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ABSTRACT In this paper, the problem of stability analysis for linear continuous-time systems with constant
discrete and distributed delays is investigated. First, an improved reciprocally convex lemma is presented,
which is a generalization of the existing reciprocally convex inequalities and can be directly applied in the
case that of the delay interval is divided into N ≥ 2 subintervals. Second, combining this with the auxiliary
functions-based integral inequalities and the delay partition approach, a novel stability criterion of delay
systems is given in terms of linear matrix inequalities. Finally, three numerical examples are given and their
results are compared with the existing results. The comparison shows that the stability criterion proposed in
this paper can provide larger upper bounds of delay than the other ones.

INDEX TERMS Time-delay systems, reciprocally convex inequality, delay partition approach,
Lyapunov–Krasovskii functional.

I. INTRODUCTION
Due to time delays being frequently encountered in a variety
of dynamic systems and often resulting in poor performance
and/or instability, many efforts have been made to establish
the stability criteria of time-delay systems, such as [1]–[25].
Generally, the stability criteria of time-delay systems are clas-
sified as delay-independent conditions or delay-dependent
ones. Since the delay-dependent stability conditions contain
the information of time-delay, the delay-dependent condi-
tions are less conservative than delay-independent ones.

As is well known, constructing the delay-dependent
Lyapunov–Krasovskii functionals (LKFs) is a foundation for
stability analysis of delay systems. Additionally, utilizing
the appropriate enlargement technique to estimate the upper
bound of the derivative of LKF is a key step in reducing
the conservativeness of stability criteria. To date, a series of
effective approaches to estimating the derivative of LKF have
been proposed, such as usingmatrix inequalities [3], [7], [10],
[15], free-weighting matrices [5], the reciprocally convex
approach [9], [11], [20], [22]–[27] and the delay partition

approach ([17], [28]–[30]). Actually, a combination of several
approaches is used in most stability analysis results.

Note that the integral quadratic terms are usually produced
by computing the derivative of LKF. To address these integral
quadratic terms, the reciprocally convex approach is usually
employed by combining it with integral inequalities and the
delay partition approach. First, by applying the delay partition
approach, the delay interval is divided into two subintervals.
Then, the integral inequalities (Jensen’s inequality, Wirtinger
inequality, or Bessel-Legendre inequality) are used to esti-
mate these two integral quadratic terms. Finally, based on
the reciprocally convex combination method [9], [11], [20],
[22]–[27], the less conservative upper bound of these integral
quadratic terms can be obtained. This is the most popular
approach to estimating these integral quadratic terms, and
then less conservative stability criteria are derived. However,
it is worth stressing that these reciprocally convex inequal-
ities (RCIs) [9], [11], [20], [22]–[27] are only in the case
in which the delay interval is divided into only two subin-
tervals. Applying the delay partition approach to address the
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stability analysis of delay systems, the delay interval need to
be divided into N subintervals (N > 2), the existing RCIs
cannot be applied directly. Therefore, it is necessary and
more challenging to extend the classical reciprocally convex
method to address the case of N > 2 subintervals in the delay
interval, which is the main motivation of this paper.

In this paper, we will propose a novel stability criterion for
time-delay systems by using the general reciprocally convex
combination approach and the delay partition technique, and
we will also seek to improve upon the existing works. First,
an improved RCI is derived (see Lemma 1 below), which
is a generalization of the existing reciprocally convex com-
bination inequalities. Second, by combining the improved
RCI with the auxiliary functions-based integral inequalities
(see Lemma 2 below), the delay partition approach and the
improved RCI, a new stability criterion for time-delay sys-
tems is proposed, which is less conservative than the existing
results. Finally, three numerical examples are given to demon-
strate that the proposed stability criterion is less conservative
than the existing ones.

Compared with the existing results, the main contributions
of this work are as follows: (1) The proposed improved
RCI generalizes the existing reciprocally convex combination
methods, that is, when the parameters of RCIs are selected as
several special values, the existing results are special cases of
Lemma 1. (2) To overcome the main obstacle, the improved
RCIs is presented and applied to address the case ofmore than
two subintervals in the delay interval, which is useful when
utilizing the delay partition approach.

