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ABSTRACT There are many behaviors with spatio-temporal characteristics in nature. Complex spatio-
temporal networks (CSNs)-based on partial differential equations are to process such issues. This paper
studies two synchronization boundary control methods. An adaptive boundary controller is first studied to
ensure synchronization of the CSNs. Furthermore, a pinning adaptive boundary controller is proposed to
achieve synchronization of the CSNs. Two sufficient criteria of synchronization and pinning synchronization
are respectively obtained. Finally, two numerical examples demonstrate the effectiveness of the proposed
theoretical results.

INDEX TERMS Complex networks, adaptive control, nonlinear systems.

I. INTRODUCTION
Complex networks (CNs) extensively exist in real life, such
as social interaction networks, traffic networks, electrical
power grids, ecosystems, coupled biological and chemical
systems [1]–[4]. Over the past few decades, synchronization,
as one of the most important behaviors of CNs, has received
a great attention due to its wide applications in many areas,
e.g., spacecraft formation [5], [6], multimedia [7], multi-
agent cooperation [8]–[11], image encryption [12] and secure
communication [13].Many effective control methods for syn-
chronization of CNs have been extensively reported in previ-
ous literatures [14]–[18]. Most of them naturally assumed the
states of CNs only rely on the time.

In real practice, food webs, reaction-diffusion neural net-
works, biological systems, chemical process, neurophys-
iology and many other social networks, rely not only
on the time but also on the spatial positions [19], [20].

These processes are usually modeled by CNs described
as partial differential equations (PDEs) with spatio-
temporal characteristics, named complex spatio-temporal
networks (CSNs). The research of synchronization control
of CSNs is challenging due to the infinite dimensional spatial
characteristics of states [21].

Over the past few years, an array of important syn-
chronization control methods of CSNs have been studied,
e.g., scalar proportional control [22], [23], matrix propor-
tional control [24]–[28], impulsive control [29], stochas-
tic sampled-data control [30], intermittent control [31],
P-sD control [32]. In real practice, sufficient large feed-
back gains may be taken, which is possibly much larger
than the actual values in need. Adaptive control method
can real time modify the feedback gains to avoid this prob-
lem [27]. Therefore, many researchers constructed adaptive
controllers for CSNs. For example, Wang et al. proposed
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several adaptive controllers for synchronization, H∞ syn-
chronization and pinning synchronization of linearly coupled
reaction-diffusion neural networks without and with hybrid
coupling [19], [33]. In [34], adaptive control was developed
for synchronization of stochastic reaction–diffusion neural
networks with mixed time delays. In [35], an adaptive control
algorithm was studied for synchronization in diffusively–
coupled systems. In [36], adaptive control was developed
for anti–synchronization and H∞ anti-synchronization for
memristive reaction-diffusion neural networks with mixed
time delays. As a whole, the offered controllers above are
feedback of the whole spatial states.

Boundary control, firstly applied to stability of PDE-based
systems [37]–[39] and then to synchronization of CSNs, is
implemented by only controlling the spatial boundary posi-
tions. For examples, state feedback boundary control based
on distributed measurement is developed to achieve synchro-
nization of CSNs [40]; using backstepping methods, bound-
ary control based on distributed measurement was studied for
synchronization of a coupled linear partial differential sys-
tem [41]; using Lyapunov methods, boundary control based
on distributed measurement was proposed for asymptotical
synchronization of linear coupled time-delayed partial dif-
ferential systems [42]; In [43], a boundary control based on
boundary measurement method was studied for synchroniza-
tion of CSNs. However, adaptive boundary control based on
boundary measurement for synchronization of CSNs has not
yet been considered. This is the first problem to be dealt with
in this paper.

