoor and outdoor environments
to measure the distance between the sender and receiver [11].
However, the LNSM method is not highly accurate. There-
fore, the mobile node localization error on the track cycling
was improved by using Adaptive Neural Fuzzy Inference
System (ANFIS) technique. ANFIS is used to achieve the
non-linear approximation algorithms. Therefore, it is suit-
able for our application, where the collected RSSI are non-
linear data. ANFIS is a well-known technique for evolution
self-organizing neuro-fuzzy systems with several practical
applications [12].

The contribution of this paper is as follows (i) modelling
the wireless channel path loss based on RSSI measurements
in indoor and outdoor velodromes, (ii) estimation the physical
parameters of the wireless channel path loss model for indoor
and outdoor velodromes based on LNSM, and (iii) to improve
the distance estimation accuracy based on ANFIS intelligent
technique. It is expected that the proposed distance estimation
based on ANFIS outperformed other state-of-the-art systems
in terms of mean absolute error (MAE).

Il. MOTIVATION BEHIND DISTANCE ESTIMATION

In cycling applications, sensor nodes are placed on bikes for
cyclists to monitor biomechanical and physiological param-
eters, but the electrical power supply of sensor nodes is
limited. Therefore, sensor nodes need batteries as the power
source. Reducing power consumption and prolonging bat-
tery life is essential because the battery power of sensor
nodes is limited. Several techniques can be used to conserve
energy in wireless sensor networks (WSNs). One of these
techniques is transmission power control (TPC). TPC can
be implemented via distance measurement between nodes
in WSNs. When a mobile node (i.e. bicycle) approaches the
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anchor or coordinator node (located at the centre of the cycle
track), the transmitted power of sensor nodes is minimised
to conserve energy and extend battery life. Accurate distance
estimation is necessary for such an application, thus, become
the main motivation in this paper.

Ill. RELATED WORKS

Recently, several localization techniques that use artifi-
cial intelligence (AI) have been implemented. Comple-
mented by optimization algorithms, these techniques, such as
ANFIS [13], [14], artificial neural network (ANN) [15], [16],
and fuzzy logic (FL) [17], [18], increase the accuracy of WSN
localization. Meanwhile, the optimization algorithms often
used in WSN localization are gravitational search algorithm
(GSA) [19], [20], bacterial foraging algorithm (BFA) [21],
particle swarm optimization (PSO) [22], [23], and genetic
algorithms (GAs) [24]. Several researchers have used
ANFIS for WSN node localization. In one study [13],
ANFIS was able to locate people moving in a specific zone
with 95% accuracy. These people wore trackable wristbands,
and three Wi-Fi access points were used for the localization.
In another study [14], a robot that uses ANFIS was designed.
This robot was able to locate itself in a risky outdoor envi-
ronment and used extended Kalman filter (EKF) to adapt
the RSSI values of a ZigBee wireless protocol. Based on its
position relative to the static sensor nodes, its localization
accuracy was 2—10 m [14]. In [17], WSN objects were local-
ized in an indoor environment through a multi-nearest neigh-
bor scheme and fingerprint-based on fuzzy inference system
algorithm. The algorithm improved the localization accuracy
and minimized the calculation cost. The overall localization
accuracy of this study was 0.43 m. Another indoor local-
ization study [25] demonstrated that localization could be
achieved by using the RSSI measurements from the Wi-Fi
networks. In this study, the curve fitting, ANFIS, and inter-
polation are employed to develop the indoor wireless channel
propagation model. The RSSI was then transformed into a
physical distance, and EKF was used to improve the local-
ization accuracy. The obtained localization accuracies of the
interpolation, curve fitting, and ANFIS (based on two Gaus-
sian membership functions) were 2.7, 2.5, and 2.1 m, respec-
tively. Mestre ef al. [26] enhanced the localization accuracy
by using fingerprinting, which was based on fuzzy logic,
thus improved the localization accuracy by 10.24%-49.43%.
They were also able to obtain an average localization error
of approximately 3 m. Meanwhile, Lin et al. [27] combined
the location awareness system (LAS) with ANFIS to locate
indoor patients. LAS composed of a server, location nodes,
client monitor, gateway, and control unit. This system has
low-power consumption and uses low-cost wireless proto-
cols, such as ZigBee [28]. The RSSI values of the three
sensor nodes were used to determine the distance between
the position of each sensor node and the patient location.
In [29], the RSSI or link quality indicator (LQI) of the ZigBee
wireless protocol was used to recognize the location of the
tag of a vision robot. The recognition process was based on
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ANFIS and WSN. In this study, an ANFIS-based WSN was
constructed to develop a location identification system (LIS)
with tags, location nodes, and gateways. The RSSI measure-
ments were used to identify the locations of the tags. The
performance of indoor localization of robot was improved,
because of the combination of ANFIS and LIS. In [30],
two algorithms were used to locate a small ZigBee mobile
device in a wildlife environment. The first algorithm used
FL to obtain a fractional solution, while the second algorithm
used a centralized technique that combined all the partial
solutions. The FL was more effective than centroid algorithm
(i.e., without fuzzy system) in terms of improving accuracy
and minimizing localization error.

Nekooei and Manzuri-Shalmani [31] used neuro-fuzzy
(NF) systems and genetic fuzzy (GF) to localize a mobile
node from the RSSI measurements. To localize itself, the sen-
sor node gathered the RSSI and position of each anchor
node. They concluded that the NF system outperforms the GF
and weighted centroid localization (WCL) (WCL; which was
considered in [18]) in terms of average localization error. The
localization errors of the NF system and GF were 0.9014 and
0.9501 m (based on eight Gaussian membership functions),
respectively.

The ANN is used in localization or distance estimation
techniques to determine the location of sensor nodes or dis-
tances among the nodes in a WSN. ANN exhibits high
speed, fast convergence, and low computation cost [23], [32].
Payal et al. [15], [32], [33] used ANN to localize the sensor
nodes in a WSN. They used RSSI values to train and test
the ANN for the estimation of the sensor node locations.
They were able to obtain the following localization errors:
0.7855 [15], 1.1862 [32], and 0.49 m [33]. Irfan et al. [34]
adopted two different ANN algorithms, namely, Bayesian
regularization and gradient descent, to estimate the location
of moving sensor nodes in indoor environments. To estimate
the location of the sensor nodes, they combined the RSSI and
LQI of the ZigBee wireless protocol to train (the initial phase)
and test (the evaluation phase) the ANN. They obtained a
location accuracy of 1.65 m.

One study [35] used the feed-forward neural network to
localize a moving robot in an indoor environment accord-
ing to the LQIs of the three sensor nodes that used the
ZigBee wireless protocol. The average localization error
obtained in this study was 2.8 m. Chuang and Jiang [16]
suggested a new ANN scheme for node localization.
In addition, they adopted a Dijkstra algorithm and log-normal
shadowing model (LNSM) to compute the shortest paths
among nodes in a WSN. They also collected the RSSI values
to determine the distance of hop counts. Their simulation
was conducted in 3,600 m? and 2,500 m? areas with com-
munication distances of 25 m and 20 m, respectively. They
showed that the average location error and transmission dis-
tance in the 2,500 m*> were 6-7 and 25 m, correspondingly.
Rahman et al. [36] proposed WCL and generalized regres-
sion neural network (GRNN) for node localization. They
used two GRNNSs to train the neural network separately
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for y and x coordinates using the RSSI values of reference
nodes, which were determined through the access points.
By doing so, they were able to employ neural networks for
the identification of the approximate position of a target node
and its adjacent nodes in an indoor environment. They then
estimated the position of the target node by computing the
weighted centroid of the nearest neighbors. The localization
accuracy of their proposed method was compared with that of
some available RSSI-based methods. The results shown that
the localization accuracy was reasonable, and their proposed
method was simple and did not require additional hardware.
In this study, the localization errors of the GRNN and com-
bined GRNN and WCL were 1.298 and 1.127 m, respectively.
In [21], BFA and PSO were employed as optimization
algorithms to improve the location accuracy of nodes in
a WSN. Twelve anchor nodes were used to estimate the
location of 40 nodes. The simulation results of this study
indicated that the PSO was faster but less accurate than
the BFA. The obtained average localization errors of the
PSO and BFA were 0.05412 and 0.03976 m, respectively.
Yu et al. [37] then proposed a PSO-based RSSI for the ZigBee
wireless protocol to optimize the LQI (which was deviated
by the environment) of an unknown node. The LQI of this
node was received from the sink node. The LQI was then
transferred to RSSI based on a propagation model to deter-
mine the distance between a sink node and unknown node.
Yu et al. [37] were able to obtain a distance error of 0.49 m.
Tewolde and Kwon [22] used the RSSI of Wi-Fi networking
structure for low-cost and accurate indoor localization. They
applied an efficient and simple localization algorithm and
used PSO that relied on the propagation path loss model.
Their method was conducted in a simulation environment
and then established to achieve suitable localization accuracy
in an indoor environment. They obtained an average error
of 4 m in a 50 x 50 m” area under a noisy environment.
Li et al. [38] proposed an optimized algorithm based on
PSO to improve the accuracy of the estimated distance of an
unknown node. They used RSSI values in LNSM to estimate
the distance among nodes in a network. They obtained an
average localization error of 0.2383 m in their simulation.
Overall, the current research differs from previous related
works based on Al in the following aspects: First, the ANFIS
in the current study used non-linear RSSI data as inputs
and physical distance as output to accurately estimate the
distance between the mobile bicycle and coordinator node.
Second, eight types of membership functions with three,
five, and seven numbers of input membership functions were
adopted for the selection of suitable types and numbers of the
membership functions. This procedure minimized the error.
Third, an empirical wireless channel path loss model was
derived from the RSSI measurements in indoor and outdoor
velodromes. Fourth, a comparative analysis between path loss
model and ANFIS, both based on distance estimation, was
performed to show the feasibility of the proposed ANFIS.
Fifth, our proposed distance estimation-based ANFIS was
compared with previous Al techniques or algorithms to show
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the improvement of our proposed technique in terms of dis-
tance estimation accuracy.

