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ABSTRACT For selecting appropriate permutation polynomials (PPs) in practical applications, it is
necessary to know the coefficients of the polynomial since a brute-force exhaustive search is impractical
when the number of PPs is large. Previous results give the conditions on the coefficients of a polynomial
of degree up to four so that it is a PP modulo a given positive integer. For polynomials of degree higher
than four, we only know the conditions so that they are PPs modulo a power of two. In [13] all PPs of
degree no more than six are generated using an algorithm based on normalized PPs, two previous important
theorems about PPs and the Chinese remainder theorem. In this paper, we propose a coefficient test for
quintic permutation polynomials (5-PPs) over integer rings which, unlike the algorithm from [13], allows
to decide directly whether a polynomial of degree five or less is PP. Using the proposed coefficient test,
the coefficients of PPs modulo a given positive integer can be obtained in a desired order, which is tractable
in computer processing.

INDEX TERMS Coefficient test, integer rings, permutation polynomials, quintic polynomial.

I. INTRODUCTION
Permutation polynomials (PPs) are used in cryptogra-
phy, sequences’ generation or as interleavers in turbo
codes [1]–[3].

For selecting PPs in practical applications, it is necessary to
know the coefficients of the polynomial. For example, when
PPs are used as interleavers for turbo codes, the coefficients
have to be carefully chosen for a good error rate performance.
Thus, we use a certain criterion (for example the distance
spectrum) to select the coefficients of the PP for a good
PP interleaver. This selection may require testing a lot of
PP interleavers. When the interleaver length is big, the num-
ber of PPs is large and a brute-force exhaustive search is
impractical. Therefore, we require the conditions on the poly-
nomials’ coefficients so that they are PPs. Previous known
results concerning the conditions on a polynomial’s coeffi-
cients to be a PP are:

1) the conditions for a polynomial of any degree to be a
PP modulo 2w, with w a positive integer [4],

2) the conditions for a polynomial of second degree to be
a quadratic permutation polynomial (QPP) [3], [5],

3) the conditions for a polynomial of third degree to be a
cubic permutation polynomial (CPP) [6], [7], and

4) the conditions for a polynomial of fourth degree to be
a quartic permutation polynomial (denoted 4-PP) [8].

In this paper, we extend the conditions from [6], [8]
for quintic polynomials’ coefficients so that they are PPs
(denoted 5-PPs). Let N be a positive integer. The 5-PPs in
this paper are evaluated modulo N . In the paper we use an
exhaustive approach in which we considered all the prime
numbers from the decomposition of the positive integer.
We consider that this approach facilitates the understanding
and the use of permutation polynomials in various applica-
tions. The analysis was performed for values of N whose
prime decompositions contain up to eight different prime
numbers, namely 2, 3, 5, 7, 13, primes p = 1 (mod 5),
p = 2, 3 (mod 5), and p = 4 (mod 5). This analysis is done
separately, for each prime number to power of one or to pow-
ers greater than one. The cases concerning the prime num-
bers 2 and 3 were previously addressed in [4] and [9], [10],
respectively. The case p = 5 was addressed in [10], but the
author used Corollary 2.9 from [11], and thus, he did not
consider the situation when the coefficient of the third degree
term is equal to 0 modulo 5. We point out that the coeffi-
cients’ conditions from Lemma 4 in [9] are only sufficient
and not necessary for a polynomial of any degree to be a
PP modulo pn, with n > 1, as it was shown in [12]. Using this
Lemma in Corollary 2 from [9] does not provide all CPPs.

We mention that reference [13] presents an algorithm that
generates all PPs over ZN , of degree no more than six.
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The algorithm is based on normalized PPs, Theorems 1 and 2
from Section II about PPs, and the Chinese remainder the-
orem. The authors of [13] also give the conditions for the
coefficients of a normalized permutation polynomial of sixth
degree, but only for the prime numbers equal to 2, 3 and 5
from the prime decomposition of N . These conditions for the
prime numbers 2, 3 or 5 can be particularized for a quintic per-
mutation polynomial. However, in [13] the conditions on the
coefficients for any permutation polynomial were not given.
Unlike [13], using the conditions on coefficients derived in
this paper, we can decide directly whether a polynomial of
degree five or less is PP.

II. RESULTS ON PERMUTATION POLYNOMIALS OVER
INTEGER RINGS
A PP of degree d is of the form:

π (x) = q0 + q1x + q2x2 + · · · + qdxd (mod N ), (1)

where N is a positive integer and the coefficients qk ,
k = 1, · · · , d , are chosen so that π (x) from (1), with
x = 0, 1, · · · ,N − 1, is a permutation of the set of integers
moduloN ,ZN =

{
0, 1, · · · ,N−1

}
. As the free term q0 only

determines a cyclic shift of the permutation elements, we will
consider q0 = 0.

Let P =
{
2, 3, 5, · · ·

}
be the set of prime numbers.

In the following, the notation p | N means that p divides N ,
the notation p - N means that p does not divide N and
π ′(x) denotes the formal derivative of the polynomial π (x).
We recall two theorems that are useful for getting the results
in Section III. The first theorem is from [3], [6]. The sec-
ond theorem is a Nöbauer’s result [14], but it is also given
in [3], [6], [15]. In [15] it is mentioned that the result of this
theorem is a direct consequence of Theorem 123 from [16].
Below, we give the two theorems.
Theorem 1: For any N =

∏
p∈P,
p|N

pnN ,p , π (x) is a

PP modulo N iff π (x) is also a PP modulo pnN ,p , ∀p such that
nN ,p ≥ 1.
Theorem 2: π (x) is a PP modulo pn, with n > 1, iff π (x)

is a PP modulo p and π ′(x) 6= 0 (mod p), for every integer x.
In this paper, we present a direct test on the coefficients q1,

q2, q3, q4, and q5 of a quintic polynomial, so that it is 5-PP.

III. A COEFFICIENT TEST FOR QUINTIC PPS
In this section we use the same three-step algorithm as in [6]
(given below) to check if a quintic polynomial π (x) is 5-PP,
but under the conditions from Table 1.

1) Factor N as N =
∏

p∈P,
p|N

pnN ,p .

2) For each p and the corresponding nN ,p from the previ-
ous step, test if the conditions in Table 1 are satisfied.

3) π (x) is a 5-PP iff all tests in step 2) are satisfied.
The cases p = 2, p = 3, p = 5, p = 7, and p = 13

are addressed in Subsections III-A, III-B, III-C, III-D
and III-E, respectively, and the cases p = 1 (mod 5),
p = 2, 3 (mod 5), with p > 13, and p = 4 (mod 5), in

Subsections III-F, III-G and III-H, respectively. Table 1 shows
the coefficient conditions for a 5-PP modulo pn.

A. p = 2
For p = 2, a simple test on the coefficients is given in [4] for
any degree of the polynomial. For the fifth degree, the condi-
tions are given in Table 1.

B. p = 2
1) p = 3 AND n = 1
Theorem 3: π (x) = q1x + q2x2 + q3x3 + q4x4 +

q5x5 (mod 3) is a PP iff (q1 + q3 + q5) 6= 0 (mod 3) and
(q2 + q4) = 0 (mod 3).

Proof: As π (0) = 0, it requires that

π (1) = q1 + q2 + q3 + q4 + q5 6= 0 (mod 3), (2)

π (2) = 2q1 + q2 + 2q3 + q4 + 2q5 6= 0 (mod 3), (3)

and

π (1) 6= π (2) (mod 3). (4)

Replacing (2) and (3) in (4), we have that

(q1 + q3 + q5) 6= 0 (mod 3). (5)

If (q1 + q3 + q5) = 1 (mod 3), then, from (2) it follows
that (q2 + q4) = 0 (mod 3) or (q2 + q4) = 1 (mod 3),
and from (3) it follows that (q2 + q4) = 0 (mod 3) or
(q2 + q4) = 2 (mod 3). Therefore, (q2 + q4) = 0 (mod 3).
The case (q1+q3+q5) = 2 (mod 3) is approached similarly
and leads to the same result.