Actually, a real-world CN usually consists of a great many
nodes, even thousands upon thousands. Therefore, it is hard to
apply control actions to all nodes in practice.With themerit of
overcoming this difficulty, pinning control approaches have
attracted much interest in the past few years [44]–[48]. The
strategy is effective since it controls only a small fraction
nodes of networks. For CSNs, there are also many important
literatures on pinning control in recent years. In [49], scalar
proportional control method was studied for pinning synchro-
nization of unbounded time delays reaction–diffusion neural
networks. Aperiodically intermittent pinning controller was
developed for synchronization of reaction-diffusion neural
networks with hybrid coupling and time-varying delays [50].
In [51], a pinning-impulsive controller was studied for syn-
chronization of reaction-diffusion neural networks with time-
varying delays. As a whole, the offered control methods
above are feedback of the whole spatial states [49]–[51].
Therefore, when there are many nodes while only spatial
boundary states could be measured, it is important to fur-
ther establish pinning adaptive boundary control based on
boundarymeasurement, implemented by only controlling and
measuring spatial boundary positions of a small fraction of
nodes chosen before. This is the second main contribution of
this paper.
Notations:The notations will be used as follows. In denotes

identity matrix of order n. Matrix M is negative definite
denoted by M < 0. W 2

2 ([0,L];R
Nn) is a Sobolev space

of absolutely continuous Nn-dimensional vector functions
ω(x) : [0,L] → RNn with square integrable dkω(x)

dωk of the
order k ≥ 1. λmax(·) stands for the maximum eigenvalue of
a square matrix. ‖·‖2 denotes the Euclidean norm. ⊗ is the
Kronecker product for matrices.

II. PROBLEM FORMULATION AND PRELIMINARIES
Consider a nonlinear CSN modeled by semi-linear parabolic
PDEs, the dynamics of the i-th (i ∈ {1, 2, · · · ,N }) node
described as

∂yi(x, t)
∂t

= α
∂2yi(x, t)
∂x2

+ Ayi(x, t)

+ Bf (yi(x, t))+ c
N∑
j=1

gijyj(x, t),

∂yi(x, t)
∂x

∣∣∣∣
x=0
= 0,

∂yi(x, t)
∂x

∣∣∣∣
x=L
= ui(t),

yi(x, 0) = y0i (x),

(1)

where (x, t) ∈ [0,L] × [0,∞) respectively stand for
the spatial variable and the time variable; yi(x, t) = [yi1
(x, t), yi2(x, t), · · · , yin(x, t)]T and ui(t)= [ui1(t), ui2(t), · · · ,
uin(t)]T ∈ Rn are the states and control inputs, respec-
tively; y0i (x) are bounded and continuous initial func-
tions; α > 0 is a known scalar; A and B are
known n × n matrices; the nonlinear term f (yi(x, t)) =
[f (yi1(x, t)), f (yi2(x, t)), . . . , f (yin(x, t))]T ∈ Rn is a suf-
ficiently smooth nonlinear function; and a known scalar c
is coupling strength. Assume that the topological structure
G = (gij)N×N is defined as: gi,j > 0(i 6= j) if i is connected
to j , otherwise gi,j = 0(i 6= j); and gii = −

∑N
j=1,j 6=i gij,

i, j ∈ {1, 2, · · · ,N }.
Remark 1: The coupling configuration matrix G repre-

sents the topological structure of CSN (1). It can be a directed
graph or an undirected graph. In this paper, G is not assumed
to be symmetric or irreducible, and therefore it may have
complex eigenvalues.

The isolated node of the CSN (1) is given as
∂s(x)
∂t
= α

∂2s(x, t)
∂x2

+ As(x, t)+ Bf (s(x, t)),

∂s(x, t)
∂x

∣∣∣∣
x=0
=
∂s(x, t)
∂x

∣∣∣∣
x=L
= 0,

s(x, 0) = s0(x),

(2)

where s(x, t) = [s1(x, t), s2(x, t), · · · , sn(x, t)]T is the state;
s0(x) is the bounded and continuous initial function.
Let ei(x, t)

1
= yi(x, t) − s(x, t). The synchronization error

system can be obtained from (1) and (2) that

∂ei(x, t)
∂t

= α
∂2ei(x, t)
∂x2

+ Aei(x, t)