IV. WIRELESS CHANNEL MODEL

Previous research works have evaluated propagation charac-
teristics of ZigBee-based WSN in both outdoor and indoor
surroundings [39]. However, the previous works are not an
ideal fit for track cycling application. Most ZigBee wireless
protocol support RSSI, thus the received power at the receiver
is measured for every data packet. The power or energy of
electromagnetic wave traveling among several nodes, i.e. the
mobile bike node and coach coordinator node is a signal
parameter that includes information representing the commu-
nication range or distance between these nodes. The signal
parameters are employed alongside path loss and LNSM to
determine the distance between nodes. Accordingly, the path
loss model is known as [40] and [41],

Pr (d) = Pro (do) + 10Blogo (d/do) + Vo ey

where Py (d) is the reference channel path loss at different
locations on the cycling track measured in dBm, PL,(d,)
is the channel path loss at d,, (i.e., reference distance equal
to 1 meter [6] adopted in this study), which may be gained
from the real measurements in the track cycling or calculated
based on the Friis formula measured in dBm, g is the channel
path loss exponents, d is the distance between the coordinator
and mobile node, which changes with the bicycle’s location
on the cycling track, and y is the Gaussian random variable
with zero-mean and standard deviation o.

The parameters of the LNSM can be measured practically
through the track cycling field, as will be seen in the results
section. The RSSI in dBm can be computed in the mobile
node as in Equation (2) [42]:

RSSI = Pr, — P1,. (d) )

where Pr; is the coordinator node output power measured
in dBm (2 dBm adopted in this work). Therefore, the received
signal strength power by the mobile bicycle node is computed
as follows [43], [44]:

RSSI = P1 — Pr, (dy) — 10,3[0g10 (d/dy) + Vo 3)

In this work, both Py, (d,) and d, are assumed to be con-
stant. The path loss exponent g is related to the environment
and can be varied between 2 (free space) to 6 (urban) [45]. For
our application, 8 depends on the real measurements in the
track cycling field, which were found to be 1.6308 (outdoor)
and 2.0369 (indoor). For the LNSM, three parameters can be
assumed constant, which are widely used in many research
works [43]:

i) B remain constant in the considered areas (indoor &

outdoor).

i) Zero-mean Gaussian random variable, y, remains

constant.
iii) The path is symmetrical due to the shape of the
velodrome track, and
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iV) The RSSI from the mobile node to the coordinator node
is equal to the RSSI from the coordinator node to the
mobile node.

V. ADAPTIVE NEURAL FUZZY INFERENCE

SYSTEM (ANFIS)

In this section, an Al technique will be considered to improve
the localization accuracy relative to the LNSM method. For
this purpose, ANFIS was implemented in Matlab simulation
software. In this work, an ANFIS editor block is devel-
oped in Matlab to estimate the distance between the coach
coordinator node and a moving bicycle on the cycle track
(in the indoor and outdoor environment) by using seven gbell
membership functions. The ANFIS editor block involves
data loading, initialization and generating fuzzy inference
system (FIS), FIS structure, membership function types,
number of membership functions, ANFIS training and data
testing against trained FIS. ANFIS has been utilized in sev-
eral studies [14], [17], [25] to estimate the distance between
nodes or the position of nodes in WSNs. ANFIS was proposed
by Jang in 1993 [46] to solve problems in FL and neural
networks (NN).

The performance of FL relies on the number of mem-
bership functions (mfs), forms of membership functions and
the rule basis. These parameters are determined through a
trial and error process, which is time-consuming. In several
cases, paramount results cannot be achieved [47]. Despite
the advantages of NNs, such as handling of nonlinear data,
connecting layers with various weight values, generalization
capabilities, adaptive structure and independent design from
system variables, NNs lack definite rules for selecting the
numbers of layers and neurons in each hidden layer, can-
not determine the learning rate and present an instruction
problem [47].

ANFIS combines techniques, knowledge and methodolo-
gies from different sources. ANFIS can serve as a basis for
forming a set of fuzzy “IF-THEN” rules with member-
ship functions to create specified input—output matching by
employing a hybrid algorithm, i.e. back propagation (BP) and
least squares estimation [48]. The membership functions are
adjusted to the input—output information. By gathering input—
output information, ANFIS tunes the initial fuzzy inference
system with a BP algorithm. FIS and NN are complementary
technologies in ANFIS. The reason for combining NN with
FIS is to maximize the learning capability of NN. However,
the learning capability of NN is an advantage from the view-
point of FIS, whereas from the viewpoint of an NN, addi-
tional advantages can be obtained from a combined system.
Prior knowledge can be integrated into the system because
FIS relies on linguistic rules, and this integration can signifi-
cantly reduce the learning process.

The basic construction of FIS involves three conceptual
parts: (i) a database that describes membership functions
employed in the fuzzy rules, (ii) a rule-based that includes
selected fuzzy rules and (iii) a reasoning mechanism that
achieves inference on the basis of the rules and provided
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facts to obtain reasonable conclusion or output. Two systems
of FIS can be executed: Takagi—Sugeno and Mamdani. The
Takagi—Sugeno system is computationally more efficient and
compact than the Mamdani system since it allows the use
of adaptive techniques to build fuzzy models [49], [50].
Adaptive learning techniques (ALTs) are utilized to optimize
fuzzy membership functions for FIS to model the data well.
FIS based on ALT is called ANFIS. However, ANFIS per-
forms better than ANN and FL techniques. In addition, select-
ing the appropriate type and a large number of membership
functions can improve the performance of ANFIS. As aresult,
small errors are obtained during training and data checking.

The ANFIS technique is a fuzzy Sugeno paradigm within
the framework of adaptive networks utilized to simplify
adaptation and learning [51]. The Sugeno fuzzy paradigm
was proposed by Takagi—Sugeno to formalize a systematic
methodology of creating fuzzy rules on the basis of an input-
output dataset. In our adopted ANFIS technique, three inputs
(i.e., RSSI values), single output (i.e., distance), two rules and
the first-order Takagi—Sugeno method are considered. The
rules of FIS are expressed in Equations (4) and (5).

Rulel: Ifx=A;, y=Bjandz=C,
then gy = m\x +n1y + piz + ri. 4
Rule2: Ifx=A;, y=Byandz=Cy,

then go = max + nay + p2z + ra. (5)

In these rules, x, y and z are the input vectors; g is the output
function; A;, B; and C; represent the membership functions
for the inputs; and p, m, n and r are the output variables.

Figure 1 shows ANFIS architecture that comprises five
layers that accomplish various functions. The figure contains
circle and square nodes; the circle form indicates a fixed
node, and the square nodes point to an adaptive node. The
ANFIS structure can be described as follows.

Third layer Fourth layer Fifth layer

First layer

Second layer

Y I SR e o Y SR
Inference process  Defuzzification Output

Input Fuzzification

=

FIGURE 1. The adopted ANFIS framework.

A. FIRST LAYER (INPUT)

This layer includes input variables mfs. Each node in this
layer is considered an adaptive node. The output values of
the nodes of this layer represent the adopted generalized
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bell-shaped membership function (gbellmf), which is
expressed in Equation (6). The output signal provides mem-
bership functions and membership functions with degrees of
the input value. Fuzzification is achieved in this layer. Thus,
bell-shaped mfs with the lowest value of 0 and the highest
value of 1, as expressed in Equation (6) are used in this layer.

pA; (x) = 1/[1 + |(x — ci)/a;i|*"] (©6)

where a;, b; and ¢; represent the parameters that can change
the shape of gbellmf; hence, they are employed to adjust
the membership degrees of inputs. These parameters are
tuned during the training phase of the network. Other types
of mfs, such as triangular, trapezoidal, Gaussian curve,
two-sided Gaussian curve, pi-shaped curve, the difference
of two sigmoid functions and the product of two sigmoid
functions, can also be used instead of the generalized bell-
shaped curve, as will be seen in Table 2.

The output values (O;;) of nodes in this layer can be
expressed as Equation (7). In our application, the inputs of
this layer represent the RSSI values collected from ANI,
AN2 and AN3 in outdoor or indoor environments.

01,i = uA;(x) @)

B. SECOND LAYER

The nodes in this layer are represented by circular shapes, and
the output of this layer can be explored from the input signals
by using one of the t-norm operators. This layer realizes the
FIS process, and the output of each node exhibits the rule
firing level. The firing level of a rule can be calculated in this
layer through the multiplication of the mfs of all inputs. The
output of this layer (O3 ;) can be obtained by applying the
following equation:

O2,i = hi = pA; (x) X uB;i (y) x uCi(z) i=1,2,3...

®

C. THIRD LAYER (RULES)

The nodes in this layer are represented by circular shapes
and marked as N. The normalization process occurs in this
layer, where each node provides the ratio of the firing vigour
of the i™ rule to the overall firing level. Therefore, the third
layer computes the normalized firing level, as shown in
Equation (9).