2) p = 3 AND n > 1
Theorem 4: π (x) = q1x + q2x2 + q3x3 + q4x4 +

q5x5 (mod 3n), with n > 1, is a PP iff q1 6= 0 (mod 3),
(q1 + q3 + q5) 6= 0 (mod 3), (q2 + q4) = 0 (mod 3),
(q1 + q2 + 2 · q5) 6= 0 (mod 3) and (q1 + q4 + 2 · q5) 6=
0 (mod 3).

Proof: To prove the necessity, we assume that π (x) is
a PP (mod 3n), with n > 1. Then, according to Theorem 2,
π (x) is a PP (mod 3) and

π ′(x) = q1 + 2q2x + 3q3x2 + 4q4x3 + 5q5x4 (mod 3)

= q1 + 2q2x + q4x3 + 2q5x4 6= 0 (mod 3) (6)

As π (x) is a PP (mod 3), from Theorem 3, we have
that (q1 + q3 + q5) 6= 0 (mod 3) and (q2 + q4) = 0
(mod 3). Replacing x = 0 in (6), we have that π ′(0) =
q1 6= 0 (mod 3). Replacing x = 1 in (6), we have that
π ′(1) = q1 + 2q2 + q4 + 2q5 6= 0 (mod 3). Because
(q2 + q4) = 0 (mod 3), it follows that

π ′(1) = q1 + q2 + 2 · q5 6= 0 (mod 3) (7)

Replacing x = 2 in (6), we have that π ′(2) = q1 + q2 +
2q4+2q5 6= 0 (mod 3) and, because (q2+q4) = 0 (mod 3),
it follows that

π ′(2) = q1 + q4 + 2 · q5 6= 0 (mod 3) (8)
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TABLE 1. A coefficient test for 5-PPs modulo p.
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TABLE 1. Continued. A coefficient test for 5-PPs modulo p.
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TABLE 1. Continued. A coefficient test for 5-PPs modulo p.

To prove the sufficiency, we assume that q1 6= 0 (mod 3),
(q1 + q3 + q5) 6= 0 (mod 3), (q2 + q4) = 0 (mod 3),
(q1 + q2 + 2 · q5) 6= 0 (mod 3) and (q1 + q4 + 2 · q5) 6=
0 (mod 3). Then, from Theorem 3, it follows that π (x) is
a PP (mod 3). For x = 0, from (6) we have that π ′(0) =
q1 6= 0 (mod 3). For x = 1 and x = 2, and taking into
account the equality (q2 + q4) = 0 (mod 3), from (6),
we have that π ′(1) = q1 + q2 + 2 · q5 6= 0 (mod 3)
and π ′(2) = q1 + q4 + 2 · q5 6= 0 (mod 3), respec-
tively. Then, according to Theorem 2, it results that π (x) is
a PP (mod 3n).

For the next cases we need the following propositions.
They follow from [17], [18].
Proposition 1: A polynomial π (x) is a PP modulo p,

with p - d , iff aπ (x + b) + c is PP for all a 6= 0, b,
c ∈ Zp.
Proposition 2: A polynomial π (x) is a PP modulo p, with

p | d , iff aπ (x)+ c is PP for all a 6= 0, c ∈ Zp.

Definition 1: Let π̄ (x) =
∑d

k=1 qkx
k (mod pn). The

polynomial π̄ (x) is a normalized PP if qd = 1, π̄ (0) = 0,
and qd−1 = 0 when p - d .

C. p = 5
1) p = 5 AND n = 1
Proposition 3: ( [17]) The only normalized quintic PPs

(mod 5) are π̄ (x) = x5 (mod 5), π̄ (x) = x5 − αx (mod 5)
(α not a fourth power) and π̄ (x) = x5−2αx3+α2x (mod 5)
(α not a square).
Theorem 5: π (x) = q1x + q2x2 + q3x3 + q4x4 +

q5x5 (mod 5) is PP iff:

1) q4 = q2 = 0 (mod 5) and (q1 + q5) 6= 0 (mod 5),
when q3 = 0 (mod 5),
or iff:

2) q4 = 0 (mod 5) and (q2)2 = 3(q1 + q5)q3 (mod 5),
when q3 6= 0 (mod 5).
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Proof: From Propositions 2 and 3, we have that, when
q5 6= 0 (mod 5), all 5-PPs can be obtained with the formula
aπ̄ (x) + c, where π̄ (x) = x5 (mod 5) or π̄ (x) = x5 −
αx (mod 5) (α not a fourth power) or π̄ (x) = x5 − 2αx3 +
α2x (mod 5) (α not a square). We note that if α is not a fourth
power modulo 5, then α ∈

{
2, 3, 4

}
and, if α is not a square

modulo 5, then α ∈
{
2, 3

}
.

When π̄ (x) = x5 (mod 5), it follows that q5 6= 0 (mod 5),
q4 = 0 (mod 5), q3 = 0 (mod 5), q2 = 0 (mod 5) and
q1 = 0 (mod 5).
When π̄ (x) = x5 − αx (mod 5) (α ∈

{
2, 3, 4

}
), it follows

that q5 6= 0 (mod 5), q4 = 0 (mod 5), q3 = 0 (mod 5),
q2 = 0 (mod 5) and q1 + αq5 = 0 (mod 5) for only one
α ∈

{
2, 3, 4

}
.

When π̄ (x) = x5 − 2αx3 + α2x (mod 5) (α ∈
{
2, 3

}
),

we have that q5 6= 0 (mod 5), q4 = 0 (mod 5),
q3 = −2αq5 (mod 5), q2 = 0 (mod 5) and q1 =
α2 q5 = 4 q5 (mod 5). For α ∈

{
2, 3

}
, the equality

q3 = −2αq5 (mod 5) is equivalent to q3+q5 = 0 (mod 5) or
q3 − q5 = 0 (mod 5), and the equality q1 = 4 q5 (mod 5) is
equivalent to (q1 + q5) = 0 (mod 5).

Because there are four null quintic polynomials modulo 5,
namely x5+4 x (mod 5), 2x5+3x (mod 5), 3x5+2 x (mod 5)
and 4x5 + x (mod 5), we have that a quintic polynomial
π (x) = q1x + q2x2 + q3x3 + q4x4 + q5x5 (mod 5) is
equivalent to the polynomial π (x)+q5x+(5−q5)x5 (mod 5),
∀q5 ∈ Z∗5. There are two normalized PPs modulo 5 of
degree less than five [17], i.e. π̄ (x) = x (mod 5) and
π̄ (x) = x3 (mod 5). Therefore, a 5-PP can also result when
π (x)+ q5x + (5− q5)x5 (mod 5) = a(x + b)+ c, or π (x)+
q5x + (5 − q5)x5 (mod 5) = a(x + b)3 + c, with a 6= 0, b,
c ∈ Z5.

Considering the analysis for CPPs [6] or for 4-PPs [8], for
the normalized PP π̄ (x) = x (mod 5), we have that q5 6=
0 (mod 5), q4 = 0 (mod 5), q3 = 0 (mod 5), q2 = 0 (mod 5)
and q1 + q5 6= 0 (mod 5).
We note that for the normalized PPs π̄ (x) = x5 (mod 5),

π̄ (x) = x5 − αx (mod 5) (α ∈
{
2, 3, 4

}
) and π̄ (x) =

x (mod 5), the common conditions on the coefficients
q5, q4, q3, q2 are q5 6= 0 (mod 5), q4 = 0 (mod 5),
q3 = 0 (mod 5) and q2 = 0 (mod 5). The condition for the
coefficient q1 is just q1+q5 6= 0 (mod 5), because it includes
the conditions for all the normalized PPs above. Indeed, for
q1 = 0 (mod 5), we have that q1 + q5 6= 0 (mod 5), ∀q5 6=
0 (mod 5), and the condition q1 + αq5 = 0 (mod 5) for any
α ∈

{
2, 3, 4

}
and for only one q5 6= 0 (mod 5) is equivalent

to q1 ∈
{
Z∗5 − (−q5)

}
and, therefore, q1 + q5 6= 0 (mod 5).