+ BF(ei(x, t))+ c
N∑
j=1

gijej(x, t),

∂ei(x, t)
∂x

∣∣∣∣
x=0
= 0,

∂ei(x, t)
∂x

∣∣∣∣
x=L
= ui(t),

ei(x, 0) = e0i (x),

(3)
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where e0i (x)
1
= y0i (x) − s

0(x) and F(ei(x, t))
1
= f (yi(x, t)) −

f (s(x, t)), in a compact way as

∂e(x, t)
∂t

= α
∂2e(x, t)
∂x2

+ Āe(x, t)

+ (IN ⊗ B)F(e(x, t)),
∂e(x, t)
∂x

∣∣∣∣
x=0
= 0,

∂e(x, t)
∂x

∣∣∣∣
x=L
= u(t),

e(x, 0) = e0(x),

(4)

where e(x, t) 1
= [eT1 (x, t), e

T
2 (x, t), · · · , e

T
N (x, t)]

T , u(t) 1
=

[uT1 (t), u
T
2 (t), · · · , u

T
N (t)]

T , Ā 1
= IN ⊗ A + cG ⊗ In, and

e0(x) 1= [e0,T1 (x), e0,T2 (x), · · · , e0,TN (x)]T .
In this paper, two forms of boundary control methods,

adaptive boundary control and pinning adaptive boundary
control based on boundary measurement, will be respectively
studied for synchronization of the CSN (1) with the isolated
node (2).
Case I: To achieve synchronization of the CSN (1), the

following adaptive boundary controller based on boundary
measurement are first studied:

ui(t) = −di(t)ei(L, t), i ∈ {1, 2, · · · ,N },

ḋi(t) = kieTi (L, t)ei(L, t), i ∈ {1, 2, · · · ,N }, (5)

in which di(t) is the feedback strength and ki is an arbitrary
positive constant.
Remark 2: Only the spatial boundary state ei(L, t) is used

in the adaptive boundary controller (5). Therefore, the merit
of the proposed controller (5) lies in that it only requires
one sensor and actuator to locate at the spatial boundary
position x = L.
Remark 3: In [40]–[42], the boundary controller is defined

as ui(t) =
∫ L
0 Kei(x, t)dx. The whole state ei(x, t) used in

that controller, therefore it requires sensors to distribute the
whole spatial position x ∈ [0,L]. If only the spatial boundary
states could be measured, the boundary controller based on
boundary measurement (5) is more suitable.
Case II: When the number of nodes in networks is large,

pinning synchronization of the CSN (1) is to be achieved by
the pinning adaptive boundary controller as

ui(t) =

{
−di(t)ei(L, t), i ∈ {1, 2, · · · , l},
0, i ∈ {l + 1, l + 2, · · · ,N },

ḋi(t) = kieTi (L, t)ei(L, t), i ∈ {1, 2, · · · , l}, (6)

in which di(t) is the feedback strength, ki is an arbitrary
positive constant and l is the number of controlled nodes with
the constraint 1 ≤ l ≤ N .
Remark 4: To implement the pinning adaptive boundary

controller (6), firstly, a part of nodes to be controlled is chosen
according to rules. And then, only one actuator and only one
sensor are located at the boundary position x = L of a fraction
of nodes chosen in the first step. As a result, compared with
the adaptive boundary controller (5), it is easier to use the
pinning adaptive boundary controller (6) in practice when the
number of nodes is large.