The organization of the rest of this article is as follows:
An improved reciprocally convex combination lemma is
introduced in Section II. In Section III, the novel stability
analysis result is presented and elaborated. Three numerical
examples are provided in Section IV; and finally, we conclude
this paper in Section V.
Notation: Throughout this paper, the set of real numbers

will be denoted by R. Let Rn×m represent the set of all n×m
matrices over R, and denote Rn

= Rn×1. If A and B are
symmetric matrices, by A > B and A ≥ B we means that
A − B is real symmetric positive and semi-positive definite,
respectively. AT denotes the transpose of matrix A. For a
square matrix, sym(X ) means the sum of X and its transpose
matrix XT. ∗ in a matrix represents the elements below the
main diagonal of a symmetric matrix. 〈l〉 = {1, 2, . . . , l} for
any positive integer l.

II. PRELIMINARIES
First, we will provide an improved result on the basis of the
reciprocally convex inequality, which will be helpful in the
stability analysis.
Lemma 1: For given scalars αi ∈ R satisfying αi > 0 and∑m
i=1 αi = 1, symmetric matrices Ri > 0 and Mi > 0, and

any matricesWi, i ∈ 〈m〉, if the following matrix inequalities
are satisfied[

Ri − αiMi Wij(αi, αj)
∗ Rj − αjMj

]
≥ 0, 1 ≤ i < j ≤ m, (1)

then the following inequality holds:

8m := diag(
1
α1
R1,

1
α2
R2, . . . ,

1
αm

Rm) ≥ 4m, (2)

where

Wij(αi, αj) = αiWi + αjWj,

and4m is defined in (3), as shown at the top of the next page.
Proof: According to inequalities (1), it is not difficult to

obtain

4ij := ε
T
i (Ri − αiMi)εi + εTi Wij(αi, αj)εj
+ εTj W

T
ij (αi, αj)εi + ε

T
j (Rj − αjMj)εj ≥ 0,

for all 1 ≤ i < j ≤ m, (4)

where Ri ∈ Rni×ni , i ∈ 〈m〉, and

εi = [0n1 · · · 0ni−1 Ini 0ni+1 · · · 0nm ].

Denote

�ij =

√
αj
√
αi
εi −

√
αi
√
αj
εj +

m∑
k=1
k 6=i,j

εk . (5)

From (4), it follows that

0ij :=
αj

αi
εTi (Ri − αiMi)εi − εTi Wij(αi, αj)εj

− εTj W
T
ij (αi, αj)εi +

αi

αj
εTj (Rj − αjMj)εj

= �T
ij4ij�ij

≥ 0, (6)

then, we have

0m :=

m−1∑
i=1

m∑
j=i+1

0ij ≥ 0. (7)

This, together with 8m −4m = 0m, completes the proof.
Remark 1: When the scalar m and matrices Ri, Mi and Wi

are selected as several special values and matrices, the exist-
ing results are special cases of Lemma 1: when m = 2,
Lemma 1 is equivalent to [27, Lemma 2] and [25, Lemma 2].
When M1 = R1 −W1M

−1
2 WT

1 and M2 = R2 −WT
2 M
−1
1 W2,

Lemma 1 directly reduces to [20, Th. 1] and [22, Lemma 4].
When R1 = R2 = R, W12 = S, M1 = R − SR−1ST and
M2 = R − STR−1S, Lemma 1 reduces to [24, Lemma 3].
Additionally, [27, Lemma 2], [25, Lemma 2], [20, Th. 1],
[22, Lemma 4] and [24, Lemma 3] are special cases of
Lemma 1. Moreover, if taking M1 = M2 = 0 and W1 =

W2 = 0, Lemma 1 reduces to the popular reciprocally convex
inequality given in [11, Lemma 2.2] and [23, Lemma 1] in
the case of n = 1. Furthermore, setting κ = α2

α1
, we can

obtain [13, Lemma 1]. When m = N , Ri = R, Mi = 0
and Wij(αi, αj) = Wij, Lemma 1 reduces to [31, Lemma 2].
In general, Lemma 1 generalizes and improves the existing
reciprocally convex inequalities.
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4m :=