Thus, for the three normalized PPs, the conditions in 1) result
for q5 6= 0 (mod 5).
For the normalized PP π̄ (x) = x3 (mod 5), we have that

q5 6= 0 (mod 5), q4 = 0 (mod 5), q3 6= 0 (mod 5)
and (q2)2 = 3(q1 + q5)q3 (mod 5). We note that for
the normalized PP π̄ (x) = x5 − 2αx3 + α2x (mod 5)
(α ∈

{
2, 3

}
), the conditions on the coefficients are included

in those for the normalized PP π̄ (x) = x3 (mod 5), because
for q2 = 0 (mod 5) and q1 + q5 = 0 (mod 5), we have that

(q2)2 = 3(q1 + q5)q3 (mod 5). Thus, for the two normalized
PPs, conditions 2) result for q5 6= 0 (mod 5).
When q5 = 0 (mod 5), we can use the test on the

coefficients of a 4-PP from [8], for the case 3 - (p − 1) and
n = 1. This is given by conditions 1) or 2) for q5 = 0 (mod 5).

2) p = 5 AND n > 1
Theorem 6: π (x) = q1x + q2x2 + q3x3 + q4x4 +

q5x5 (mod 5n), with n > 1, is PP iff:
1) q4 = q3 = q2 = 0 (mod 5), q1 6= 0 (mod 5) and

(q1 + q5) 6= 0 (mod 5),
or iff:

2) q4 = 0 (mod 5), (q2)2 = 3(q1 + q5)q3 (mod 5) and
(2.1) q3 + q5 = 0 (mod 5),
or
(2.2) q3 − q5 = 0 (mod 5),
when q5 6= 0 (mod 5),
or iff:

3) q4 = q3 = q2 = 0 (mod 5) and q1 6= 0 (mod 5), when
q5 = 0 (mod 5).
Proof: To prove the necessity, we assume that π (x) is a

PP (mod 5n), with n > 1. Then, from Theorem 2, it follows
that π (x) is PP (mod 5) and

π ′(x) = q1 + 2q2x + 3q3x2 + 4q4x3 + 5q5x4 (mod 5)

= q1 + 2q2x + 3q3x2 + 4q4x3 6= 0 (mod 5) (9)

Because π (x) is PP (mod 5), q4 = 0 (mod 5) and,
consequently

π ′(x) = q1 + 2q2x + 3q3x2 6= 0 (mod 5). (10)

As in the proof of Theorem 5, from Propositions 2 and 3,
when q5 6= 0 (mod 5), we have that all 5-PPs can be
obtained with the formula aπ̄ (x) + c, with a 6= 0, c ∈ Z5,
where π̄ (x) = x5 (mod 5) or π̄ (x) = x5 − αx (mod 5)
(α ∈

{
2, 3, 4

}
) or π̄ (x) = x5 − 2αx3 + α2x (mod 5)

(α ∈
{
2, 3

}
). Thus, we have that π ′(x) = aπ̄ ′(x) = q5π̄ ′(x).

In the following we will consider each normalized PP.
When π̄ (x) = x5 (mod 5), it follows that π ′(x) =

q5π̄ ′(x) = 5 q5 x4 (mod 5) = 0 (mod 5). Therefore, the value
q1 = 0 (mod 5), under conditions 1) from Theorem 5,
is invalid for this case.

When π̄ (x) = x5 − αx (mod 5) (α ∈
{
2, 3, 4

}
),

we have that π ′(x) = q5π̄ ′(x) = q5(5x4 − α) (mod 5) =
−αq5 (mod 5) 6= 0 (mod 5), ∀q5 6= 0 (mod 5) for
α ∈

{
2, 3, 4

}
.

When π̄ (x) = x5 − 2αx3 + α2x (mod 5) (α ∈
{
2, 3

}
),

we have that π ′(x) = q5π̄ ′(x) = q5(5x4 − 2α · 3 x2 + α2)
(mod 5) = 4 q5(αx2 + 1) (mod 5). It is easy to verify that
the equation (αx2 + 1) = 0 (mod 5) has no solution for
α = 2 or α = 3. Because in this case π ′(x) 6= 0, ∀x ∈ Z5,
conditions 2) from Theorem 5, for q5 6= 0 (mod 5), are still
valid when q3 + q5 = 0 (mod 5) or q3 − q5 = 0 (mod 5),
resulting in conditions 2) from Theorem 6.
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For the two normalized PPs modulo 5 of degree less than 5,
when q5 6= 0 (mod 5), all 5-PPs can be obtained with the
formula π (x)+ q5x + (5− q5)x5 (mod 5) = aπ̄ (x + b)+ c,
with a 6= 0, b, c ∈ Z5. Thus, we have that π ′(x) = (aπ̄ ′(x +
b)− q5) (mod 5).

When π̄ (x) = x (mod 5), a = q1 + q5 and we have that
π ′(x) = q1 (mod 5). Therefore, beside conditions 1) from
Theorem 5, when q5 6= 0 (mod 5) we have to additionally
impose q1 6= 0 (mod 5), resulting in conditions 1) from
Theorem 6.

When π̄ (x) = x3 (mod 5), then a = q3 and we have
that π ′(x) = q3π̄ ′(x + b) − q5 = 3 q3(x + b)2 − q5.
As q3 6= 0 (mod 5) then from [6], it follows that
b = q2

3q3
. The equation 3 q3(x + b)2 − q5 = 0 (mod 5) is

equivalent to (x + b)2 = q5
3q3

(mod 5). For this equation to
have no solution, q5

3q3
can not be a square modulo 5, that is

q5
3q3
= 2 (mod 5) or q5

3q3
= 3 (mod 5). These equalities

are equivalent to q3 − q5 = 0 (mod 5) or q3 + q5 = 0
(mod 5), respectively. Therefore, besides equalities (2) from
Theorem 5, when q5 6= 0 (mod 5), we have to impose the
equalities q3 + q5 = 0 (mod 5) or q3 − q5 = 0 (mod 5),
resulting in conditions 2) of Theorem 6.

When q5 = 0 (mod 5), we can apply the coefficient test
on a 4-PP from [8], when 3 - (p− 1) and n > 1. This is given
by conditions 3) from Theorem 6.

To prove the sufficiency, we assume that the conditions on
the coefficients from the theorem statement are fulfiled. From
these conditions, we have that π (x) is PP (mod 5). According
to Theorem 2, we still need to show that π ′(x) 6= 0 (mod 5),
∀x ∈ Z5, where π ′(x) is that from (10).
In cases (1) and (3), as q3 = q2 = 0 (mod 5), we have that

π ′(x) = q1 6= 0 (mod 5), ∀x ∈ Z5.
Case 2) follows from the equivalence of equations π ′(x) =

0 (mod 5) and (x + b)2 = q5
3q3

(mod 5), with b = q2
3q3

.
Therefore, for conditions (2.1) or (2.2) the equation has no
solution modulo 5. Thus, π ′(x) 6= 0 (mod 5), ∀x ∈ Z5, also
in this case.
We remark that in the algorithm from [13], all PPs of

degree no more than six are generated using Theorems 1
and 2 and the Chinese remainder theorem. PPs modulo p are
generated using Propositions 1 and 2, where π (x) is either an
explicit normalized PP for p > 5 or π (x) is generated by the
coefficients’ conditions for p = 2, p = 3 or p = 5. However,
the generation of all PPs by the coefficients’ conditions is
simpler and easier for implementation.

TABLE 2. Quintic normalized PPs modulo p for p > 5.