The equivalent state-space description of the synchroniza-
tion error system (4) is given by the following nonlinear
abstract differential equation on the state space HNn:

ė(t) = Ae(t)+ Āe(t)+ BF̃(e(t)), e(0) = e0(·) ∈ HNn,

(7)

processing the dense domain

D(A) = {e ∈W2
2 ([0,L];R

Nn) :
∂e
∂x

∣∣∣∣
x=0
= 0,

∂e
∂x

∣∣∣∣
x=L
= u(t)} (8)

and the nonlinear term F̃ is chosen as F̃(e(t)) = F(e(·, t)).
In this paper, we assume that there exists an admissible

control input u(t) such that A is the infinitesimal generator
of a C0 semigroup. According to [45, Exercise 3.15, p. 135],
we can easily verify the above assumption when u(t) takes
the form of (5) or (6), the operator generates a C0 semigroup
on HNn. Utilizing [46, Th. 1.7, Ch. 6], the local existence of
the classical solution to the synchronization error system (4)
can be easily obtained when e0(·) ∈ D(A).
The following definition, lemmas and assumption will be

used for the subsequent development.
Definition 1: For the CSN (1) and the isolated node (2)

with any initial conditions, if

limt→∞||yi(x, t)− s(x, t)||2→ 0 (9)

for any i ∈ {1, 2, · · · ,N }, then the CSN (1) synchronizes the
isolated node (2).
Lemma 1 [52]: For any square integrable vector z(s) with

z(0) = 0 or z(L) = 0, the following inequality holds:∫ L

0
zT (s)z(s)ds ≤ 4L2π−2

∫ L

0
żT (s)ż(s)ds. (10)

Remark 5: Lemma 1 is Wirtinger’s inequality, illustrating
the relationship between states and their derivatives. It is
hard to directly process the derivative terms in the proof of
theorems after, while the derivative terms can be minimized
to be the state terms easier to be processed according to
Lemma 1.
Lemma 2 [53]: Assume M ∈ RN×N is a symmetric

matrix and D = diag{d1, . . . , dr , 0, . . . , 0︸ ︷︷ ︸
N−r

} with di > 0.

When di(1 ≤ i ≤ r) is sufficiently large, M − D < 0 is
if and only if Ml < 0, where Ml is the minor matrix of M by
removing its first r row-column pairs.
Assumption 1: Assume f satisfies the Lipschitz condition,

i.e., for any sclars s1 and s2, there exist scalars χ > 0 such
that

|f (s1)− f (s2)| ≤ χ |s1 − s2|. (11)
Lipschitz condition has been widely used in many kinds of
systems and networks.
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III. SYNCHRONIZATION VIA ADAPTIVE
BOUNDARY CONTROL
For Case I, employing the adaptive boundary controller (5)
for the CSN (1), the following result can be obtained.
Theorem 1: Under Assumption 1, using the adaptive

boundary controller (5), the CSN (1) synchronizes the iso-
lated node (2) if

λmax(W ) < 0, (12)

where

W 1
= IN ⊗ (

A+ AT

2
+ BBT )+ c

G+ GT

2
⊗ In

+ (χ2
− 0.25L−2π2α)INn. (13)

Proof: Construct the Lyapunov functional candidate as

V (t) =
1
2

N∑
i=1

∫ L

0
eTi (x, t)ei(x, t)dx

+

N∑
i=1

α

2ki
(di(t)− d∗i )

2, (14)

where d∗i > 0 is a real scalar to be determined andα is defined
in Eq. (1).

Substituting (3) and (5) into the time derivative of V (t),

V̇ (t) =
N∑
i=1

∫ L

0
eTi (x, t)

∂ei(x, t)
∂t

dx +
N∑
i=1

α

ki
(di(t)−d∗)ḋi(t)

= α

∫ L

0

N∑
i=1

eTi (x, t)
∂2ei(x, t)
∂x2

dx

+

∫ L

0

N∑
i=1

eTi (x, t)Aei(x, t)dx

+

∫ L

0

N∑
i=1

eTi (x, t)BF(ei(x, t))dx

+ c
∫ L

0

N∑
i=1

eTi (x, t)
N∑
j=1

gijej(x, t)dx

+

N∑
i=1

α

ki
(di(t)− d∗i )ḋi(t). (15)

Using integrating by parts and the boundary condition of (3),

α

∫ L

0

N∑
i=1

eTi (x, t)
∂2ei(x, t)
∂x2

dx

= −αdi(t)
N∑
i=1

eTi (L, t)ei(L, t)