O3i=hi=hi/(hy +hy) i=1203,... )

D. FOURTH LAYER (OUTMFS)

The nodes in this layer are represented by square shapes.
Inference of the rules generates the output. This layer creates
an adaptive correlation between the normalized firing value
(i.e. the output of the third layer) and resulting function (g).
In other words, defuzzification is performed in this layer.

Ou,i = higi = hi(mix + njy + piz + ;) (10)

where 7; is the output value of the third layer and m;, n;, p;
and r; are the result parameters.

38479



IEEE Access

S. K. Gharghan et al.: ANFIS for Accurate Localization of WSN in Outdoor and Indoor Cycling Applications

E. FIFTH LAYER (OUTPUT)

The nodes in this layer are represented by a single circle and
labelled as . The output signal of this layer can be obtained
via the summation of the input signals incoming from the
previous layer (i.e. fourth layer), as shown in Equation (11).
All incoming signals to this layer from the previous layer are
added, and the fuzzy grouping outcomes are converted into a
crisp value.

Osi= ) higi= Zl, higi/ Zi hi (1D

In our study, the output of the fifth layer represents the
estimated distance based on the ANFIS technique (danrys)-
Consequently, MAE using the ANFIS technique can be cal-
culated by applying Equation (12).

k
MAE = (1/) )" dacuat = davirs|— (12)

where k represents the number of samples of the actual and
tested distances on the basis of ANFIS.

VI. EXPERIMENT SETUP

To investigate the propagation model for track cycling appli-
cation, two experiments were implemented using ZigBee
WSN. The first one is conducted in an outdoor velo-
drome (i.e., cycling field in Cheras, Kuala Lumpur) and the
other experiment is implemented in an indoor environment
(i.e., a sports hall inside a university campus).

A. OUTDOOR ENVIRONMENT

The experiment was carried out in the track cycling field in an
outdoor environment. The WSN consists of one coordinator
node (the coach or AN1) and one mobile node (i.e., bicycle)
as shown in Figure 2a. The mobile node (which fixed on the
bike) is moving on the cycling track, whereas the coordinator
node is static in the middle of the cycling field, as shown
in Figure 2a. The mobile bicycle node uses the collected
RSSI to estimate the physical distance between the coordi-
nator node and itself based on LNSM. The area of the track
cycling field is 130 m x 65 m, and the track circumference
is 333 meters. The minimum and maximum distances are
32 and 65 meters respectively, measured from the middle
of the track field between the coordinator node and mobile
node. It is worth mentioning that the RSSI values are col-
lected based on actual measurements in the track cycling field
(i.e., velodrome), where the adopted velodrome size is sim-
ilar to the actual velodrome which is endorsed by Union
Cyclist International (UCI) world track championships. The
cycling track area is divided into four symmetrical sections
(1, 2, 3, and 4). The RSSI measurements were done for
Section 1 and the measured RSSI value is applied to the
rest other sections since they are symmetrical. The RSSI is
measured for ten predefined locations in Section 1, as shown
in Figure 2a, which presented in black arrows.

B. INDOOR ENVIRONMENT

The indoor velodrome is represented by the sports hall of
the Universiti Kebangsaan Malaysia (UKM) since there is
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FIGURE 2. Cycle track area (a) outdoor environment and (b) sports hall
indoor environment.

no indoor velodrome in Malaysia at the moment of writing.
The dimension of the building is 36 m x 34 m, as illustrated
in Figure 2b. Since the size of this building is not equivalent
to the actual velodrome, a diametrical distance was adopted
to get a farthest physical range between the bicycle mobile
node and coordinator node. The coordinator node ANI is
fixed at a left corner of the sports hall, while the bike moves
away from the coordinator node in predefined positions. The
RSSI measurements were conducted at eleven predefined
locations as shown in Figure 2b.

VII. RESULTS AND ANALYSIS

A. RSSI MEASUREMENT

In this paper, the XBees of the coordinator and mobile
nodes were configured using X-CTU software. Hundred
RSSI samples were registered for each location, one sample
every second. Each sample includes single data packet frame;
every data packet frame consists of ten bytes. The RSSI was
obtained by averaging the hundred samples from the mobile
bike node for each location. Figure 3 shows the path loss for
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FIGURE 3. Path loss versus distance for indoor and outdoor velodromes.

both outdoor and indoor. It is clear that the indoor environ-
ment influences the path loss of the wireless link more than
the outdoor environment. The measured values for outdoor
and indoor attenuation were compared with the theoretical
model, which is based on Equation (1). Figure 3 shows
a convergence between the theoretical and measured plots
for the indoor and outdoor velodromes at a small distance.
However, the divergence between these plots increased when
the distance increased. A convergence between the theoret-
ical and measured plots has been observed for the outdoor
velodrome. On the contrary, there is a big divergence among
the theoretical and measured plots for the indoor velodrome
relative to the outdoor velodrome. This is because of the
multipath effect, due to the presence of reflections, scatters
and diffractions from indoor objects such as furniture, doors,
windows, and walls in the sports hall.

B. DERIVED LNSM

The link between the average of RSSI values and logarithmic
values of the distances (which is established in advance) is
plotted to obtain the LNSMs in indoor and outdoor envi-
ronments (Figure 4). The standard deviation o and path
loss exponents B are determined through the use of a linear
fitting line over the indoor and outdoor curves in Figure 4.

—@&— Outdoor Indoor
-10 i Linear (Outdoor) Linear (Indoor)
-20
-
5'30 y=-20.369x - 36.249
<-40 ¢ R>=0.8887
T
750 y=-16.308x - 39.621
2 L R?=0.9819
-60 '\’*-»“\"QQ.‘\
-70
-80

0.25 15 1 125 15 175 2

0.5 0.75 .
Log(d) distance in meters

FIGURE 4. The fitting curve for indoor and outdoor velodromes.
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TABLE 1. Ideal and measured parameters of LNSM for indoor and
outdoor velodromes.

Parameters Symbo Outdoor Indoor
Llf?t Measur  Ideal Measur  Ideal
ed ed
Reference d, (m) 1[52] 0.1-10 1 0.1-10
distance
Path loss at d, Pl,(d,) 40 37 [6] 41 37
(dBm)
Path loss B 1.6308  2[42] 2.0369 1.6-1.8
exponent [44]
Std. deviation o (dB) 2.271 2-14 2.791 2-14

[53]

The predestined regression line is generated through
Equations (13) and (14).

RSSI puidoor = —16.308Log(d /d,) — 39.621  (13)
RSSTindoor = —20.369Log(d /d,) — 36.249  (14)

Comparing Equations (13) and (14) with Equation (3).
Equations (15) and (16) can be used for outdoor and indoor,
respectively to compute the standard deviation (o) and path
loss exponent (8). Consequently, the LNSM parameters are
obtained and introduced in Table 1, where, the coordinator
node output power, P, is 2 dBm and the PL,(d,) is 40 dBm
(outdoor) and 41 dBm (indoor) obtained from measurements.

16.308 = 108 as)
P1, (dBm) — Pl, (dy) + v = —39.621

20.369 = 108 16)
P71, (dBm) — Pl, (dy) + vy = —36.249

C. ERROR CALCULATION

Equations (13) and (14) can be re-arranged, yielding
Equations (17) and (18) to estimate the distance for the
outdoor and indoor velodromes, respectively.

;= do10—(RSSI,,L,,{1W,~+39.621)/16.308

doutdoo in meters; (17)

= d, 10~ RSSindoor +36.249)/20.369

dindoo in meters;  (18)

Based on the above equations, the error between the
real or actual physical distance and measured distance can
be obtained as in Figure 5. The figure clarifies the esti-
mated error for both outdoor and indoor velodromes. In addi-
tion, the MAE for outdoor (blue dash-dot line) and indoor
(red dash line) environments were calculated based on
Equation (19). The MAE was found 6.534 and 5.556 m
for indoor and outdoor velodromes as shown in Figure 5,
respectively.

N

MAE = ]% >, dactuar = d| (19)
where d,qnq 1s the actual physical distance measured
between predefined locations on the cycle track and coor-
dinator node (AN1) through the use of distance meter mea-
surements, d is the estimated distance from Equation (17) for
outdoor and Equation (18) for indoor, and N represents the
number of the estimated and actual distance samples.
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FIGURE 5. Estimated absolute error relative to distance and MAE for both
indoor and outdoor velodromes.

Figure 5 shows that the error growths with distance and
the MAE obtained for outdoor is better than for the indoor
by 15%. Root Mean Square Error (RMSE) can be taken
into account as defined in Equation (20) [54] to evaluate
the measurement accuracy for both the outdoor and indoor
environments. In addition, RMSE will be used in the next
section to compare the performance of the distance estima-
tion accuracy based on LNSM and ANFIS. The RMSEs
are 7.256 m (outdoor) and 12.156 m (indoor) according
to LNSM.

1 n
RMSE = \/ﬁ Zi:l (dactual - d)2 (20)

The correlation coefficient, R, between the estimated and
actual physical distances is a good index for LNSM perfor-
mance evaluation. Figure 6 presents a positive correlation
for the outdoor measurement (R = 0.9418; blue dash line)
and weak positive correlation for the indoor measurement
(R = 0.8157; black dash-dot line). In the indoor environment,
a mismatch between the actual and estimated distances is
apparent. The mismatch is due to the multipath effect, which
occurs when the distance increases.
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FIGURE 6. Correlation between actual and estimated distances for indoor
and outdoor environments.