Because for p > 5 there are seven normalized quintic
PPs [17] (given in Table 2), we give a unified approach for the
conditions on the coefficients of a 5-PP, when the normalized
PP has the form:

π̄ (x) = x5 + a3x3 + a2x2 + a1x (11)

Lemma 1: Let π (x) = q1x + q2x2 + q3x3 + q4x4 +
q5x5 (mod p), where q5 6= 0 (mod p). Then, π (x) can be
factorized as π (x) = a

(
(x + b)5+ a3(x + b)3+ a2(x + b)2+

a1(x + b)
)
+ c (mod p) iff the following three conditions are

fulfilled:
1) 5 q3 q5 = 2(q4)2 + 5 a3(q5)2 (mod p),
2) 25 q2(q5)2 = 2(q4)3 + 15 a3 q4(q5)2 +

25 a2(q5)3 (mod p),
3) 125 q1(q5)3 = (q4)4+15 a3(q4)2(q5)2+50 a2 q4(q5)3+

125 a1(q5)4 (mod p).
Proof: We consider that π (x) = a

(
(x + b)5 + a3(x +

b)3 + a2(x + b)2 + a1(x + b)
)
+ c (mod p). Then, we can

write

π (x) = ax5 + 5abx4 + a(10b2 + a3)x3

+ a(10b3 + 3a3b+ a2)x2

+ a(5b4 + 3a3b2 + 2a2b+ a1)x

+ a(b5 + a3b5 + a2b2 + a1b)x + c (mod p) (12)

By identifying the coefficients of degree 5, 4, 3, 2, 1 and 0,
we have that

a = q5, (13)

b =
q4
5q5

(mod p), (14)

q3 = 10q5

(
q4
5q5

)2

+ a3q5 (mod p), (15)

q2 = 10q5

(
q4
5q5

)3

+ a3q5
q4
5q5
+ a2q5 (mod p), (16)

q1 = 5q5

(
q4
5q5

)4

+ 3a3q5

(
q4
5q5

)2

+ 2a2q5
q4
5q5
+ a1q5 (mod p), (17)

c = −q5

((
q4
5q5

)5

+ a3

(
q4
5q5

)3

+ a2

(
q4
5q5

)2

+ a1
q4
5q5

)
(mod p), (18)

(15), (16) and (17) are equivalent to:

5q3q5 = 2(q4)2 + 5a3(q5)2 (mod p), (19)

5q2(q5)2 = 2(q4)3 + 15a3q4(q5)2 + 25a2(q5)3 (mod p),

(20)

and

125q1(q5)3 = (q4)4 + 15a3(q4)2(q5)2

+ 50a2q4(q5)3 + 125a1(q5)4 (mod p), (21)

respectively.
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Then, we have that

π (x) = q5

((
x +

q4
5q5

)5

+ a3

(
x +

q4
5q5

)3

+ a2

(
x +

q4
5q5

)2

+ a1

(
x +

q4
5q5

))

− q5

((
q4
5q5

)5

+ a3

(
q4
5q5

)3

+ a2

(
q4
5q5

)2

+ a1
q4
5q5

)
(mod p) = q5x5 + q4x4

+

(
10q5

(
q4
5q5

)2

+ a3q5

)
x3

+

(
10q5

(
q4
5q5

)3

+ 3a3q5
q4
5q5
+ a2q5

)
x2

+

(
5q5

(
q4
5q5

)4

+ 3a3q5

(
q4
5q5

)2

+ 2a2q5
q4
5q5
+ a1q5

)
x (mod p) (22)

Therefore, conditions (19), (20) and (21) have to be met,
that is, the three conditions of the lemma statement.

The reciprocal is proved by the reverse way.
To facilitate the handling of cases for PPs modulo pn, with

p > 5 and n > 1, we remark that when a quintic PP has
a corresponding normalized quintic PP, π̄ (x), according to
Proposition 1, it is of the form π (x) = aπ̄ (x + b) + c, with
a 6= 0, b, c ∈ Zp. According to Theorem 2, it requires that
π ′(x) = aπ̄ ′(x + b) 6= 0 (mod p), ∀x ∈ Zp. Therefore, if x
is a solution for the equation π̄ ′(x) = 0 (mod p), then x − b
is a solution for the equation π ′(x) = 0 (mod p). The next
lemma addresses the solving of equation π̄ ′(x) = 0 (mod p),
for each normalized PP from Table 2.

We note that if α is not a square modulo 7, then
α ∈ {3, 5, 6}, and if α is not a square modulo 13, then
α ∈ {2, 5, 6, 7, 8, 11}.
Lemma 2: Let π̄ (x) be a normalized PP from Table 2. The

equation π̄ ′(x) = 0 (mod p) always has solutions modulo p,
except for π̄ (x) = x5 + αx3 + 5−1α2 x, with α ∈ Z∗p and
p = 2, 3 (mod 5).

Proof: For π̄ (x) = x5 (mod p), with p 6= 1 (mod 5),
we have that π̄ ′(x) = 5x4 = 0 (mod p), with solution x = 0.
For π̄ (x) = x5±2x2 (mod 7), we have that π̄ ′(x) = 5x4±

4x = 0 (mod 7), with solution x = 0.
For π̄ (x) = x5 + αx3 ± x2 + 3α2 x (mod 7), with

α ∈ {3, 5, 6}, we have that π̄ ′(x) = 5x4 + 3αx2 ± 2x +
3α2 = 0 (mod 7). It can be easily verified that for α = 3,
the solutions are x = 2 and x = 5, for α = 5, the solutions
are x = 3 and x = 4, and for α = 6, the solutions are x = 1
and x = 6.
For π̄ (x) = x5 + αx3 + 3α2 x (mod 13), with α ∈
{2, 5, 6, 7, 8, 11}, we have that π̄ ′(x) = 5x4+ 3αx2+ 3α2 =
0 (mod 13). It can be easily verified that for α = 2,

the solutions are x = 6 and x = 7, for α = 5, the solutions
are x = 5 and x = 8, for α = 6, the solutions are x = 2 and
x = 11, for α = 7, the solutions are x = 3 and x = 10, for
α = 8, the solutions are x = 1 and x = 12, and for α = 11,
the solutions are x = 4 and x = 9.
For π̄ (x) = x5 + αx3 + 5−1α2 x (mod p), with p =

2, 3 (mod 5) and arbitrary α, we have that π̄ ′(x) = 5x4 +
3αx2 + 5−1α2 = 0 (mod p). We use the substitution
x2 = y and one of the following equation results: 5y2 +
3αy + 5−1α2 = 0 (mod p) or 25y2 + 15αy + α2 = 0
(mod p) or (5y)2 + 2 · 5y · 2−1 · 3α + (2−1 · 3α)2 + α2 −
(2−1 · 3α)2 = 0 (mod p) or (5y + 2−1 · 3α)2 + α2 −

(2−1 · 3α)2 = 0 (mod p) or (10y + 3α)2 + 4α2 − (3α)2 =
0 (mod p) or (10y+ 3α)2 = 5α2 (mod p). The last equation
has solutions modulo p for α 6= 0 (mod p) if 5α2 is a
quadratic residue modulo p. As α2 is a quadratic residue,
according to Theorem 85 from [16], 5α2 is a quadratic
residue, only if 5 is a quadratic residue. But, according
to Theorem 97 in [16], 5 is a quadratic non-residue for
p = 2, 3 (mod 5). Therefore, the equation (10y + 3α)2 =
5α2 (mod p) has no solution for p = 2, 3 (mod 5) and
α 6= 0 (mod p).