−α

∫ L

0

N∑
i=1

∂eTi (x, t)

∂x
∂ei(x, t)
∂x

dx, (16)

in which, by using Lemma 1,

−α

∫ L

0

N∑
i=1

∂eTi (x, t)

∂x
∂ei(x, t)
∂x

dx

≤ −0.25L−2π2α

∫ L

0
[ei(x, t)− ei(L, t)]T

× [ei(x, t)− ei(L, t)]dx, (17)

Considering (5), it follows from (15) that

N∑
i=1

α

ki
(di(t)− d∗)ḋi(t)

=

N∑
i=1

α

ki
(di(t)− d∗)kieTi (L, t)ei(L, t)

= α

N∑
i=1

(di(t)− d∗)eTi (L, t)ei(L, t). (18)

Combining (16)-(18),

α

∫ L

0

N∑
i=1

eTi (x, t)
∂e2i (x, t)

∂x2
dx +

N∑
i=1

α

ki
(di(t)− d∗)ḋi(t)

≤ −0.25L−2π2α

∫ L

0

N∑
i=1

[ei(x, t)− ei(L, t)]T

× [ei(x, t)− ei(L, t)]dx

− d∗α
N∑
i=1

eTi (L, t)ei(L, t)

= −0.25L−2π2α

∫ L

0
eT (x, t)e(x, t)dx

+ 0.5L−2π2α

∫ L

0
eT (x, t)e(L, t)dx

− 0.25L−2π2α

∫ L

0
eT (L, t)e(L, t)dx

−

∫ L

0
eT (L, t)De(L, t)dx, (19)

where D 1
=

α
L diag{d

∗

1 , d
∗

2 , . . . , d
∗
N } ⊗ In. Using

Assumption 1,∫ L

0

N∑
i=1

eTi (x, t)BF(ei(x, t))dx

≤

∫ L

0

N∑
i=1

eTi (x, t)BB
T ei(x, t)dx

+

∫ L

0

N∑
i=1

FT (ei(x, t))F(ei(x, t))dx

≤

∫ L

0

N∑
i=1

eTi (x, t)BB
T ei(x, t)dx

+χ2
∫ L

0

N∑
i=1

eTi (x, t)ei(x, t)dx. (20)

According to the Kronecker product for matrices and (20),∫ L

0

N∑
i=1

eTi (x, t)Aei(x, t)dx

+

∫ L

0

N∑
i=1

eTi (x, t)BF(ei(x, t))dx
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+ c
∫ L

0

N∑
i=1

eTi (x, t)
N∑
j=1

gijej(x, t)dx

≤

∫ L

0
eT (x, t)[IN ⊗ (

A+ AT

2
+ BBT )

+ c
G+ GT

2
⊗ In + χ INn]e(x, t)dx. (21)

Substituting (19) and (21) into (15),

V̇ (t) ≤ −0.25L−2π2α

∫ L

0
eT (x, t)e(x, t)

+ 0.5L−2π2α

∫ L

0
eT (x, t)e(L, t)dx

− 0.25L−2π2α

∫ L

0
eT (L, t)e(L, t)dx

−

∫ L

0
eT (L, t)De(L, t)dx

+

∫ L

0
eT (x, t)[IN ⊗ (

A+ AT

2
+ BBT )

+ (c
G+ GT

2
)⊗ In + χ INn]e(x, t)dx

=

∫ L

0
ẽT (x, t)9 ẽ(x, t)dx, (22)

where ẽ(x, t) 1= [eT (L, t), eT (x, t)]T , and

9
1
=

[
−0.25L−2π2αINn − D 0.25L−2π2αINn

0.25L−2π2αINn W

]
, (23)

in which W is defined in (13). According to (12),
if λmax(W ) < 0, then

W < 0. (24)

By Lemma 2, the inequality (24) is equivalent to

9 < 0, (25)

for large enough d∗i , i ∈ {1, 2, . . . ,N }. It follows from (22)
and (25) that V̇ (t) ≤ 0 and V̇ (t) = 0 if and only if ẽi(x, t) =
0. According to Definition 1, the CSN (1) synchronizes the
isolated node (2) if the condition (12) holds.