A transmitted signal that passes through a wireless channel
experiences deviations in outdoor and indoor environments,
as can be seen from the low and high fluctuations. Such effect
leads to imprecise distance estimation. In indoor environ-
ments, obstacles, such as doors and walls, weaken or block
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the transmitted signal between the anchor and mobile nodes.
Consequently, the estimated distance between these nodes is
inaccurate according to the wireless channel path loss model.
In this work, an Al technique, such as ANFIS, is used to
improve the accuracy of the estimated distance.

D. ANFIS-BASED DISTANCE ESTIMATION

Three, five, and seven membership functions (mfs) were used
for each input to train and test the ANFIS. Also, eight types
of mfs, i.e., triangular (#ri), trapezoidal (trap), bell-shaped
(gbell), Gaussian curve (gauss), two-sided Gaussian curve
(gauss2), pi-shaped curve (pi), difference of two sigmoid
(dsig), and product of two sigmoid (psig) membership func-
tions were considered in ANFIS. 48 simulation examples
were conducted for training data, 24 simulation examples
for outdoor and 24 for indoor environments. Each simulation
example is performed based on 1,000 epochs.

The same procedure was repeated for testing data. The
reason for using different numbers and types of the mem-
bership functions is to select the best values that give min-
imum localization or distance estimation error. However, for
training and testing the ANFIS, an enormous number of RSSI
values are needed. Therefore, a 900 and 780 samples of
RSSI were collected from three anchor nodes for outdoor and
indoor as shown in Figures 7 and 8, respectively. To construct
a connection between the output physical distances and inputs
of RSSI values, the collected RSSI values are employed to
train and test the ANFIS. Consequently, the error is esti-
mated for various types and numbers of ANFIS membership
functions for indoor and outdoor, as listed in Table 2. This
table clarifies the best localization error occurs when seven
membership functions are chosen for each input. In addition,
the bell-shaped membership (gbellmf) type is better than the
other membership function types for both indoor and outdoor.

RSSI (dBm)

85 |—e—ANI
—h— AN3 °
290 B Variances of RSSI 2 A

Variances of RSSI 1

Variances of RSSI 3

30 35 40 45 50 55 60 65
Distance (m)

FIGURE 7. Input RSSI values and actual distance of ANFIS in the outdoor
velodrome.

Figures 9 and 10 show the correlation between the actual
physical distance (situated on the x-axis) and estimated dis-
tance (situated on the y-axis, which obtained from ANFIS)
in the indoor and outdoor environments. Figures 9a, b, and
¢ depict the distributions of the distance estimations for the
3,5, and 7 gbellmfs, respectively, in outdoor environments.

VOLUME 6, 2018



S. K. Gharghan et al.: ANFIS for Accurate Localization of WSN in Outdoor and Indoor Cycling Applications

IEEE Access

RSSI (dBm)
3

-70
[
-80 —@— ANl 8— AN2
—&— AN3 ®  Variances of RSSI 1
B Variances of RSSI 2 A Variances of RSSI 3

0 5 10 15 20 25 30 35 40 45 50
Distance (m)

FIGURE 8. Input RSSI values and actual distance of ANFIS in the indoor
velodrome.

TABLE 2. Comparison of distance estimation errors for different numbers
and types of ANFIS membership functions.

ANFIS m/type | RMSE ugoor (meter) RMSEpguor (meter)
Three | Five | Seven | Three | Five Seven
mfs | mfs | mfs mfs mfs mfs
tri 3.19 | 233 0.93 4.88 3.37 241
trap 3.48 1.78 1.79 5.18 3.73 3.75
gbell 2.82 | 0.75 0.05 4.80 2.69 1.10
gauss 3.11 1.60 | 0.27 4.79 2.85 1.52
gauss2 2.84 | 0.53 0.24 4.62 2.61 2.36
pi 3.21 1.37 1.02 4.87 3.47 3.61
dsig 3.01 1.15 0.19 4.77 3.40 2.12
psig 2.62 1.15 0.19 4.65 3.17 2.12

Figures 10a, b, and c depict the distributions of the distance
estimation for the 3, 5, and 7 gbellmfs, respectively, in indoor
environments. The regression coefficient R can be consid-
ered when evaluating the accuracy of an estimated distance.
Figure 9c shown that the actual and estimated distances
of 7 gbellmfs in the outdoor velodrome completely agreed
with each other, which can be supported by the R value that
equals to 1.

Similarly, in Figure 10c, a high correlation between the
estimated and actual physical distances of 7 gbellmfs is
observed in the indoor velodrome, where the R value is
0.994. The regression coefficient R in Figure 10c is similar
to that of 5 gbellmfs in the outdoor velodrome (Figure 9b).
This similarity reduces used during the training and test-
ing of ANFIS. The mismatch between actual and estimated
distances in the indoor environment is due to the multipath
effect that is prominent in an indoor environment. Compared
with 7 gbellmfs, 3 and 5 gbellmfs in the indoor and outdoor
velodromes suggest a low correlation between the actual and
estimated distances, as shown in Figures 9a and b (outdoor)
and Figures 10a and b (indoor). Therefore, 7 gbellmfs are
considered for ANFIS training and testing in both velodromes
to accurately determine the distance between the coordinate
node and mobile node moving on the cycling track.

Figure 11 compares the distance estimation accuracy
between classical method based on LNSM and intelligent
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FIGURE 9. Outdoor environment: (a) 3 gbellmf, (b) 5 gbellmf,
and (c) 7 gbellmf.

%)
S

technique based on ANFIS for outdoor and indoor in
terms of RMSE, which calculated from Equation (11). The
figure shows the RMSE for outdoor is better than indoor envi-
ronment based on LNSM. In addition, the figure disclosed
that the RMSE at outdoor is better than indoor when ANFIS
is applied. Whereas, it is significantly improved by 84 % and
99% based on 7 gbellmfs relative to LNSM for indoor and
outdoor, respectively.

ANFIS is trained and tested offline. The RSSI measure-
ments of the anchor nodes (i.e., AN1, AN2, AN3) are used as
inputs to the ANFIS, and the real physical distance between
the coordinator node (AN1) and mobile bicycle node are
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TABLE 3. Comparison between the proposed ANFIS technique and the techniques or algorithms of previous related works in terms of MAE.

Ref. Year Localization technique/algorithm Location Environment MAE (m)
technology
[25] 2007 ANFIS WiFi Indoor 2.1
[56] 2008 ANFIS UHF (CC1000) Outdoor 0.9886
[14] 2012 ANFIS ZigBee Outdoor 2
[57] 2013 FL WiFi Indoor 3.133
[32] 2013 ANN Simulation model Simulation 0.49
[58] 2013 MFL and SFL IEEE 802.15.4 Simulation 0.89 (MFL) and 0.94 ( SFL)
[59] 2013 ANN RFID Indoor 1
[60] 2013 ANN Simulation model Simulation 0.15
[61] 2013 ANN Hive5 Indoor 0.99
[62] 2014 FL WiFi Indoor 7.6
[32] 2014 ANN Simulation model Simulation 1.1862
[35] 2014 ANN ZigBee Indoor 2.8
[16] 2014 ANN Simulation model Outdoor 6-7
[63] 2014 ANN ZigBee Indoor 0.85
[64] 2014 ANN Simulation model Indoor 0.3
[65] 2014 EMMWC ZigBee Indoor 1
[66] 2014 EMMWC IEEE 802.15.4 Indoor/outdoor <2
[15] 2015 ANN Simulation model Simulation 0.7855
[17] 2015 ANFIS WiFi Indoor 043
[67] 2015 ANN Simulation model Indoor 1.98 (RMSE)
[67] 2015 ANN Simulation model Outdoor 1.42 (RMSE)
[68] 2015 ANN Simulation model Simulation 0.11958
[17] 2015 MVFL IEEE 802.11b Indoor 0.98
[69] 2016 PSO- ANN Simulation model Simulation 0.288
[70] 2016 FL ZigBee Indoor 0.8
[71] 2016 FL and ELM Simulation model Outdoor 0.15 (FL), 0.26 (ELM)
[72] 2016 ELM Simulation model Indoor 5.25
[55] 2016 Adaptive FL Bluetooth Indoor 0.15
[73] 2016 Deep Neural Network WiFi Indoor/outdoor 0.398
[74] 2016 Mobile and fixed nodes Simulation model Indoor/outdoor <1
[75] 2016 SVM WiFi Indoor 1.2
[76] 2016 RSS-based GLS IEEE 802.15.4 Indoor 0.3
[77] 2016 SVM Simulation model Simulation 0.1
[50] 2017 MFL and SFL Simulation model Simulation 0.5 (MFL) and 0.3 ( SFL)
[78] 2017 MSVM Simulation model Simulation 1.632
[79] 2017 Intelligent water drops Simulation model Simulation 1.602
[80] 2017 MDS-KNN WiFi Indoor 1.2 (MSE)
[81] 2017 H-Best PSO Simulation model Simulation 0.4139
[82] 2017 HMS Simulation model Simulation 4
[83] 2017 DCNN Image-based Indoor 1.14 (RMSE)
[84] 2017 GA Simulation model Simulation 0.89
[85] 2017 Bluetooth LE and MEMS Bluetooth LE Indoor 2.29
[86] 2017 Weighted Centroid Simulation model Simulation 1.009
[87] 2017 FL Simulation model Simulation 0.898
[88] 2017 PSO Simulation model Simulation 0.5
[89] 2017 Hierarchical structure poly-PSO ZigBee (CC2530) Outdoor 0.624
[90] 2017 BFO Simulation model Simulation 0.05
[91] 2017 FL based on Invasive Weed Optimization Simulation model Simulation 0.507
[92] 2017 CSO Simulation model Simulation 0.11
[93] 2017 GWO and WOA (Swarm Intelligence) Simulation model simulation 14
[94] 2018 MLP Bluetooth LE Indoor 1.75
[95] 2018 FL Simulation model Indoor 0.192
[96] 2018 Radio Map WiFi Indoor 3.5
[97] 2018 IPSO Simulation model Simulation 0.35
[98] 2018 BPANN Simulation model Simulation 0.057
[99] 2018 CNN UWB Indoor 0.65
[100] 2018 Logistic Regression Classier IEEE 802.15.4 Indoor 1.45
[101] 2018 Twi-Adaboost Algorithm Smartphone Indoor 0.39 m
[102] 2018 FP-MPP-APIT Algorithm Simulation model Outdoor 1.3
[103] 2018 CRRV Simulation model Simulation 0.5
Proposed ANFIS ANFIS ZigBee Outdoor 0.023
Proposed ANFIS ANFIS ZigBee Indoor 0.283
BFO: butterfly optimization algorithm; BPANN: Back Propagation ANN; CNN: convolutional neural network; CRRV: connectivity and the RSS rank
vector; DCNN: deep convolutional neural network; EMMWC: extended min-max and weighted centroid; FP-MPP-APIT: Fermat point-mid perpendicular
plane-approximate point in triangulation test GLS: geometrical least square; GWO: Grey Wolf Optimizer; HMS: heuristic multidimensional scaling; IPSO:
improved PSO; MDS-KNN: multi-dimensional scaling k-nearest neighbor; MEMS: microelectromechanical systems; MFL: Mamdani FL; MSVM:
multidimensional SVM; MVFL: multivariable fuzzy localization; SFL: Sugeno FL; CSO: chicken swarm optimization; MLP: Multilayer Perceptron; WOA:
Whale Optimization Algorithm