D. p = 7
1) p = 7 AND n = 1
Theorem 7: π (x) = q1x + q2x2 + q3x3 + q4x4 +

q5x5 (mod 7) is PP iff:
1) 4 q2(q5)2 = 2(q4)3 (mod 7) and 6 q1(q5)3 =

(q4)4 (mod 7),
or iff:

2) 4 q2(q5)2 = 2(q4)3 ± (q5)3 (mod 7) and 6 q1(q5)3 =
(q4)4 ± 2 q4(q5)3 (mod 7),
when q5 6= 0 (mod 7) and 5 q3 q5 = 2(q4)2 (mod 7),
or iff:

3) 4 q2(q5)2 = 2(q4)3+αq4(q5)2 (mod 7) and 6 q1(q5)3 =
(q4)4 + α(q4)2(q5)2 + 4α2(q5)4 (mod 7), where α =
(q3 q5 + (q4)2) ·

(
(q5)2

)−1 (mod 7),
when q5 6= 0 (mod 7) and 5 q3 q5 6= 2(q4)2 (mod 7),
or iff:

4) 4 q2(q5)2 = 2(q4)3 + αq4(q5)2 ± 4(q5)3 (mod 7)
and 6 q1(q5)3 = (q4)4 + α(q4)2(q5)2 ± q4(q5)3 +
4α2(q5)4 (mod 7), where α = (q3 q5 + (q4)2) ·(
(q5)2

)−1 (mod 7),
when α ∈ {3, 5, 6}, q5 6= 0 (mod 7) and 5 q3 q5 6=
2(q4)2 (mod 7),

5) 3(q3)2 = q2 q4 (mod 7) and 2 q1(q4)2 = (q3)3+ (q4)3,
or iff:

6) 3(q3)2 = q2 q4 (mod 7) and 2 q1(q4)2 = (q3)3 +
6(q4)3 (mod 7),
when q5 = 0 (mod 7) and q4 6= 0 (mod 7),
or iff:

7) q3 = q2 = 0 (mod 7) and q1 6= 0 (mod 7), when
q5 = q4 = 0 (mod 7).
Proof: If q5 6= 0 (mod 7), considering Proposition 1,

Lemma 1 and the normalized PPs modulo 7 from Table 2,
the next conditions result.
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1) 5 q3 q5 = 2(q4)2 (mod 7), 4 q2(q5)2 =

2(q4)3 ± (q5)3 (mod 7) and 6 q1(q5)3 = (q4)4 ±
2 q4(q5)3 (mod 7),
or

2) 5 q3 q5 = 2(q4)2 + 5α(q5)2 (mod 7), 4 q2(q5)2 =
2(q4)3 + αq4(q5)2 ± 4(q5)3 (mod 7) and 6 q1(q5)3 =
(q4)4+α(q4)2(q5)2± q4(q5)3+ 4α2(q5)4 (mod 7), for
only one α ∈ {3, 5, 6},
or

3) 5 q3 q5 = 2(q4)2 + 5α(q5)2 (mod 7), 4 q2(q5)2 =
2(q4)3 + αq4(q5)2 (mod 7) and 6 q1(q5)3 = (q4)4 +
α(q4)2(q5)2 + 4α2(q5)4 (mod 7), for only one α ∈ Z7.

Because the conditions 2) and 3) above need up to three and
seven sets of checking conditions, respectively, it is more
efficient to compute the value of α from the first congruence
equation in these sets of conditions. This congurence equation
is equivalent to:

α(q5)2 = q3q5 + (q4)2 (mod 7) (23)

Because q5 6= 0 (mod 7), we have that (q5)2 6= 0 (mod 7).
Then, the congruence equation (23) has only one solu-
tion [16], which is α = 0 (mod 7) if 5 q3 q5 =
2(q4)2 (mod 7), and α 6= 0 (mod 7) if 5 q3 q5 6=
2(q4)2 (mod 7). To find the solution, we need to compute
the inverse modulo 7 of (q5)2. An algorithm for finding
the arithmetic inverse of an integer modulo other integer is
given in Table 2 from [19]. The six values of the inverses
modulo 7 for {1, 2, 3, 4, 5, 6} are {1, 4, 5, 2, 3, 6}, respec-
tively, in this order. These values can be stored in an array
before proceeding to find 5-PPs modulo a number which
contains 7 as a prime factor. Thus, if q5 6= 0 (mod 7),
the conditions 1) or 2) and 3) or 4) from the theorem result.

If q5 = 0 (mod 7), we can apply the test coefficient for
4-PPs from [8], resulting the conditions 5) or 6) or 7) from
Theorem 7.

2) p = 7 AND n > 1
Theorem 8: π (x) = q1x + q2x2 + q3x3 + q4x4 +

q5x5 (mod 7n), with n > 1, is PP iff:
1) 5 q3 q5 6= 2(q4)2 (mod 7), 4 q2(q5)2 = 2(q4)3 +

αq4(q5)2 (mod 7) and 6 q1(q5)3 = (q4)4 + α(q4)2

(q5)2+ 4α2(q5)4 (mod 7), where α = (q3 q5+ (q4)2) ·(
(q5)2

)−1 (mod 7),
when q5 6= 0 (mod 7),
or iff:

2) q4 = q3 = q2 = 0 (mod 7) and q1 6= 0 (mod 7), when
q5 = 0 (mod 7).
Proof: If q5 6= 0 (mod 7), according to Theorem 2

and Lemma 2, π (x) is PP iff the normalized PP leading to
π (x) (mod 7) is π̄ (x) = x5 + αx3 + 5−1α2 x (mod 7),
with α ∈ Z∗7. Because α 6= 0 (mod 7), we need 5 q3 q5 6=
2(q4)2 (mod 7). Then, the conditions on the coefficients are
those from 3) in Theorem 7.

If q5 = 0 (mod 7), we can apply the conditions on the
coefficients for 4-PPs (mod 7n) with n > 1 from [8]. These
are those in 2) from Theorem 8.

E. p = 13
1) p = 13 AND n = 1
Theorem 9: π (x) = q1x + q2x2 + q3x3 + q4x4 +

q5x5 (mod 13) is PP iff:
1) 12 q2(q5)2 = 2(q4)3 (mod 13) and 8 q1(q5)3 =

(q4)4 (mod 13),
when q5 6= 0 (mod 13) and 5 q3 q5 = 2(q4)2 (mod 13),
or iff:

2) 12 q2(q5)2 = 2(q4)3 + 2αq4(q5)2 (mod 13)
and 8 q1(q5)3 = (q4)4 + 2α(q4)2(q5)2 +
12α2(q5)4 (mod 13), where α = (q3 q5 + 10(q4)2) ·(
(q5)2

)−1 (mod 13),
when q5 6= 0 (mod 13) and 5 q3 q5 6= 2(q4)2 (mod 13),
or iff:

3) 12 q2(q5)2 = 2(q4)3 + 2αq4(q5)2 (mod 13)
and 8 q1(q5)3 = (q4)4 + 2α(q4)2(q5)2 +
11α2(q5)4 (mod 13), where α = (q3 q5 + 10(q4)2) ·(
(q5)2

)−1 (mod 13),
when α ∈ {2, 5, 6, 7, 8, 11}, q5 6= 0 (mod 13) and
5 q3 q5 6= 2(q4)2 (mod 13),
or iff:

4) q4 = q3 = q2 = 0 (mod 13) and q1 6= 0 (mod 13),
when q5 = 0 (mod 13).
Proof: If q5 6= 0 (mod 13), considering Proposition 1,

Lemma 1 and the normalized PPs modulo 13 from Table 2,
the next conditions result:

1) 5 q3 q5 = 2(q4)2 + 5α(q5)2 (mod 13), 12 q2(q5)2 =
2(q4)3 + 2αq4(q5)2 (mod 13) and 8 q1(q5)3 =
(q4)4 + 2α(q4)2(q5)2 + 12α2(q5)4 (mod 13), for only
one α ∈ Z13,
or

2) 5 q3 q5 = 2(q4)2 + 5α(q5)2 (mod 13), 12 q2(q5)2 =
2(q4)3 + 2αq4(q5)2 (mod 13) and 8 q1(q5)3 =
(q4)4 + 2α(q4)2(q5)2 + 11α2(q5)4 (mod 13), for only
one α ∈ {2, 5, 6, 7, 8, 11}.

Because the conditions above need up to 13 and six sets of
checking conditions, respectively, it is more efficient to com-
pute the value of α from the first congruence equation in these
sets of conditions. This congurence equation is equivalent to:

α(q5)2 = q3q5 + 10(q4)2 (mod 13) (24)

Because q5 6= 0 (mod 13), we have that (q5)2 6= 0
(mod 13). Then, the congruence equation (24) has only
one solution [16], which is α = 0 (mod 13),
if 5 q3 q5 = 2(q4)2 (mod 13), and α 6= 0 (mod 13),
if 5 q3 q5 6= 2(q4)2 (mod 13). The 12 values of the
inverses modulo 13 for {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
are {1, 7, 9, 10, 8, 11, 2, 5, 3, 4, 6, 12}, in this order, and they
can be stored in an array before to proceed for finding 5-PPs
modulo a number which contains 13 as prime factor. Thus,
if q5 6= 0 (mod 13), the conditions 1) or 2) or 3) in the
theorem result.