R1 + (1− α1)M1 W12(α1, α2) W13(α1, α3) · · · W1m(α1, αm)

∗ R2 + (1− α2)M2 W23(α2, α3) · · · W2m(α2, αm)
∗ ∗ R3 + (1− α3)M3 · · · W3m(α3, αm)
· · · · · · · · · · · · · · ·

∗ ∗ ∗ · · · Rm + (1− αm)Mm

. (3)

Lemma 2: [15] For given a real symmetric positive
definite matrix R ∈ Rn×n, and an integral function
ω : [a, b]→ Rn, the following inequalities hold:

(b− a)
∫ b

a
wT(s)Rw(s)ds ≥ �̄TR̄�̄, (8)

(b− a)2

2

∫ b

a

∫ b

s
wT(u)Rw(u)duds ≥ �̂TR̂�̂, (9)

where

R̄ = diag(R, 3R, 5R), R̂ = diag(R, 8R),

�̄ = col(�̄1, �̄2, �̄3), �̂ = col(�̂1, �̂2),

�̄1 =

∫ b

a
w(s)ds, �̂1 =

∫ b

a

∫ b

s
w(u)duds,

�̄2 = �̄1 −
2

b− a
�̂1,

�̄3 = �̄1 −
6

b− a
�̂1 +

12
(b− a)2

∫ b

a

∫ b

s

∫ b

u
w(v)dvduds,

�̂2 = �̂1 −
3

b− a

∫ b

a

∫ b

s

∫ b

u
w(v)dvduds.

Remark 2: Compared with [7], [32], the integral inequali-
ties (8) and (9) in Lemma 2 give much tighter lower bounds
than the Jensen’s inequalities do.

III. STABILITY ANALYSIS OF TIME-DELAY SYSTEMS
Discrete and distributed time-delays exist widely in the fields
of chemistry, physics, biology, population dynamics, and so
on. They also exist in the systems of network control, com-
munication and other control systems [33]. Discrete and dis-
tributed time-delays are widely applied in biological systems
for describing biology dynamical behaviors.

In this paper, we consider the following linear system with
the discrete and distributed delays:{

ẋ(t) = Ax(t)+ Adx(t − h)+ AD
∫ t
t−h x(s)ds,

x(t) = φ(t), t ∈ [−h, 0],
(10)

where x : [−h,+∞) → Rn is the state vector;
φ : [−h, 0] → Rn is the continuous initial vector function;
A, Ad and AD represent real constant matrices of appropri-
ate dimensions; h is a time-invariant delay satisfying h ∈
[hmin, hmax]. For given a positive number t , we define the
function, xt : [−h, 0]→ Rn, by

xt (s) = x(t + s), s ∈ [−h, 0]. (11)

The problem of this paper is to establish a novel stabil-
ity criterion for a time-delay system (10) by applying the

improved reciprocally convex inequality given in Lemma 1
and the delay partition approach.
Remark 3: Note that combining the reciprocally convex

inequality with the integral inequalities and the delay par-
tition approach is a popular method for reducing the con-
servativeness of delay-dependent stability criteria. However,
the existing reciprocally convex methods in [9], [11], [20],
and [22]–[27] are only applicable to the case in which the
delay interval is divided into two subintervals. For the other
cases, the above RCIs cannot be directly applied. To over-
come this difficulty, the improved RCIs are proposed, which
can be applied when the number of subintervals in the delay
interval is more than two.

For convenience, the interval [0, h] is divided into r + 1
subintervals [hi−1, hi], i ∈ 〈r + 1〉, where h0 = 0 and
hr+1 = h. Also, let δi = hi − hi−1, i ∈ 〈r + 1〉. Before intro-
ducing the main results, the following notations are denoted:

η1(xt ) = col (xt (−h1), xt (−h2), . . . , xt (−hr+1)) ,

η2(xt ) = col
(∫ 0

−h1
xt (s)ds,

∫
−h1

−h2
xt (s)ds, . . . ,∫

−hr

−h
xt (s)ds

)
,

η3(xt ) = col
(∫ 0

−h1

∫ 0

s
xt (u)duds,∫

−h1

−h2

∫
−h1

s
xt (u)duds, . . . ,∫

−hr

−h

∫
−hr

s
xt (u)duds

)
,

η4(xt ) = col
(∫ 0

−h1

∫ 0

θ

∫ 0

s
xt (ν)dνdsdθ,∫

−h1

−h2

∫
−h1

θ

∫
−h1

s
xt (ν)dνdsdθ, . . . ,∫

−hr

−h

∫
−hr

θ

∫
−hr

s
xt (ν)dνdsdθ

)
,

η(xt ) = col
(
xt (0), η1(xt ), η2(xt ), η3(xt ), η4(xt )

)
,

ξ (xt ) = col
(
xt (0), η2(xt ), η3(xt ), η4(xt )

)
,

ζ (t) = col(x(t), ẋ(t)).

Here, it is obvious to see that xt (0) = e1η(xt ), ẋt (0) =
χη(xt ), ξ (xt ) = 0η(xt ) and ξ̇ (xt ) = 0dη(xt ). Based on the
previous preparation, a new stability criterion for the time-
delay system (10) is proposed as follows.
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Theorem 1: For given scalars 0 = h0 < h1 < h2 < · · · <
hr < hr+1 = h, the time-delay system (10) is asymptotically
stable if there exist real symmetric positive definite matrices
P ∈ R(3r+4)n×(3r+4)n, Q1 ∈ Rn×n, Q2 ∈ R2n×2n and
Q3 ∈ Rn×n, appropriately dimensioned symmetric matrices
Mi, Ni, i ∈ 〈r + 1〉 and Ti, i ∈ 〈r〉, and appropriately
dimensioned matrices Xij, Yij, i, j ∈ 〈r〉 and Zij, i, j ∈
〈r − 1〉, such that the following LMIs hold:[

Q̄2 − βiMi Xij
∗ Q̄2 − βjMj

]
≥ 0, 1≤ i< j≤r+1,

(12)[
β−1i Q̂3 − βiNi Yij

∗ β−1j Q̂3 − βjNj

]
≥ 0, 1≤ i< j≤r+1,

(13)[
γiQ̄3 − ξiTi Zij
∗ γjQ̄3 − ξjTj

]
≥ 0, 1 ≤ i < j ≤ r,

(14)

9 := 90 − DT
221D2 − DT

322D3 − DT
423D4 < 0, (15)

where

δi = hi − hi−1, βi =
δi

h
, i ∈ 〈r + 1〉,

γj =
h2(h− hj)

2hr
, ξj =

hj − hj−1
hr

, j ∈ 〈r〉,

Q̄j = diag(Qj, 3Qj, 5Qj), j = 2, 3,

Q̂3 = diag(Q3, 8Q3),

90 := sym(0TP0d )+ eT1Q1e1 − eTr+2Q1er+2

+ h2DT
1Q2D1 +

h4

4
χTQ3χ,

0 = col(e1, er+3, er+4, . . . , e4r+5),

0d = col
(
χ, e1 − e2, . . . , er+1 − er+2,

δ1e1 − er+3, δ2e2 − er+4,

. . . , δr+1er+1 − e2r+3,
δ21

2
e1 − e2r+4,

δ22

2
e2 − e2r+5,

. . . ,
δ2r+1

2
er+1 − e3r+4

)
,

χ = Ae1 + Ader+2 + AD
2r+3∑
j=r+3

ej,

D1 = col(e1, χ),

Dj = col(Dj1, Dj2, . . . , Dj r+1), j = 2, 3,

D2i = col(er+2+i, ei − ei+1, er+2+i −
2
δi
e2r+3+i,

−ei − ei+1 +
2
δi
er+2+i, er+2+i −

6
δi
e2r+3+i

+
12

δ2i
e3r+4+i, ei − ei+1 +

6
δi
er+2+i

−
12

δ2i
e2r+3+i),

D3i = col(δiei − er+2+i,

−
1
2
δiei − er+2+i +

3
δi
e2r+3+i), i ∈ 〈r + 1〉,

D4 = col(D41, D42, . . . , D4r ),

D4j = col(ej − ej+1, −ej − ej+1 +
2
δj
er+2+j,

ej − ej+1 +
6
δj
er+2+j −

12

δ2j
e2r+3+j), j ∈ 〈r〉,

ek = [0n×(k−1)n In 0n×(4r+5−k)n], k ∈ 〈4r + 5〉.
Proof: For the linear time-delay system (10), we define

the Lyapunov-Krasovskii functional candidate as follows:

V (xt ) = ξT(xt )Pξ (xt )+
∫ 0

−h
xTt (s)Q1xt (s)ds

+ h
∫ 0

−h

∫ 0

s
ζTt (u)Q2ζt (u)duds

+
h2

2

∫ 0

−h

∫ 0

θ

∫ 0

s
xTt (ν)Q3xt (ν)dνdsdθ, (16)

where P > 0 and Qi > 0(i = 1, 2, 3) are taken from
the feasible solutions to (12)-(15). Then, the time derivative
of V (xt ) along the trajectories of system (10) can be easily
obtained as follows:

V̇ (xt ) = ηT(xt )90η(xt )− h
∫ 0

−h
ζTt (s)Q2ζt (s)ds

−
h2

2

∫ 0

−h

∫ 0

s
ẋTt (u)Q3ẋt (u)duds. (17)

Since 0 = h0 < h1 < h2 < · · · < hr < hr+1 = h, it is not
difficult to obtain that

−h
∫ 0

−h
ζTt (s)Q2ζt (s)ds = −h

r+1∑
i=1

Ui (18)

and

−
h2

2

∫ 0

−h

∫ 0

s
ẋTt (u)Q3ẋt (u)duds

= −
h2

2

r+1∑
i=1

∫
−hi−1

−hi

∫ 0

s
ẋTt (u)Q3ẋt (u)duds

= −
h2

2

r+1∑
i=1

(
Vi + δi

∫ 0

−hi−1
ẋTt (u)Q3ẋt (u)du

)

= −
h2

2

r+1∑
i=1

Vi −
r∑
i=1

h2δi+1
2

i∑
j=1

Wj

= −
h2

2

r+1∑
i=1

Vi −
r∑
j=1

r∑
i=j

h2δi+1
2

Wj

= −
h2

2

r+1∑
i=1

Vi −
r∑
j=1

h2(h− hj)
2

Wj, (19)

40248 VOLUME 6, 2018



Y. Xue et al.: Improved Reciprocally Convex Inequality and Application to Stability Analysis of Time-Delay Systems

21 :=


Q̄2 + (1− β1)M1 X12 X13 · · · X1r+1

∗ Q̄2 + (1− β2)M2 X23 · · · X2r+1
∗ ∗ Q̄2 + (1− β3)M3 · · · X3r+1
· · · · · · · · · · · · · · ·

∗ ∗ ∗ · · · Q̄2 + (1− βr+1)Mr+1

 ≥ 0,

22 :=


β1Q̂3 + (1− β1)N1 Y12 Y13 · · · Y1r+1

∗ β2Q̂3 + (1− β2)N2 Y23 · · · Y2r+1
∗ ∗ β3Q̂3 + (1− β3)N3 · · · Y3r+1
· · · · · · · · · · · · · · ·

∗ ∗ ∗ · · · βr+1Q̂3 + (1− βr+1)Nr+1

 ≥ 0,

23 :=


γ1Q̄3 + (1− ξ1)T1 Z12 · · · Z1r

∗ γ2Q̄3 + (1− ξ2)T2 · · · Z2r
· · · · · · · · · · · ·

∗ ∗ · · · γr Q̄3 + (1− ξr )Tr

 ≥ 0,

where

Ui =
∫
−hi−1

−hi
ζT(xt (s))Q2ζ (xt (s))ds,

Vi =
∫
−hi−1

−hi

∫
−hi−1

s
ẋTt (u)Q3ẋt (u)duds,

Wj =

∫
−hj−1

−hj
ẋTt (u)Q3ẋt (u)du.

Also, by using the inequalities (8) and (9) given in Lemma 2,
we have

Ui ≥
1
δi
ηT(xt )DT

2iQ̄2D2iη(xt ),

Vi ≥
2

δ2i
ηT(xt )DT

3iQ̂3D3iη(xt ),

Wj ≥
1
δj
ηT(xt )DT

4jQ̄3D4jη(xt ).