used as output. Simulation in MATLAB is performed to train
and test ANFIS. However, there is no concern with respect
to the time characteristic, in which the offline training time
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is 30, 162, and 1345 s for 3, 5, and 7 gbellmfs, respectively.
After the offline training of the ANFIS, the new RSSI val-
ues received by the mobile bicycle node correspond to the
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FIGURE 10. Indoor environment: (a) 3 gbellmf, (b) 5 gbel/mf,
and (c) 7 gbellmf.

estimated distance in real time. Meanwhile, the ANFIS tech-
nique in the current study is compared with the techniques
used in the previous studies in terms of MAE in the local-
ization or distance estimation (Table 3). In this comparison,
similar studies that have used ANFIS, FL, PSO, GA, extreme
learning machine (ELM), support vector machine (SVM),
and ANN localization or distance estimation techniques are
considered. Furthermore, most of the previous works have
employed ZigBee, Wi-Fi or combination of both wireless
technologies and used the RSSI to train and test the Al
These protocols are selected because their RSSI measure-
ments are easy to implement and does not require additional
hardware. The RSSI metric has been used by the researchers
as an input to Al processes, while the positions of the
x and y coordinates of the nodes or the physical distances (d)
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among the nodes are used as outputs. Our results indicate
that our ANFIS technique is superior to the techniques used
in previous studies in terms of MAE performance. Partic-
ularly, we have obtained an RMSE of 0.053 m and MAE
of 0.023 m in our outdoor application and RMSE of 1.1 m
and MAE of 0.283 m our indoor application (Table 3).
However, [55] is better than our work, because its mobile
node moves with a maximum distance of 18.6 m, whereas the
mobile node in our work moves with a maximum diagonal
distance of 45 m in indoor environments. In other words,
the accuracy of our work decreases because of increased
distance, which is prone towards the effect of channel imper-
fections, such as scattering, reflection, and diffraction.

VIil. CONCLUSIONS

Given the advantages of using RSSI information from con-
stant nodes AN1, AN2 and ANS3, the proposed ANFIS tech-
nique is much more accurate than the range-based method
that employs LNSM. A path loss model is derived from the
linear fit along with RSSI to determine the actual physical
distance between the coordinator and mobile nodes on the
cycle track. RMSE and error calculations reveal that distance
estimation using LNSM is accurate for short communication
distances in outdoor surroundings; however, it is inappro-
priate for long-distance applications for indoor and outdoor
velodromes. The LNSM approach cannot satisfy the distance
estimation accuracy for indoor environments, but it is suit-
able for short distances in outdoor velodromes. Therefore,
ANFIS was used to optimize the estimated distance accuracy
of the mobile node on the cycling track.

The results disclosed that the distance estimation accuracy
based on ANFIS was significantly improved by 84% and
99% relative to LNSM in indoor and outdoor environments,
respectively. Furthermore, the proposed ANFIS technique
outperformed methods used by previous works in terms
of MAE. The number and type of the ANFIS membership
functions significantly affected the distance accuracy. When
the numbers of membership functions increased, the esti-
mated distance improved considerably. However, in this case,
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the computational and convergence time increased. There-
fore, a trade-off between computational time and accuracy is
necessary.

Several conclusions are obtained. First, LNSM can be
applied to short distances in outdoor environments. Second,
LNSM is unsuitable for use in indoor environments. Third,
Al techniques, such as ANFIS, can be employed to improve
distance accuracy. Fourth, the proposed ANFIS obtained bet-
ter results than other algorithms because the performance
of ANFIS is improved by increasing the number and type
of membership functions. In this work, the accuracy of the
estimated distance is improved, and the error is significantly
minimized due to the selection of seven gbell membership
functions. Fifth, ANFIS is trained and tested in the offline
phase. However, ANFIS training and data testing consume a
large amount of time, especially when the number of mem-
bership functions is large, because the amount of data and the
complexity of ANFIS increase with the number of member-
ship functions. After the offline phase, three new RSSI values
are received in the online phase. Consequently, the distance
between the mobile bicycle node and the coordinator node
can be accurately estimated in real time.

Finally, the ANFIS technique supports multiple
input-single output. Therefore, it is suitable for distance
estimation, such as in the current cycling application.
For x and y localization, the RSSI dataset consists of
two input: one for the x coordinate and the other for the
y coordinate. The RSSI dataset must be fed separately to
two ANFIS systems. For future work, the distance estimation
precision can be optimized further by increasing the number
of anchor nodes, especially in an indoor environment.

ACKNOWLEDGMENT

The authors acknowledged the contribution from Geng Sem-
bang Kencang (GSK) for their indirect volunteerism to
improve the clarity of writing in the final manuscript.

REFERENCES

[11 Y. Xu,J. Zhou, and P. Zhang, “RSS-based source localization when path-
loss model parameters are unknown,” IEEE Commun. Lett., vol. 18, no. 6,
pp- 1055-1058, Jun. 2014.

[2] Q.Mi, J. A. Stankovic, and R. Stoleru, “Practical and secure localization
and key distribution for wireless sensor networks,” Ad Hoc Netw., vol. 10,
pp. 946-961, Aug. 2012.

[3] S.J.Halder, P. Giri, and W. Kim, “Advanced smoothing approach of RSSI
and LQI for indoor localization system,” Int. J. Distrib. Sensor Netw.,
vol. 11, no. 5, p. 195297, 2015.

[4] Y. Liu, Y. H. Hu, and Q. Pan, “Distributed, robust acoustic source
localization in a wireless sensor network,” IEEE Trans. Signal Process.,
vol. 60, no. 8, pp. 43504359, Aug. 2012.

[5] A. El Assaf, S. Zaidi, S. Affes, and N. Kandil, “Robust ANNs-
based WSN localization in the presence of anisotropic signal atten-
uation,” [EEE Wireless Commun. Lett., vol. 5, no. 5, pp. 504-507,
Oct. 2016.

[6] S. K. Gharghan, R. Nordin, and M. Ismail, “Energy efficiency of
ultra-low-power bicycle wireless sensor networks based on a combina-
tion of power reduction techniques,” J. Sensors, vol. 2016, Jul. 2016,
Art. no. 7314207.

[71 H.Suo, J. Wan, L. Huang, and C. Zou, “Issues and challenges of wireless
sensor networks localization in emerging applications,” in Proc. Int. Conf.
Comput. Sci. Electron. Eng. (ICCSEE), Mar. 2012, pp. 447-451.

38486

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

S. K. Gharghan, R. Nordin, and M. Ismail, “Empirical investigation
of pedal power calculation techniques for track cycling performance
measurement,” in Proc. IEEE Student Conf. Res. Develop., Putrajaya,
Malaysia, Dec. 2013, pp. 48-53.

A. Pal, “Localization algorithms in wireless sensor networks: Current
approaches and future challenges,” Netw. Protocols Algorithms, vol. 2,
no. 1, pp. 45-73, 2010.

J. Xu, W. Liu, F. Lang, Y. Zhang, and C. Wang, “Distance measurement
model based on RSSI in WSN,” Wireless Sensor Netw., vol. 2, no. 8,
p. 606, 2010.