If q5 = 0 (mod 13), we can apply the test for 4-PPs
from [8]. This is given by conditions 4)
from Theorem 9.
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2) p = 13 AND n > 1
Theorem 10: π (x) = q1x + q2x2 + q3x3 + q4x4 +

q5x5 (mod 13n), with n > 1, is PP iff:
1) 5 q3 q5 6= 2(q4)2 (mod 13), 12 q2(q5)2 = 2(q4)3 +

2αq4(q5)2 (mod 13) and 8 q1(q5)3 = (q4)4 +
2α(q4)2(q5)2 + 12α2(q5)4 (mod 13), where α =
(q3 q5 + 10(q4)2) ·

(
(q5)2

)−1 (mod 13),
when q5 6= 0 (mod 13),
or iff:

2) q4 = q3 = q2 = 0 (mod 13) and q1 6= 0 (mod 13),
when q5 = 0 (mod 13).
Proof: If q5 6= 0 (mod 13), according to Theorem 2

and Lemma 2, π (x) is PP iff the normalized PP leading to
π (x) (mod 13) is π̄ (x) = x5 + αx3 + 5−1α2 x (mod 13),
with α ∈ Z∗13. Because α 6= 0 (mod 13), we need 5 q3 q5 6=
2(q4)2 (mod 13). Then, the conditions on the coefficients are
those from 2) in Theorem 9.

If q5 = 0 (mod 13), we can apply the conditions on the
coefficients for 4-PPs (mod 13n) with n > 1 from [8]. These
are those in 2) from Theorem 10.

F. p = 1 (mod 5)
1) p = 1 (mod 5) AND n = 1
Theorem 11: π (x) = q1x + q2x2 + q3x3 + q4x4 +

q5x5 (mod p), with p = 1 (mod 5), is PP iff:
1) q5 = q4 = q2 = 0 (mod p) and q1 6= 0 (mod p),

when 3 - (p− 1) and q3 = 0 (mod p),
or iff:

2) q5 = q4 = 0 (mod p) and (q2)2 = 3 q1 q3 (mod p),
when 3 - (p− 1) and q3 6= 0 (mod p),
or iff:

3) q5 = q4 = q3 = q2 = 0 (mod p) and q1 6= 0 (mod p),
when 3 | (p− 1).
Proof: Because in this case there are no normalized PPs

of fifth or fourth degree, we can apply the coefficient test for
CPPs from [6], [7].

2) p = 1 (mod 5) AND n > 1
Theorem 12: π (x) = q1x + q2x2 + q3x3 + q4x4 +

q5x5 (mod pn), with p = 1 (mod 5) and n > 1, is PP iff
q5 = q4 = q3 = q2 = 0 (mod p) and q1 6= 0 (mod p).

Proof: Because in this case there are no normalized PPs
of fifth or fourth degree, we can apply the coefficient test for
CPPs from [6].

G. p = 2, 3 (mod 5) WITH p > 13
1) p = 2,3 (mod 5) WITH p > 13 AND n = 1
Theorem 13: π (x) = q1x + q2x2 + q3x3 + q4x4 +

q5x5 (mod p), with p = 2, 3 (mod 5) and p > 13, is PP iff:
1) 25 q2(q5)2 = 2(q4)3 (mod p) and 125 q1(q5)3 =

(q4)4 (mod p),
when q5 6= 0 (mod p) and 5 q3 q5 = 2(q4)2 (mod p),
or iff:

2) 25 q2(q5)2 = 2(q4)3 + 15αq4(q5)2 (mod p) and 125
q1(q5)3 = (q4)4+15α(q4)2(q5)2+25α2(q5)4 (mod p),

whereα = (5 q3 q5+(p−2)·(q4)2)·
(
5(q5)2

)−1 (mod p),
when q5 6= 0 (mod p) and 5 q3 q5 6= 2(q4)2 (mod p),
or iff:

3) q4 = q2 = 0 (mod p) and q1 6= 0 (mod p),
when 3 - (p− 1) and q5 = q3 = 0 (mod p),
or iff:

4) q4 = 0 (mod p) and (q2)2 = 3 q1 q3 (mod p),
when 3 - (p−1), q5 = 0 (mod p) and q3 6= 0 (mod p),
or iff:

5) q4 = q3 = q2 = 0 (mod p) and q1 6= 0 (mod p),
when 3 | (p− 1) and q5 = 0 (mod p).
Proof: If q5 6= 0 (mod p), by considering Proposition 1,

Lemma 1 and the normalized PPs modulo p from Table 2,
when p = 2, 3 (mod 5) and p > 13, that is π̄ (x) =
x5 (mod p) and π̄ (x) = x5 + αx3 + 5−1α2 x (mod p), with
α ∈ Z∗p, the next conditions result:

5 q3 q5 = 2(q4)2 + 5α(q5)2 (mod p), 25 q2(q5)2 =
2(q4)3 + 15αq4(q5)2 (mod p) and
125 q1(q5)3 = (q4)4+15α(q4)2(q5)2+25α2(q5)4 (mod p),

for only one α ∈ Zp.
Because the conditions above need up to p sets of

checking conditions, it is more efficient to compute the
value of α from the first congruence equation from this
set of conditions. This congruence equation is equivalent
to:

α · 5(q5)2 = 5q3q5 + (p− 2) · (q4)2 (mod p) (25)

Because q5 6= 0 (mod p), we have that (q5)2 6=
0 (mod p). Then, the congruence equation (25) has only
one solution [16], which is α = 0 (mod p) if 5 q3 q5 =
2(q4)2 (mod p), and α 6= 0 (mod p) if 5 q3 q5 6=
2(q4)2 (mod p). Thus, if q5 6= 0 (mod p), the conditions
1) or 2) in the theorem result.

If q5 = 0 (mod p), we can apply the test for 4-PPs
from [8]. This is given by conditions 3) or 4) or 5) from
Theorem 13.

2) p = 2,3 (mod 5) WITH p > 13 AND n > 1
Theorem 14: π (x) = q1x + q2x2 + q3x3 + q4x4 +

q5x5 (mod pn), with p = 2, 3 (mod 5), p > 13 and n > 1,
is PP iff:

1) 5 q3 q5 6= 2(q4)2 (mod p), 25 q2(q5)2 = 2(q4)3 +
15αq4(q5)2 (mod p) and 125 q1(q5)3 = (q4)4 +
15α(q4)2(q5)2 + 25α2(q5)4 (mod p), where α =
(5 q3 q5 + (p− 2) · (q4)2) ·

(
5(q5)2

)−1 (mod p), when
q5 6= 0 (mod p),
or iff:

2) q4 = q3 = q2 = 0 (mod p) and q1 6= 0 (mod p), when
q5 = 0 (mod p).
Proof: If q5 6= 0 (mod p), according to Theorem 2

and Lemma 2, π (x) is PP iff the normalized PP leading to
π (x) (mod p) is π̄ (x) = x5 + αx3 + 5−1α2 x (mod p),
with α ∈ Z∗p. Because α 6= 0 (mod p), we need 5 q3 q5 6=
2(q4)2 (mod p). Then, the conditions for the coefficients are
those in 2) from Theorem 13.
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If q5 = 0 (mod p), we can apply the conditions on
coefficients for 4-PPs (mod pn) with n > 1 from [8]. These
are those in 2) from Theorem 14.

