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ABSTRACT This paper provides a method for optimal shielding design and path planning of a long-haul
optical fiber cable between two locations on the Earth’s surface. The method allows minimization of the
cable laying cost including material and labor and the risks of future cable break associated with laying
the cable through various areas, including earthquake-prone or other risky areas. Both costs per unit length
and risk of cable damage may be different at different locations. Expensive shielding may be important
in certain high-risk areas and unnecessary in lower risk areas. We use ground motion intensity to estimate
future cable repair rate (our measure of earthquake-related cable damage risk), and a triangulated manifold
to represent the surface of the Earth. With laying cost and expected total number of repairs of the cable as
the two objectives, we formulate the problem as a multiobjective variational optimization problem. This
formulation incorporating multiple design levels for cable shielding is converted into a single objective
variational optimization problem by assigning different weights to each objective. The solution path of the
later problem is obtained by using the Fast Marching Method (FMM) with an additional minimization step.
A new proof of the optimality of FMM for the problem is provided. Numerical results demonstrate that
the FMM-based method outperforms existing raster-based algorithms. With billions of US dollars spent
yearly on new cables, the potential savings are substantial. Furthermore, the computational complexity of
the FMM-based method is O(N log(N )), making it applicable to cables of realistic length.

INDEX TERMS Cost effectiveness, optical fiber cables, path optimization, seismic resilience, multiobjective
optimization.

I. INTRODUCTION
Playing an essential role in transmitting information to supply
burgeoning demand in the increasingly interconnected world,
optical fiber long-haul telecommunication cables are crucial
to modern society. The Submarine Cable Map provided by
TeleGeography in 2016, shows 293 in-service submarine
telecommunication cables or cable systems with total length
of around 550,000 miles carry 99% international telecommu-
nications [1], [2].

On the one hand, investments in long-haul optical fiber
cables have a significant impact on the economy. On the

other hand, breakage or faults of such cables caused by
various hazards can lead to severe social and economic con-
sequences. For example, as a result of the 2006 Hengchun
(Taiwan) earthquake, 18 cuts were found on eight subma-
rine telecommunication cables: Asia Pacific Cable Network
(APCN), Asia Pacific Cable Network 2 (APCN-2), City to
City (C2C), China-US Cable Network (CUCN), East Asia
Crossing (EAC), FLAG Europe Asia (FEA), FLAG North
Asian Loop or Reach North Asian Loop (FNAL/RNAL) and
South-East Asia–Middle East–Western Europe 3 (SEA-ME-
WE 3 or SMW3), affecting Internet service of several Asian
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countries or regions for several weeks [3]. For an indication of
financial losses associatedwith Internet shutdown, we refer to
the study that was done in Switzerland in 2005 [4], which con-
cluded that for a modern country such as Switzerland, a loss
of 1.2% of annual GDP will incur per one week of Internet
shutdown. Moreover, the cost of a repair of a submarine cable
ranges between one and three million US dollars [5].

Interestingly, the same eight submarine cables damaged in
the 2006 earthquake, were damaged again by the Ryukyu
Islands earthquake in 2009. However, following lessons
learned from the 2006 earthquake, two new submarine cable
systems had been laid further away from Taiwan earthquake
prone areas in 2008 and 2009, namely, Trans-Pacific Express
(TPE) and TGN-Intra Asia (TGN-IA). These two new cables
were not disrupted by the Ryukyu Islands earthquake, and
were able to pick up much of the traffic that could not be
carried by the damaged cables. As a result, the 2009 Ryukyu
Islands earthquake had a far weaker effect on Internet service
than the 2006 Hengchun earthquake [3]. While this serves as
an example, of how we learn from one disaster how to avoid
a future one, it is clearly preferable to incorporate disaster
mitigation into the cable route planning and design phasewith
the aim of avoiding such problems ab initio.
Evidently, in addition to construction cost, survivability of

cables is an important objective to be considered in cable path
planning. There are two ways to improve the survivability of
a cable: firstly, to keep the cable a safe distance away from
high risk regions resulting in longer cables, and secondly to
strengthen the cables with special shielding, or armored com-
ponents when the cable passes through high risk areas [6],
resulting in higher per unit length cable costs.

Different means to strengthen cables are associated with
different design levels. In particular, five types of submarine
cables [7], light cable, light weight cable, single armored
cable, double armored cable and rock armored cable, are
commonly used. Light cable has the least protection level
and the rock armored cable has the highest protection level.
Generally speaking, a higher design level of a cable implies
a higher construction cost as it requires more expensive
material. Taking account of the two objectives of reducing
construction cost and breakage risk, it is important for cable
path planners and other stakeholders to determine a suitable
(and indeed optimal) trade-off of the cable route that avoids
high risk regions and cable design level in the various regions
of its path, while minimizing laying cost.