Then we can obtain

h
r+1∑
i=1

Ui ≥ h
r+1∑
i=1

1
δi
ηT(xt )DT

2iQ̄2D2iη(xt )

= ηT(xt )DT
281D2η(xt ),

h2

2

r+1∑
i=1

Vi ≥
h2

2

r+1∑
i=1

2

δ2i
ηT(xt )DT

3iQ̂3D3iη(xt )

= ηT(xt )DT
382D3η(xt ),

r∑
j=1

h2(h− hj)
2

Wj

≥

r∑
j=1

h2(h− hj)
2δj

ηT(xt )DT
4jQ̄3D4jη(xt )

= ηT(xt )DT
483D4η(xt ),

where

81 = diag
(

1
β1
Q̄2,

1
β2
Q̄2, · · · ,

1
βr+1

Q̄2

)
,

82 = diag
(

1

β21

Q̂3,
1

β22

Q̂3, · · · ,
1

β2r+1

Q̂3

)
,

83 = diag
(
γ1

ξ1
Q̄3,

γ2

ξ2
Q̄3, · · · ,

γr

ξr
Q̄3

)
,

r+1∑
i=1

βi = 1,
r∑
j=1

ξj = 1.

This, together with Lemma 1 and (12)–(14), implies that

h
r+1∑
i=1

Ui ≥ ηT(xt )DT
221D2η(xt ), (20)

h2

2

r+1∑
i=1

Vi ≥ ηT(xt )DT
322D3η(xt ), (21)

r∑
j=1

h2(h− hj)
2

Wj ≥ η
T(xt )DT

423D4η(xt ). (22)

Moreover, the combination of (17)–(22) yields

V̇ (t, xt ) ≤ ηT(xt )9η(xt ).

Then, it follows from (15), that V̇ (t, xt ) < 0, and hence the
time-delay system (10) is asymptotically stable. The proof is
completed.
Remark 4: In this paper, the interval [0, h] is divided into

r+1 subintervals, [hi−1, hi], i ∈ 〈r + 1〉, whose lengths need
not be the same. Note that the new LKF (16) is constructed,
which depends on all these subintervals. Then, the improved
RCIs and delay partition approach are introduced to estimate
the derivative of the LKF. As a result, a less conservative
stability criterion in the form of LMIs is yielded, which will
be illustrated by three examples in the next Section.
Remark 5: It is worth stressing that the total number of

scalar decision variables is increasing with the number r ,
which should be helpful in reducing the conservatism of
the resulting stability criterion at the price of increasing the
computational burden. By specially choosing the matrices in
Theorem 1, for example diagonal matrices, the number of
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decision variables can be decreased and the similar results
can be obtained (see Example 1 and 2).

IV. NUMERICAL EXAMPLES
In this section, three numerical examples are provided to
demonstrate the effectiveness of theory results in this paper.
Example 1: Consider system (10) with:

A =
[
−2 0
0 −0.9

]
, Ad =

[
−1 0
−1 −1

]
, AD =

[
0 0
0 0

]
.

This example is a well-known example that is frequently
used to check the conservatism of delay-dependent stability
criteria. The maximum allowable delay bound of this sys-
tem is hmax = 6.1725, which is obtained from a so-called
eigenvalue analysis method. For r = 1 and r = 2, the upper
bounds of h are obtained by applying Theorem 1 and other
methods in [1], [4], [6], [10], [12], [16], [18], [21], and [34].
The comparison results are listed in Table 1.

TABLE 1. The upper bounds h.

The results of Example 1 state that, when the number
r increases, the allowable delay-varying range increases
(i.e., the conservativeness is reduced by increasing the num-
ber r). In the case of r = 1, the maximum allowable delay
bound is hmax = 6.1719. And in the case of r = 2, the maxi-
mum allowable delay bound is hmax = 6.1724. However, it is
noted that the reduction of conservativeness of the stability
criterion is at the price of increasing the number of scalar
decision variables. When r = 1, the number of decision
variables is 107.5n2 + 13.5n. And when r = 2, the number
of decision variables is 247n2+20n. The number of decision
variables in the case of r = 1 is more than the one in [21],
which has the same result with Theorem 1.