H. p = 4 (mod 5)
1) p = 4 (mod 5) and n = 1
Theorem 15: π (x) = q1x + q2x2 + q3x3 + q4x4 +

q5x5 (mod p), with p = 4 (mod 5), is PP iff:
1) 5 q3 q5 = 2(q4)2 (mod p), 25 q2(q5)2 =

2(q4)3 (mod p) and 125 q1(q5)3 = (q4)4 (mod p),
when q5 6= 0 (mod p),
or iff:

2) q4 = q2 = 0 (mod p) and q1 6= 0 (mod p),
when 3 - (p− 1) and q5 = q3 = 0 (mod p),
or iff:

3) q4 = 0 (mod p) and (q2)2 = 3 q1 q3 (mod p),
when 3 - (p−1), q5 = 0 (mod p) and q3 6= 0 (mod p),
or iff:

4) q4 = q3 = q2 = 0 (mod p) and q1 6= 0 (mod p),
when 3 | (p− 1) and q5 = 0 (mod p).
Proof: If q5 6= 0 (mod p), the conditions in the

theorem result by considering Proposition 1, Lemma 1 and
the normalized PP modulo p, when p = 4 (mod 5), from
Table 2, that is π̄ (x) = x5 (mod p).

If q5 = 0 (mod p), we can apply the test for 4-PPs
from [8].

2) p = 4 (mod 5) and n > 1
Theorem 16: π (x) = q1x + q2x2 + q3x3 + q4x4 +

q5x5 (mod pn), with p = 4 (mod 5) and n > 1, is PP iff
q5 = q4 = q3 = q2 = 0 (mod p) and q1 6= 0 (mod p).

Proof: Because in this case the only normalized quintic
PP is π̄ (x) = x5 (mod p) and the equation π̄ ′(x) = 0 (mod p)
always has solutions, we have that q5 = 0 (mod p) and thus,
we can apply the coefficient test for 4-PPs from [8].

IV. COMPLEXITY ANALYSIS
The algorithm in the beginning of Section III is based on
Theorems 1 and 2. Using only these two theorems, for every
prime number p dividing N , we need to check if π (x) is
PP modulo p and, if nN ,p > 1, we need to check if
π ′(x) 6= 0 (mod p) for every x ∈ Zp. Using the brute-force
method, named the direct test for only prime number, for
a 5-PP we can compute π (x) (mod p) for a given x in an
efficient way, as follows:

π (x) =
(
q1 +

(
q2 +

(
q3 + (q4 + q5 · x) ·

x
)
· x
)
· x
)
· x (mod p) (26)

Thus, to compute a value ofπ (x) (mod p), we need to perform
five multiplications, four additions and a modulo p operation.
If π (x) (mod p) is a 5-PP and if we set π (0) = 0 (mod p)
and π (1) = (q1+ q2+ q3+ q4+ q5) (mod p), for all x ∈ Zp
we need to perform 5 · (p − 2) = 5 · p − 10 multiplications,
4 ·(p−2)+4 = 4 ·p−4 additions, p−1 modulo p operations,

1+ 2+ 3+ · · · + p− 1 = p · (p− 1)/2 comparisons, and to
store p values. If π (x) (mod p) is not a 5-PP, the number of
operations could be lower.

To compute the value π ′(x) (mod p), similarly to (26),
we have that:

π ′(x) =
(
q1 +

(
2 · q2 +

(
3 · q3

+ (4 · q4 + 5 · q5 · x) · x
)
· x
)
· x
)

(mod p) (27)

Thus, to compute a value of π ′(x) (mod p), we need to
perform eight multiplications, four additions and a modulo p
operation. If we store the values 2 · q2, 3 · q3, 4 · q4 and 5 · q5,
we only need to perform four multiplications, four additions
and a modulo p operation. Thus, if π (x) (mod pnN ,p ) with
nN ,p > 1 is a 5-PP and if we set π ′(0) = q1 (mod p) and
π ′(1) = (q1 + 2 · q2 + 3 · q3 + 4 · q4 + 5 · q5) (mod p),
in order to check that π ′(x) 6= 0 (mod p), for all x ∈ Zp we
need to perform 4 · (p − 2) + 4 = 4 · p − 4 multiplications,
4 · (p−2)+4 = 4 ·p−4 additions, pmodulo p operations and
p comparisons, and to store 4 values. If π (x) (mod pnN ,p ) is
not a 5-PP, the number of operations could be lower. Overall,
if π (x) (mod pnN ,p ) with nN ,p > 1 is a 5-PP, we require
9 ·p−14 multiplications, 8 ·p−8 additions, 2 ·p−1 modulo
p operations, p+p · (p−1)/2 comparisons, and to store p+4
values.

Looking at the conditions in Table 1, we see that the
most complex operations are for p = 7, p = 13 and
p = 2, 3 (mod 5), with p > 13. These cases require the
computation of the inversesmodulo p for computing the value
of α. As it was mentioned in the proof of Theorem 7, these
inverses modulo p can be computed off-line and then stored
in an array, before proceeding to find the 5-PPs for a specific
application.

The analysis below is done for the case when π (x) (mod 7)
is a 5-PP. Similar analyzes can be carried out for the cases
when π (x) (mod 13) or π (x) (mod p), with p = 2, 3 (mod 5)
and p > 13, is a 5-PP.

Considering the above analysis done for checking 5-PPs
using the direct test, we need to perform 25 multiplications,
24 additions, 6 modulo 7 operations, 21 comparisons, and to
store 7 values, when π (x) (mod 7) is a 5-PP.
In the following, we determine and explain the minimum

and maximum number of operations and the storage require-
ments for checking 5-PPs (mod 7) using the test fromTable 1.

For p = 7, to test if q5 6= 0 (mod 7), we require a
modulo 7 operation and a comparison. In our implementa-
tion, we firstly compute and store the following eight values
q4_to_2 = q4 ·q4, q5_to_2 = q5 ·q5, q4_to_3 = q4_to_2·q4,
q5_to_3 = q5_to_2 · q5, q4_to_4 = q4_to_2 · q4_to_2,
right_term1 = (q3 · q5 + q4_to_2) (mod 7), left_term2 =
(4 · q2 · q5_to_2) (mod 7) and left_term3 = (6 · q1 ·
q5_to_3) (mod 7). To compute these values, we require
10 multiplications, one addition, and three modulo 7 oper-
ations. The condition right_term1 = 0 is equivalent to
5 q3 q5 = 2(q4)2 (mod 7).
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TABLE 3. The number of operations to check whether a quintic polynomial is a 5-PP modulo p
nN,p . The notation (a÷ b), with a and b non-negative

integers (a < b), means that the number of operations can take values from a up to b.
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TABLE 3. Continued. The number of operations to check whether a quintic polynomial is a 5-PP modulo p
nN,p . The notation (a÷ b), with a and b

non-negative integers (a < b), means that the number of operations can take values from a up to b.
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TABLE 3. Continued. The number of operations to check whether a quintic polynomial is a 5-PP modulo p
nN,p . The notation (a÷ b), with a and b

non-negative integers (a < b), means that the number of operations can take values from a up to b.

TABLE 4. Comparison of times needed to find all the true different 5-PPs modulo different prime numbers using the test from Table 1 and the direct test.

If right_term1 = 0 (one comparison), we need to check
conditions (1) and, possibly, (2). When π (x) (mod 7) is
a 5-PP, under conditions (1), the computation requirements
are: one multiplication for 2·q4_to_3, 2 modulo 7 operations,
and 2 comparisons (these are to check if left_term2 = 0 and
left_term3 = 0). If conditions (1) and (2) with sign ‘‘+’’
are not met, but conditions (2) with sign ‘‘−’’ are met,
the computation requirements for the right terms of these sets
of conditions and for comparisons with the corresponding left
terms are: 1+3+4 = 8 multiplications, 2+2 = 4 additions,
2 + 2 + 2 = 6 modulo 7 operations, and 2 + 2 + 2 = 6

comparisons. Overall, if q5 6= 0 (mod 7) and 5 q3 q5 =
2(q4)2 (mod 7), when π (x) (mod 7) is a 5-PP, we need to
perform at least 11 multiplications, one addition, 6 modulo
7 operations, 4 comparisons, and to store 8 values and at
most 18 multiplications, 5 additions, 10 modulo 7 operations,
8 comparisons, and to store 8 values.