P. K. Sahu, E. H.-K. Wu, and J. Sahoo, “DuRT: Dual RSSI trend based
localization for wireless sensor networks,”” IEEE Sensors J., vol. 13, no. 8,
pp. 3115-3123, Aug. 2013.

C. Volosencu and D.-I. Curiac, “Efficiency improvement in multi-sensor
wireless network based estimation algorithms for distributed parameter
systems with application at the heat transfer,” EURASIP J. Adv. Signal
Process., vol. 2013, Dec. 2013, p. 4.

A. S. Salazar, L. Aguilar, and G. Licea, “Estimating indoor zone-
level location using Wi-Fi RSSI fingerprinting based on fuzzy inference
system,” in Proc. IEEE Int. Conf. Mechatronics, Electron. Automot.
Eng. (ICMEAE), Nov. 2013, pp. 178-184.

S. Palipana, C. Kapukotuwe, U. Malasinghe, P. Wijenayaka, and
S. R. Munasinghe, “Localization of a mobile robot using ZigBee based
optimization techniques,” in Proc. 6th IEEE Int. Conf. Inf. Automat.
Sustainab., Beijing, China, Sep. 2012, pp. 215-220.

A. Payal, C. S. Rai, and B. R. Reddy, “Analysis of some feedforward
artificial neural network training algorithms for developing localiza-
tion framework in wireless sensor networks,” Wireless Pers. Commun.,
vol. 82, pp. 2519-2536, Jun. 2015.

P.-J. Chuang and Y.-J. Jiang, “‘Effective neural network-based node local-
isation scheme for wireless sensor networks,” IET Wireless Sensor Syst.,
vol. 4, pp. 97-103, Feb. 2014.

M. Oussalah, M. Alakhras, and M. Hussein, “Multivariable fuzzy infer-
ence system for fingerprinting indoor localization,” Fuzzy Sets Syst.,
vol. 269, pp. 65-89, Jun. 2015.

S. Yun, J. Lee, W. Chung, E. Kim, and S. Kim, “A soft computing
approach to localization in wireless sensor networks,” Expert Syst. Appl.,
vol. 36, pp. 7552-7561, May 2009.

S. K. Gharghan, R. Nordin, and M. Ismail, “A wireless sensor network
with soft computing localization techniques for track cycling applica-
tions,” Sensors, vol. 16, no. 8, p. 1043, 2016.

R. Krishnaprabha and A. Gopakumar, “Performance of gravitational
search algorithm in wireless sensor network localization,” in Proc.
Nat. Conf. Commun., Signal Process. Netw. (NCCSN), Palakkad, India,
Oct. 2014, pp. 1-6.

R. V. Kulkarni and G. K. Venayagamoorthy, “Bio-inspired algorithms for
autonomous deployment and localization of sensor nodes,” IEEE Trans.
Syst., Man, Cybern. C, Appl. Rev., vol. 40, no. 6, pp. 663-675, Nov. 2010.
G. S. Tewolde and J. Kwon, “Efficient WiFi-based indoor localization
using particle swarm optimization,” in Advances in Swarm Intelligence,
Y. Tan, Y. Shi, Y. Chai, and G. Wang, Eds. Berlin, Germany: Springer,
2011, pp. 203-211.

S. K. Gharghan, R. Nordin, M. Ismail, and J. A. Ali, “Accurate wireless
sensor localization technique based on hybrid PSO-ANN algorithm for
indoor and outdoor track cycling,” IEEE Sensors J., vol. 16, no. 2,
pp. 529-541, Jan. 2016.

S. H. Chagas, J. B. Martins, and L. L. de Oliveira, “An approach to
localization scheme of wireless sensor networks based on artificial neural
networks and genetic algorithms,” in Proc. 10th IEEE Int. New Circuits
Syst. Conf. (NEWCAS), Montreal, QC, Canada, Jun. 2012, pp. 137-140.
B.-F. Wu, C.-L. Jen, and K.-C. Chang, “Neural fuzzy based indoor
localization by Kalman filtering with propagation channel modeling,”
in Proc. IEEE Int. Conf. Syst., Man Cybern., Montreal, QC, Canada,
Oct. 2007, pp. 812-817.

P. Mestre et al., “Indoor location using fingerprinting and fuzzy logic,”
in Eurofuse. Springer, 2011, pp. 363-374.

C.-M. Lin, Y.-J. Mon, C.-H. Lee, J.-G. Juang, and I. J. Rudas, “ANFIS-
based indoor location awareness system for the position monitoring of
patients,” Acta Polytech. Hung, vol. 11, pp. 37-48, Jan. 2014.

M. M. Hassan, K. Lin, X. Yue, and J. Wan, “A multimedia healthcare
data sharing approach through cloud-based body area network,” Future
Gener. Comput. Syst., vol. 66, pp. 48-58, Jan. 2016.

VOLUME 6, 2018



S. K. Gharghan et al.: ANFIS for Accurate Localization of WSN in Outdoor and Indoor Cycling Applications

IEEE Access

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Y.-J. Mona, “WSN-based indoor location identification system (LIS)
applied to vision robot designed by fuzzy neural network,” J. Digit. Inf.
Manage., vol. 13, p. 37, Feb. 2015.

D. Larios, J. Barbancho, F. J. Molina, and C. Leén, “LIS: Localization
based on an intelligent distributed fuzzy system applied to a WSN,” Ad
Hoc Netw., vol. 10, no. 3, pp. 604-622, 2012.

S. M. Nekooei and M. Manzuri-Shalmani, “Location finding in wireless
sensor network based on soft computing methods,” in Proc. Int. Conf.
Control, Automat. Syst. Eng. (CASE), Singapore, Jul. 2011, pp. 1-5.

A. Payal, C. S. Rai, and B. V. R. Reddy, “Artificial neural networks for
developing localization framework in wireless sensor networks,” in Proc.
Int. Conf. Data Mining Intell. Comput. (ICDMIC), New Delhi, India,
Sep. 2014, pp. 1-6.

A. Payal, C. S. Rai, and B. V. R. Reddy, “Comparative analysis of
Bayesian regularization and Levenberg—Marquardt training algorithm for
localization in wireless sensor network,” in Proc. 15th Int. Conf. Adv.
Commun. Technol. (ICACT), PyeongChang, South Korea, Jan. 2013,
pp. 191-194.

N. Irfan, M. Bolic, M. C. Yagoub, and V. Narasimhan, “Neural-
based approach for localization of sensors in indoor environment,”
Telecommun. Syst., vol. 44, pp. 149-158, Jun. 2010.

L. Luoh, “ZigBee-based intelligent indoor positioning system soft com-
puting,” Soft Comput., vol. 18, pp. 443-456, Mar. 2014.

M. Rahman, Y. Park, and K. Kim, “RSS-based indoor localization algo-
rithm for wireless sensor network using generalized regression neural
network,” Arabian J. Sci. Eng., vol. 37, no. 4, pp. 1043-1053, 2012.

C. Yu, Y. Zhang, J. Zhang, and Y. Liu, “Research of self-calibration
location algorithm for ZigBee based on PSO-RSSI,” in Proc. Int. Conf.
Electr. Electron. Sel. Papers (EEIC), Nanchang, China, 2011, pp. 91-99.
H. Li, S. Xiong, Y. Liu, J. Kou, and P. Duan, “A localization algorithm
in wireless sensor networks based on PSO,” in Advances in Swarm
Intelligence, Y. Tan, Y. Shi, Y. Chai, and G. Wang, Eds. Berlin, Germany:
Springer, 2011, pp. 200-206.

R. M. Pellegrini, S. Persia, D. Volponi, and G. Marcone, “ZigBee sen-
sor network propagation analysis for health-care application,” in Proc.
5th Int. Conf. Broadband Biomed. Commun. (IB2Com), Malaga, Spain,
Dec. 2010, pp. 1-6.

Y. S. Cho, J. Kim, W. Y. Yang, and C. G. Kang, MIMO-OFDM Wireless
Communications With MATLAB. Hoboken, NJ, USA: Wiley, 2010.

S. Kumar and D. K. Lobiyal, “Novel DV-hop localization algorithm
for wireless sensor networks,” Telecommun. Syst., vol. 64, no. 3,
pp. 509-524, 2016.

W. Mardini, Y. Khamayseh, A. A. Almodawar, and E. Elmallah, “Adap-
tive RSSI-based localization scheme for wireless sensor networks,” Peer-
to-Peer Netw. Appl., vol. 9, no. 6, pp. 991-1004, 2016.

J. Zhao et al., “Localization of wireless sensor networks in the wild:
Pursuit of ranging quality,” IEEE/ACM Trans. Netw., vol. 21, no. 1,
pp. 311-323, Feb. 2013.

P. Moravek, D. Komosny, M. Simek, M. Jelinek, D. Girbau, and
A. Lazaro, “Investigation of radio channel uncertainty in distance esti-
mation in wireless sensor networks,” Telecommun. Syst., vol. 52, no. 3,
pp. 1549-1558, 2013.

R. Piyare and S.-R. Lee, “Performance analysis of XBee ZB module
based wireless sensor networks,” Int. J. Sci. Eng. Res., vol. 4, no. 4,
pp. 1615-1621, 2013.

J.-S. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference sys-
tem,” IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665-685,
May/Jun. 1993.

N. Altin and I. Sefa, “dSPACE based adaptive neuro-fuzzy controller of
grid interactive inverter,” Energy Convers. Manage., vol. 56, pp. 130-139,
Apr. 2012.