In order to decrease the number of decision variables,
the matrices in Theorem 1 can be specially selected. when
r = 1, choose Q1, Q2, Q3, M1, M2, N1, N2 and X

be diagonal matrices, the maximum allowable delay bound
is hmax = 6.1717 which is slightly smaller than 6.1719
in [21], and the number of decision variables is 28.5n2 +
29.5n, which is close to 29n2 + 3n in [21]; when r = 2,
letting Q3, Y12, Y13, Y23, N1, N2, N3, Z12, T1 and T2 be
diagonal matrices, the maximum allowable delay bound is
hmax = 6.1724, which is approach to the precise
value 6.1725.
It is clear that the results of Theorem 1 are very close to

the theoretical value and larger than the ones in the literature,
which shows the lower conservatism of Theorem 1.
Remark 6: Many researcher engage in gaining the more

less conservativeness of the stability criteria for time-delay
systems by using different approaches. By improving the
integral inequalities, the less conservativeness of the stability
criteria with smaller computational complexity is obtained
in [18]. Although the computational complexity of our
approach is bigger than the ones of [18], our method can
be applied to a more larger range. For example, when the
delay partition approach is employed to address the stability
analysis of delay systems, it is possible that the delay interval
need to be divided into N subintervals (N > 2). In this
case, the existing reciprocally convex inequalities cannot be
applied directly. In this paper, we aim to solve the prob-
lem and extend the classical reciprocally convex method to
address the case of N > 2.
Example 2: Consider system (10) with:

A =
[
0.2 0
0.2 0.1

]
, Ad =

[
0 0
0 0

]
, AD =

[
−1 0
−1 −1

]
.

TABLE 2. The lower and upper bounds h.

When the so-called eigenvalue analysis method is used to
analyze the stability of this system, we derive a maximum
allowable delay-varying interval of [0.2000, 2.04]. Table 2
shows the results obtained by Theorem 1 and the methods
in [2] and [14]. When r = 1, h1 = 1

4h, the maximum
allowable delay interval is [0.2001, 2.0409] and the number
of decision variables is 107.5n2 + 13.5n. The maximum
allowable delay interval is very close to the precise value.
As in Example 1, choose Q1, Q2, Q3, M1, M2, N1, N2 and
X be diagonal matrices, the maximum allowable delay inter-
val is [0.2001, 2.0409] and the number of decision variables
is 28.5n2 + 29.5n, which is much less than 107.5n2 + 13.5n.
From Table 2, it is clear that the results obtained by

Theorem 1 can provide larger upper bounds than the other
results. It shows that Theorem 1 has a less conservative
stability criterion than those in [2] and [14].
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Example 3: Consider system (10) with:

A =
[
0 1
−2 0.1

]
, Ad =

[
0 0
1 0

]
, AD =

[
0 0
0 0

]
.

TABLE 3. The lower and upper bounds h.

When h = 0, we know that this system is unstable,
since Re(eig(A + Ad )) = 0.05 > 0. Based on Jensen’s
inequality, classical Lyapunov-Krasovskii approaches cannot
provide the stable delay range [11]. The results obtained by
Theorem 1 and some existing results are listed in Table 3.
From Table 3, it shows that for both r = 1 and r = 2 the
results obtained by Theorem 1 are very close to the theoretical
value.

V. CONCLUSIONS
In this study, we have studied the stability problem for linear
systems with constant discrete and distributed time-delays.
First, a novel reciprocally convex lemma has been introduced,
which is a generalization of the existing reciprocally convex
approaches. Second, a new delay-dependent LKF has been
constructed to establish stability analysis, and the improved
RCIs and delay partition technique have been employed to
estimate the derivative of LKF. Third, a less-conservative
stability criterion has been derived. Finally, three numerical
examples have been provided to illustrate the advantage of
the proposed results. Our future work will focus on finding
the new methods or integral inequalities to reduce the conser-
vativeness of the stability criteria for time-delay systems.
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