If right_term1 > 0 (one comparison), we need to
compute and to store the value of α =

(
right_term1 ·(

q5_to_2 (mod 7)
)−1) (mod 7) and to check conditions (3)

and, possibly, (4). In our implementation, we firstly compute
and store the values right_term2 = 2 · q4_to_3 + α · q4 ·
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TABLE 5. Comparison of times needed to find 100000 true different 5-PPs modulo different squared prime numbers using the test from Table 1 and using
Theorem 2 togheter with the direct test (The start value of coefficient q5 is set to p and if p (mod 5) = 2 or p (mod 5) = 3 the value of q5 is set to p+ 1,
when 50000 true different 5-PPs are found).

q5_to_2 and right_term3 = q4_to_4 + (q4_to_2 + 4 · α ·
q5_to_2) · α · q5_to_2. To compute these two values and
that of α, we require 8 multiplications, 3 additions, 2 mod-
ulo 7 operations and to store the six values of the inverses
modulo 7. To check conditions (3), we require 2 modulo
7 operations and 2 comparisons. When conditions (3) are
not met, to check conditions (4), we firstly need to check
if α ∈ {3, 5, 6}, that is, one up to three comparisons, and
then 2 or 5 multiplications, 2 or 4 additions, 2 or 4 modulo
7 operations and 2 or 4 comparisons. Thus, if q5 6= 0 (mod 7)
and 5 q3 q5 6= 2(q4)2 (mod 7), when π (x) (mod 7) is a 5-PP,
we need in total at least 18 multiplications, 4 additions,
8 modulo 7 operations, 4 comparisons and to store 17 values,

and at most 23multiplications, 8 additions, 12modulo 7 oper-
ations, 11 comparisons and to store 17 values.

If q5 = 0 (mod 7), we firstly need to check whether
q4 = 0 (mod 7). If q4 6= 0 (mod 7), we firstly check
the condition 3(q3)2 = q2 q4 (mod 7). This check requires
3 multiplications, 2 modulo 7 operations, and one compar-
ison. If the equalilty holds, we store the next three values
left_term = (2 · q1 · q4 · q4) (mod 7), q3_to_3 = q3 · q3 · q3
and q4_to_3 = q4 · q4 · q4, which require 7 multiplications
and one modulo 7 operation. Then, we check the second
condition from (5) and (6). Overall, we need to perform
at least 10 multiplications, one addition, 6 modulo 7 oper-
ations, 4 comparisons, and to store 3 values and at most
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11multiplications, 2 additions, 7modulo 7 operations, 5 com-
parisons and to store 3 values. If q4 = 0 (mod 7), in total we
need to perform 5 modulo 7 operations, and 5 comparisons.

Finally, we mention that when π (x) (mod 7) is not a 5-PP,
if q5 6= 0 (mod 7) and if 5 q3 q5 = 2(q4)2 (mod 7), the least
number of operations occurs when the first conditions from
all three sets of conditions (1) and (2) are not met. This
means 14multiplications, 3 additions, 7 modulo 7 operations,
5 comparisons and storing of 8 values. If q5 6= 0 (mod 7)
and if 5 q3 q5 6= 2(q4)2 (mod 7), the least number of
operations is performed when the first condition from the set
(3) is not met and when α /∈ {3, 5, 6}. This means 18 multi-
plications, 4 additions, 7 modulo 7 operations, 6 comparisons
and storing of 17 values. If q5 = 0 (mod 7) and q4 6=
0 (mod 7), we require at least 3 multiplications, 4 modulo
7 operations and 3 comparisons, and if q5 = 0 (mod 7) and
q4 = 0 (mod 7), we require at least 3 modulo 7 operations
and 3 comparisons. The maximum number of operations for
checking that π (x) (mod 7) is not a 5-PP is the same as when
it is a 5-PP.

The analysis for π (x) (mod 7nN ,7 ), with nN ,7 > 1, follows
taking into account that the conditions are those for nN ,7 = 1
in the cases (3) or (7).

Table 3 summarizes the above results for p = 7 and for
other prime numbers. From this table, we see that in the worst
cases for all prime numbers, the number of multiplications,
additions and comparisons is much smaller than using the
direct test. The number of modulo operations is also smaller
than using the direct test, except for p = 7. The number of
stored values is not so important because, in general, to find
a good 5-PP for a possible application, we perform these
checking operations off-line, on a computer with sufficient
memory resources. The time needed for checking operations
is an important issue. The greater the prime number p is,
the smaller the number of operations with the test in Table 1 is
compared to using the direct test for the power of one or using
Theorem 2 togheter with the direct test for powers greater
than one. Thus, for large prime numbers in the decomposi-
tion of N , the test in Table 1 is much efficient than using
Theorem 1 togheter with the direct test or using
Theorems 1 and 2 togheter with the direct test.

To justify the efficiency of the coefficient test from Table 1
compared to the direct test or using Theorem 2 togheter with
the direct test (except for p = 7), in Table 4, we give the
times for finding all the true different 5-PPs modulo differ-
ent prime numbers. Table 5 presents the times for finding
100000 true different 5-PPs modulo different squared prime
numbers. This limit for the number of true different 5-PPs
is chosen to reduce the testing time because the number of
true different 5-PPs is huge in these cases. To further reduce
the testing time, the start value of the coefficient q5 is set
to p, because for p (mod 5) = 1 or p (mod 5) = 4 the
condition for the coefficient q5 of a 5-PP is q5 = 0 (mod 5).
Because for p (mod 5) = 2 or p (mod 5) = 3 there are
also true different 5-PPs for q5 6= 0 (mod 5) the value
of q5 is set to p + 1, when 50000 true different 5-PPs are

found. The times are given for four different prime numbers p
or p2 for each p (mod 5) = 1, p (mod 5) = 4, p (mod 5) = 2
or p (mod 5) = 3 and, finally, for p = 7 and p = 13, or for
the first three powers of 5, 7 or 13, greater than one. The
time for the prime number 5 is not given because the testing
time is very small for both methods. The four types of prime
numbers and the prime numbers 5, 7 and 13, and their powers,
are separated by double lines in Tables 4 and 5. From the
ratio of times obtained through the two methods in these
tables, we see that the coefficient test from Table 1 is the most
efficient one for the prime numbers p with p (mod 5) = 1,
then for p (mod 5) = 4, and then for p (mod 5) = 2
or p (mod 5) = 3. For p = 7, we see that the direct test is
more efficient compared to that given in Table 1. Generally,
the same remark applies for interleaver lengths containing 7
as a prime factor. Thus, in these cases, for p = 7 we can use
the direct test instead of the test in Table 1. For p = 13 and
for powers of the prime numbers 5, 7 and 13, the test from
Table 1 is slightly better in terms of required time compared
to the direct test or using Theorem 2 togheter with the direct
test.

V. CONCLUSION
In this paper, we derived necessary and sufficient conditions
on the coefficients of a quintic polynomial to verify if it is
a PP over integer rings. As expected, these conditions are
more complicated compared to those for lower degrees PPs.
For higher degrees, we expect that conditions become even
more complicated, but we note that in order to obtain we
require normalized PPs of the involved degree. Nevertheless,
the test we have proposed is more efficient than brute-force
test for finding quintic PPs. We checked that it is also more
efficient than checking 5-PPs using Theorem 1 togheter with
the direct test, except for the prime number p = 7, or using
Theorems 1 and 2 togheter with the direct test. The proposed
test is useful for finding 5-PPs for different applications, such
as cryptography, sequences’ generation or interleavers for
turbo codes.

Finally, we give some merits of this paper:
• We determined the necessary and sufficient conditions
on the coefficients of a quintic polynomial, for any prime
number or a power of it from the decomposition of N ,
so that it is 5-PP modulo N . These conditions are usefull
to find 5-PPs for a specific application and our paper is
targeted to this necessity.

• For a set of coefficients of a polynomial of degree no
more than five, we can directly decide whether they
determine a PP.

• Using the proposed method, the coefficients can be
obtained in a desired order, which is tractable in com-
puter processing.
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