D. Petkovi¢, M. Issa, N. D. Pavlovi¢, L. Zentner, and Z. Cojbagi¢, “Adap-
tive neuro fuzzy controller for adaptive compliant robotic gripper,” Expert
Syst. Appl., vol. 39, no. 18, pp. 13295-13304, 2012.

N. Baccar, M. Jridi, and R. Bouallegue, “Adaptive neuro-fuzzy location
indicator in wireless sensor networks,” Wireless Pers. Commun., vol. 97,
no. 2, pp. 3165-3181, 2017.

S. Amri, F. Khelifi, A. Bradai, A. Rachedi, M. L. Kaddachi, and M. Atri,
“A new fuzzy logic based node localization mechanism for wireless
sensor networks,” Future Gener. Comput. Syst., to be published.

G. Kabir and M. A. A. Hasin, “Comparative analysis of artificial neural
networks and neuro-fuzzy models for multicriteria demand forecasting,”
Int. J. Fuzzy Syst. Appl., vol. 3, no. 1, pp. 1-24, 2013.

VOLUME 6, 2018

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

H. Cotuk, K. Bicakci, B. Tavli, and E. Uzun, ““The impact of transmission
power control strategies on lifetime of wireless sensor networks,” IEEE
Trans. Comput., vol. 63, no. 11, pp. 2866-2879, Nov. 2014.

Y. Sadi, S. C. Ergen, and P. Park, “Minimum energy data transmission
for wireless networked control systems,” IEEE Trans. Wireless Commun.,
vol. 13, no. 4, pp. 2163-2175, Apr. 2014.

1. Rasool and A. H. Kemp, ““Statistical analysis of wireless sensor network
Gaussian range estimation errors,” [ET Wireless Sensor Syst., vol. 3,no. 1,
pp. 57-68, 2013.

W. Li, H. Yang, M. Fan, C. Luo, J. Zhang, and Z. Si, “A fuzzy adaptive
tightly-coupled integration method for mobile target localization using
SINS/WSN,” Micromachines, vol. 7, no. 11, p. 197, 2016.

X. Feng, Z. Gao, M. Yang, and S. Xiong, “Fuzzy distance measuring
based on RSSI in wireless sensor network,” in Proc. 3rd Int. Conf. Intell.
Syst. Knowl. Eng. (ISKE), Nov. 2008, pp. 395-400.

C. Serodio, L. Coutinho, H. Pinto, J. Matias, and P. Mestre, “‘A fuzzy logic
approach to indoor location using fingerprinting,” in Electrical Engineer-
ing and Intelligent Systems, S.-1. Ao and L. Gelman, Eds. New York, NY,
USA: Springer, 2013, pp. 155-169.

A. Kumar and V. Kumar, “Fuzzy logic based improved range free local-
ization for wireless sensor networks,” Int. Sci. Index, Electr. Comput.
Eng., vol. 7, pp. 497-505, May 2013.

M. Moreno-Cano, M. A. Zamora-Izquierdo, J. Santa, and A. F. Skarmeta,
“An indoor localization system based on artificial neural networks
and particle filters applied to intelligent buildings,” Neurocomputing,
vol. 122, pp. 116125, Dec. 2013.

S. Li and F. Qin, “A dynamic neural network approach for solv-
ing nonlinear inequalities defined on a graph and its applica-
tion to distributed, routing-free, range-free localization of WSNs,”
Neurocomputing, vol. 117, pp. 7280, Oct. 2013.

L. Bris, P. Pinho, and N. B. Carvaloh, ‘““Evaluation of a sectorised antenna
in an indoor localisation system,” IET Microw., Antennas Propag., vol. 7,
no. 8, pp. 679-685, Jun. 2013.

J. L. Herndandez, M. V. Moreno, A. J. Jara, and A. F. Skarmeta, “A soft
computing based location-aware access control for smart buildings,” Soft
Comput., vol. 18, no. 9, pp. 1659-1674, 2014.

S. Kumar, S. M. Jeon, and S. R. Lee, “Localization estimation using
artificial intelligence technique in wireless sensor networks,” J. Korea
Inf. Commun. Soc., vol. 39, pp. 820-827, Sep. 2014.

S. Kumar and S.-R. Lee, “Localization with RSSI values for wireless
sensor networks: An artificial neural network approach,” in Proc. Ist Int.
Electron. Conf. Sensors Appl., vol. 1, 2014, pp. 1-6.

J. J. Robles, “Indoor localization based on wireless sensor networks,”
AEU—Int. J. Electron. Commun., vol. 68, no. 7, pp. 578-580, 2014.

J. J. Robles, J.-M. Birkenmaier, X. Meng, and R. Lehnert, “Perfor-
mance of POA-based sensor nodes for localization purposes,” in Ad-
Hoc, Mobile, and Wireless Networks, S. Guo, J. Lloret, P. Manzoni, and
S. Ruehrup, Eds. Cham, Switzerland: Springer, 2014, pp. 374-386.

H. Ahmadi and R. Bouallegue, “Comparative study of learning-based
localization algorithms for wireless sensor networks: Support vector
regression, neural network and Naive Bayes,” in Proc. Int. Wireless
Commun. Mobile Comput. Conf. (IWCMC), Dubrovnik, Croatia,
Aug. 2015, pp. 1554-1558.

L.-Z. Zhao, X.-B. Wen, and D. Li, “Amorphous localization algorithm
based on BP artificial neural network,” in Proc. Int. Conf. Softw. Intell.
Technol. Appl., 2014, pp. 178-183.

W. Jun, Z. Fu, R. Tiansi, C. Xun, and L. Gang, “A novel hybrid localiza-
tion method for wireless sensor network,” Int. J. Smart Sens. Intell. Syst.,
vol. 9, no. 3, pp. 1323-1340, 2016.

N. Baccar and R. Bouallegue, “Interval type 2 fuzzy localization for
wireless sensor networks,” EURASIP J. Adv. Signal Process., vol. 2016,
no. 1, p. 42, 2016.

S. Phoemphon, C. So-In, and T. G. Nguyen, “An enhanced wireless
sensor network localization scheme for radio irregularity models using
hybrid fuzzy deep extreme learning machines,” Wireless Netw., vol. 24,
no. 3, pp. 799-819, 2016.

C. So-In, S. Permpol, and K. Rujirakul, “Soft computing-based localiza-
tions in wireless sensor networks,” Pervasive Mobile Comput., vol. 29,
pp. 17-37, Jul. 2016.

W. Zhang, K. Liu, W. Zhang, Y. Zhang, and J. Gu, “Deep neural net-
works for wireless localization in indoor and outdoor environments,”
Neurocomputing, vol. 194, pp. 279-287, Jun. 2016.

38487



IEEE Access

S. K. Gharghan et al.: ANFIS for Accurate Localization of WSN in Outdoor and Indoor Cycling Applications

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

38488

R. Ahmadi, G. Ekbatanifard, A. Jahangiry, and M. Kordlar, “Improving
localization in wireless sensor network using fixed and mobile guide
nodes,” J. Sensors, vol. 2016, Jul. 2016, Art. no. 6385380.

Z. Wu, E. Jedari, R. Muscedere, and R. Rashidzadeh, ‘“Improved
particle filter based on WLAN RSSI fingerprinting and smart sen-
sors for indoor localization,” Comput. Commun., vol. 83, pp. 64-71,
Jun. 2016.

H. Cho and Y. Kwon, “RSS-based indoor localization with PDR location
tracking for wireless sensor networks,” AEU—Int. J. Electron. Commun.,
vol. 70, no. 3, pp. 250-256, 2016.

F.Zhu and J. Wei, ““Localization algorithm for large-scale wireless sensor
networks based on FCMTSR-support vector machine,” Int. J. Distrib.
Sensor Netw., vol. 12, no. 10, pp. 1-12, 2016.

N. Anand, R. Ranjan, and S. Varma, “MSVR based range-free local-
ization technique for 3-D sensor networks,” Wireless Pers. Commun.,
vol. 97, pp. 6221-6238, Dec. 2017.

B. F. Gumaida and J. Luo, “Novel localization algorithm for wireless sen-
sor network based on intelligent water drops,” Wireless Netw., pp. 1-13,
Sep. 2017.

X. Huang, S. Guo, Y. Wu, and Y. Yang, “A fine-grained indoor fin-
gerprinting localization based on magnetic field strength and channel
state information,” Pervasive Mobile Comput., vol. 41, pp. 150-165,
Oct. 2017.

P. Singh, A. Khosla, A. Kumar, and M. Khosla, “3D localization of
moving target nodes using single anchor node in anisotropic wireless
sensor networks,” AEU—Int. J. Electron. Commun., vol. 82, pp. 543-552,
Dec. 2017.

S. Zhang, M. J. Er, B. Zhang, and Y. Naderahmadian, “‘A novel heuristic
algorithm for node localization in anisotropic wireless sensor networks
with holes,” Signal Process., vol. 138, pp. 27-34, Sep. 2017.

J. Jiao, F. Li, Z. Deng, and W. Ma, ““A smartphone camera-based indoor
positioning algorithm of crowded scenarios with the assistance of deep
CNN,” Sensors, vol. 17, no. 4, p. 704, 2017.

T. Najeh, H. Sassi, and N. Liouane, “A novel range free localization
algorithm in wireless sensor networks based on connectivity and genetic
algorithms,” Int. J. Wireless Inf. Netw., vol. 25, no. 1, pp. 88-97, 2018.
M. Zhou, B. Wang, Z. Tian, and L. Xie, “Hardware and software design
of BMW system for multi-floor localization,” EURASIP J. Wireless
Commun. Netw., vol. 2017, no. 1, p. 139, 2017.