This completes the proof. �
Remark 6: For controlled CSNs, sufficient large feedback

gains may be taken, which is possibly much larger than the
actual values in need. With merits of the adaptive control,
the adaptive boundary controller (5) can real time modify the
feedback gains.

IV. SYNCHRONIZATION VIA A PINNING ADAPTIVE
BOUNDARY CONTROLLER
For case II, when the number of nodes is very large, the
pinning adaptive boundary controller (6) is employed and the
following conclusion can be obtained.
Theorem 2: Under Assumption 1, using the pinning adap-

tive boundary controller (6), the CSN (1) synchronizes the
isolated node (2) if

λmax(W +3) < 0, (26)

where W is defined in (13) and

3
1
=

[
0ln 0
0 0.25L−2π2αI(N−l)n

]
. (27)

Proof: The proof is similar to that of Theorem 1.
To avoid unnecessary duplications, only a part of the proof
is given.

Choosing the same Lyapunov functional candidate to that
in Theorem 1 defined by (14), after similar calculations as the
proof of Theorem 1,

V̇ (t) ≤
∫ L

0
ẽT (x, t)5ẽ(x, t)dx, (28)

where

5
1
=

[
−0.25L−2π2αINn − D∗ 0.25L−2π2αINn

0.25L−2π2αINn W

]
,

D∗ 1=
α

L
diag{d∗1 , d

∗

2 , . . . , d
∗
l , 0, . . . , 0︸ ︷︷ ︸

N−l

} ⊗ In.

According to (28), if λmax(W +3) < 0, then

W +3 < 0. (29)

By Schur complement, the inequality (29) is equivalent to that

5̄
1
=

[
−0.25L−2π2αI(N−l)n 5̄12

5̄T
12 W

]
< 0, (30)

where 5̄12
1
= 0.25L−2π2α[0(N−l)n,ln I(N−l)n]. Using

Lemma 2, take large enough d∗i > 0 such that the inequal-
ity (30) is equivalent to that

5 < 0 (31)

From (28) and (31), V̇ (t) ≤ 0 and V̇ (t) = 0 if and only if
ẽi(x, t) = 0. According to Definition 1, the CSN (1) synchro-
nizes the isolated node (2). This completes the proof. �
Remark 7: As been defined in Eq. (6), l is the number of

controlled nodes. When l = N (N is the number of nodes in
the CSN), all nodes are controlled. That is the main research
of Section III. It can also be seen the consistency of boundary
control with and without pinning strategy. When l = N ,
3 defined in (27) is a zero matrix and thereby Theorem 2
degenerates into Theorem 1.
Remark 8: It is obvious that pinning synchronization of

the CSN (1) implies synchronization of the CSN (1) because
of inequality (26) implying inequality (12).
Remark 9: Pinning controllers in [49]–[51] require actua-

tors and sensors distributing the whole spatial domain. What
is different from those controllers is that the pinning adaptive
boundary controller (6) require sensors and actuators only
locating at the spatial boundary positions.

V. NUMERICAL SIMULATION
Example 1: In order to show the effectiveness of Theo-

rem 1, consider a nonlinear CSN (1) composed of 4 nodes
with coefficients listed as