A. Alomari, F. Comeau, W. Phillips, and N. Aslam, “New path plan-
ning model for mobile anchor-assisted localization in wireless sensor
networks,” Wireless Netw., pp. 1-19, Mar. 2017.

A. Alomari, W. Phillips, N. Aslam, and F. Comeau, ‘“Dynamic fuzzy-
logic based path planning for mobility-assisted localization in wireless
sensor networks,” Sensors, vol. 17, no. 8, p. 1904, 2017.

S. P. Singh and S. C. Sharma, “A PSO based improved localization
algorithm for wireless sensor network,” Wireless Pers. Commun., vol. 98,
no. 1, pp. 487-503, 2018.

B. F. Gumaida and J. Luo, “An efficient algorithm for wireless sensor
network localization based on hierarchical structure poly-particle swarm
optimization,” Wireless Pers. Commun., vol. 97, no. 1, pp. 125-151, 2017.
S. Arora and S. Singh, “Node localization in wireless sensor networks
using butterfly optimization algorithm,” Arabian J. Sci. Eng., vol. 42,
no. 8, pp. 3325-3335, 2017.

G. Sharma and A. Kumar, “Fuzzy logic based 3D localization in wireless
sensor networks using invasive weed and bacterial foraging optimiza-
tion,” Telecommun. Syst., vol. 67, no. 2, pp. 149-162, 2017.

M. A. Shayokh and S. Y. Shin, “Bio inspired distributed WSN local-
ization based on chicken swarm optimization,” Wireless Pers. Commun.,
vol. 97, no. 4, pp. 5691-5706, 2017.

A. Alomari, W. Phillips, N. Aslam, and F. Comeau, “Swarm intelli-
gence optimization techniques for obstacle-avoidance mobility-assisted
localization in wireless sensor networks,” IEEE Access, vol. 6,
pp. 22368-22385, 2017.

T. Kawai, K. Matsui, Y. Honda, G. Villarubia, and J. M. C. Rodriguez,
“Preliminary study for improving accuracy on Indoor positioning method
using compass and walking detect,” in Proc. 14th Int. Conf., Distrib.
Comput. Artif. Intell., 2018, pp. 318-325.

G. Sharma, A. Kumar, P. Singh, and M. J. Hafeez, “Localization in
wireless sensor networks using invasive weed optimization based on
fuzzy logic system,” in Proc. 10th ICACCT, 2018, pp. 245-255.

N. A. Ahmad and S. Sahibuddin, “Adapted WLAN fingerprint indoor
positioning system (IPS) based on user orientations,” in Proc. 2nd Int.
Conf. Reliable Inf. Commun. Technol. (IRICT), 2018, pp. 226-236.

[97]

[98]

[99]

[100]

[101]

[102]

[103]

F. Zhou and S. Chen, “DV-hop node localization algorithm based on
improved particle swarm optimization,” in Proc. Int. Conf. Commun.,
Signal Process., Syst., 2016, pp. 541-550.

C. Zhou, L. Wang, and L. Zhengqiu, “The study of WSN node local-
ization method based on back propagation neural network,” in Proc. Int.
Conf. Appl. Techn. Cybern. Secur. Intell., 2017, pp. 458—466.

K. Bregar and M. Mohorcic, “Improving indoor localization using con-
volutional neural networks on computationally restricted devices,” IEEE
Access, vol. 6, pp. 17429-17441, 2018.

Q. Lei, H. Zhang, H. Sun, and L. Tang, “Fingerprint-based device-free
localization in changing environments using enhanced channel selection
and logistic regression,” IEEE Access, vol. 6, pp. 2569-2577, 2018.

Y. Yuan, C. Melching, Y. Yuan, and D. Hogrefe, ‘“Multi-device fusion for
enhanced contextual awareness of localization in indoor environments,”
IEEE Access, vol. 6, pp. 7422-7431, 2018.

X. Zhao, X. Zhang, Z. Sun, and P. Wang, “New wireless sensor net-
work localization algorithm for outdoor adventure,” IEEE Access, vol. 6,
pp. 13191-13199, 2018.

Z. Wang, H. Zhang, T. Lu, and T. A. Gulliver, “A grid-based localization
algorithm for wireless sensor networks using connectivity and RSS rank,”

IEEE Access, vol. 6, pp. 8426-8439, 2018.

\ degree in electrical and electronics engineering
= from the University of Technology, Iraq, in 1990,
A { the M.Sc. degree in communication engineer-

& i ing from the University of Technology, Iraq,

SADIK KAMEL GHARGHAN received the B.Sc.

in 2005, and the Ph.D. degree in communica-
tion engineering from the Universiti Kebangsaan
Malaysia, Malaysia, in 2016. He is currently with
the Department of Medical Instrumentation Tech-
niques Engineering, Electrical Engineering Tech-

nical College, Middle Technical University, Baghdad, Iraq, as an Assistant
Professor. His research interests include energy-efficient wireless sensor
networks, biomedical sensors, microcontroller applications, WSN Localiza-
tion based on artificial intelligence techniques and optimization algorithms,
indoor and outdoor pathloss modeling, wireless power transfer, and jamming
on direct sequence spread spectrums.

ROSDIADEE NORDIN received the B.Eng.
degree from the Universiti Kebangsaan Malaysia
in 2001 and the Ph.D. degree from the Uni-
versity of Bristol, UK., in 2011. He is cur-
rently a Senior Lecturer with the Department of
Electrical, Electronics and System Engineering,
Universiti Kebangsaan Malaysia, teaching dif-
ferent subjects related to wireless networks and
mobile and satellite communications. His research
interests include resource allocation, green radio,

multiple-input multiple-output, orthogonal frequency-division multiple
access, carrier aggregation, cognitive radio, and indoor wireless localization.

AQEEL MAHMOOD JAWAD received the B.Sc.
degree in computer and communication engi-
neering from the Al-Rafidain University Col-
lege, Irag, in 2009, and the M.Sc. degree in
electrical engineering from Universiti Tenaga
Nasional, Malaysia, in 2014. He is currently pur-
suing the Ph.D. degree with the Department of
Electrical, Electronics and Systems Engineering,
Faculty of Engineering and Built Environments,
Universiti Kebangsaan Malaysia. He is currently

with the Department of Computer and Communication Engineering,
Al-Rafidain University College, Baghdad, Iraq, as an Assistant Lecturer.
His research interests include wireless communications, satellite commu-
nications theory, wireless power transfer, and wireless sensor networks
applications.

VOLUME 6, 2018



S. K. Gharghan et al.: ANFIS for Accurate Localization of WSN in Outdoor and Indoor Cycling Applications

IEEE Access

HAIDER MAHMOOD JAWAD received the
B.Sc. degree in computer and communication
engineering from the Al-Rafidain University
College, Irag, in 2007, and the M.Sc. degree
in electrical engineering from Universiti Tenaga
Nasional, Malaysia, in 2014. He is currently pur-
suing the Ph.D. degree with the Department of
Electrical, Electronics and Systems Engineering,
Faculty of Engineering and Built Environments,

: Universiti Kebangsaan Malaysia. He is currently
with the Department of Computer and Communication Engineering,
Al-Rafidain University College, Baghdad, Iraq, as an Assistant Lecturer.
His research interests include wireless communications, communication
theory, unmanned aerial vehicle applications, and wireless sensor networks
applications.

VOLUME 6, 2018

MAHAMOD ISMAIL received the B.Sc. degree
in electrical and electronics from the University
of Strathclyde, U.K., in 1985, the M.Sc. degree
in communications engineering and digital elec-
tronics from the Institute of Science and Tech-
nology, University of Manchester, , Manchester,
U.K.,, in 1987, and the Ph.D. degree from the Uni-
versity of Bradford, U.K., in 1996. He joined the
Department of Electrical, Electronics and Systems

5l Engineering, Faculty of Engineering and Built
Environments, Universiti Kebangsaan Malaysia, in 1985, where he is cur-
rently a Professor in communications engineering. He was with the first
Malaysia Microsatellite TiungSat Team Engineers in Surrey Satellite Tech-
nology Ltd., U.K., for nine months beginning in 1997. His research interests
include mobile, wireless networking, and radio resource management for the
next generation wireless communication.

38489



	INTRODUCTION
	MOTIVATION BEHIND DISTANCE ESTIMATION
	RELATED WORKS
	WIRELESS CHANNEL MODEL
	ADAPTIVE NEURAL FUZZY INFERENCE SYSTEM (ANFIS)
	FIRST LAYER (INPUT)
	SECOND LAYER
	THIRD LAYER (RULES)
	FOURTH LAYER (OUTMFS)
	FIFTH LAYER (OUTPUT)

	EXPERIMENT SETUP
	OUTDOOR ENVIRONMENT
	INDOOR ENVIRONMENT

	RESULTS AND ANALYSIS
	RSSI MEASUREMENT
	DERIVED LNSM
	ERROR CALCULATION
	ANFIS-BASED DISTANCE ESTIMATION

	CONCLUSIONS
	REFERENCES
	Biographies
	SADIK KAMEL GHARGHAN
	ROSDIADEE NORDIN
	AQEEL MAHMOOD JAWAD
	HAIDER MAHMOOD JAWAD
	MAHAMOD ISMAIL