α = 2, A =
[
2.7 −1
1 2.5

]
, B =

[
0.5 −0.1
0.25 1

]
,
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f (yi(x, t)) = [tanh(yi1(x, t)),− tanh(yi2(x, t))]T ,

c = 0.2, L = 1, n = 2, i ∈ {1, 2, · · · , 6}, (32)

with the coupling matrix

G 1
=


−4 0 3 1
0 −1 1 0
1 1 −3 1
1 1 0 −2

,
and the initial conditions

y01(x) = [0.5+ 0.3 cos(2πx),−2− 0.2 cos(πx + π/4)]T ,

y02(x) = [0.4+ 0.1 sin(2πx + π/6), 0.1+ 0.2 cos(πx)]T ,

y03(x) = [0.3− 0.2 cos(3πx), 5 sin(πx + π/12)]T ,

y04(x) = [−3+ 0.3 cos(πx),−0.3+ 0.2 cos(5πx)]T ,

s0(x) = [0.2 cos(πx), 0.3 sin(πx)]T . (33)

FIGURE 1. Trajectories of control gains di (t) in Example 1.

FIGURE 2. Trajectories of control inputs ui (t) in Example 1.

It is not difficult to verify that f (yi(x, t)) satisfies the
Lipschitz condition with χ = 1. According to Theorem 1,
applying the adaptive boundary controller (5) with ki = 5,
λmax(W ) = −0.3481 < 0 is obtained. The trajectories of
the feedback gains and the control inputs of the controller (5)
are respectively illustrated in Figures 1 and 2. Applying the
controller (5) with the feedback gains shown in Figure 1,

ei(x, t) is obtained as shown in Figure 3. Obviously, the pro-
posed controller (5) can guide the CSN (1) to synchronize the
isolated node (2).

FIGURE 3. Profiles of the synchronization error ei (x, t) with 4 nodes
being controlled in Example 1.

Example 2: To illustrate the effectiveness of Theorem 2,
consider a nonlinear CSN (1) composed of 100 nodes with
coefficients listed as

α = 5, A =
[

1 −.2
0.2 −1.5

]
, B =

[
0.5 0
0 0.5

]
,

f (yi(x, t)) = [tanh(yi1(x, t)),− tanh(yi2(x, t))]T ,

c = 2, L = 1, n = 2, i ∈ {1, 2, · · · , 100}, (34)

with the initial conditions

yi,0(x) = [0.5+ 0.4 sin(πx)+ rand(1),

0.2 cos(πx)+ rand(1)]T ,

s0(x) = [0.2 cos(πx)+ 0.2, 0.3 sin(πx)− 0.1]T . (35)

where rand(1) is a random fraction between 0 and 1 accord-
ing to uniform distribution. The topological structure G is
firstly induced according to an Erdos-Renyi random graph
with probability p = 0.5; and then gii = −

∑N
j=1,j 6=i gij.
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FIGURE 4. Trajectories of control gains di (t) in Example 2.

FIGURE 5. Trajectories of control inputs ui (t) in Example 2.

FIGURE 6. Trajectories of synchronization error
∥∥ei (·, t)

∥∥
2 in Example 2.

χ = 1 can be obtained similar to Example 1. Next,
30 nodes are randomly selected from 100 nodes to be con-
trolled, i.e., l = 30. Applying the pinning adaptive boundary
controller (6) with ki = 2, λmax(W ) = −0.6235 < 0 is
got by Theorem 2. The trajectories of the feedback gains
and the control inputs ui(t) are respectively illustrated in
Figures 4 and 5. Applying the controller (6) with the feedback
gains shown in Figure 5, trajectories of synchronization errors
‖ei(·, t)‖2 are obtained as shown in Figure 6. Obviously,
under the proposed controller (6), the CSN (1) synchronizes
the isolated node (2).

VI. CONCLUSIONS
Synchronization and pinning synchronization are respec-
tively studied for a nonlinear CSN modeled by semi-linear
parabolic PDEs. Two boundary control methods that adaptive
boundary control and pinning adaptive boundary control have
been investigated. By using Lyapunov direct method and
some inequalities, two sufficient synchronization criteria are
derived. The obtained criteria are independent on spatial posi-
tions. Simulation results of numerical examples respectively
verify the effectiveness of the proposed adaptive boundary
control and pinning adaptive boundary control methods. One
interesting topic in future is to further study pinning syn-
chronization of CSNs by constructing an impulse adaptive
boundary controller.
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