In [8], we considered the optimization of both the path
planning and the choice of the cable design levels and for-
mulated the problem as one in multiobjective optimization,
where the two conflicting objectives are the construction cost
and the risk, measured by the expected number of cable fail-
ures. The need for consideration of multiple objectives arises
from the fact that there is no clear ‘‘exchange rate’’ between
the costs associated with cable laying and those associated
with cable risk. Different stakeholders may have different
exchange rates. For example, a government will assign higher
value to the consideration of cable risk than the cable owner

because it is more concerned with internet shutdown that
may have severe social and economic consequences. A raster-
based algorithm, a variant of the label setting algorithm was
proposed to solve the multiobjective optimization problem.
The interval-partition-based label setting algorithm, which is
an approximate algorithm, was presented to provide feasible
computational cost for graphs with a large number of nodes.
More efficient and,more important, more accurate algorithms
are required, especially for path planning and design of cable
over long distances, to improve the accuracy and quality
of the solution, leading to cost savings and safer design.
As in [8], also in this paper, we use the terms laying and
construction interchangeably to mean either laying or con-
struction of cables.

As we mentioned in [9], since different stakeholders have
different priorities considering the trade-offs between cable
failure risks and initial laying cost, a methodology based on
multiobjective optimization can give them a range of optimal
solutions on this trade-offs. In this paper, we formulate the
optimization of both path planning and choice of the design
levels for cables as a multiobjective optimization problem
on a two-dimensional triangulated manifold in R3. Based on
the Fast Marching Method (FMM) [10], [11], we provide
an optimal and computationally effective approach to solve
the multiobjective optimization problem. FMM is useful in
overcoming the challenge of path planning of a continuous
cable while the data is available in discrete points. It is
also worth mentioning that if we only consider the special
case of only one design level of cable in this optimization
problem, that is, assuming a homogeneous cable along the
route, this problem reduces to the multiobjective variational
optimization problem, which we have already solved in [9].

As in [8], our method in this paper can be applied to
all the many hazardous scenarios associated with natural
causes or human activities that may lead to cable failures
as described in [8]. Without loss of generality, for ease of
exposition, we assume here that earthquakes are the main
cause of cable failures, and we adopt the number of potential
repairs along a cable as the measure of risk. This measure,
widely accepted in practice as well as in the civil engi-
neering literature, has two key advantages: firstly, it has a
strong relationship with repair or reconstruction cost and is
associated with societal cost incurred by cable failures and,
secondly, it can be quantified in terms of cable repair rate
and formulae for cable repair rate based on available ground
motion intensity data [12]–[14].

In our context, the designed cable between two given nodes
is built on the continuous surface of the Earth, approxi-
mately represented by a two-dimensional triangulated man-
ifold in R3. The fidelity of this model can be improved by
finer subdivision, though with consequential increase in com-
putational load. For a region of interest, the ground motion
intensity data are acquired by downloading from The United
States Geological Survey (USGS, (https://www.usgs.
gov/)). Next, we show that the formulated multiobjective
variational problem incorporating multiple design levels can
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be converted into a single objective variational optimization
problem by assigning different weights to each objective.
We then prove that the solution path of the single objective
variational optimization problem can be achieved by realizing
the problem as a newly derived extended Eikonal equation
and applying the well-known FMM with an additional min-
imization step. Finally, we generate the approximate Pareto
front based on all obtained Pareto optimal solutions, and
numerically demonstrate the superiority of the FMM-based
method over the method based on interval-partition label
setting algorithm of [8] in terms of running times as well as in
terms of solution quality. Accordingly, the main novelty and
contributions of this paper are as follows.
• The application of FMM cable path planning that takes
account of multiple design levels for cable shielding,
requiring a new proof that FMM provides an optimal
solution for the path of the single objective variational
optimization problem. The new proof makes FMMwith
an additional minimization step applicable to the cable
path planning problem, and provides a method that is
optimal given the data for cable laying, shielding design
and path planning of a long-haul optical fiber cable.

• A numerical demonstration of the superiority of the
FMM-based method over the method of [8]. In the
two given examples, the improvement achieved by
FMM is 3.5-6.6%. Given the billions spent on lay-
ing cables around the world, the FMM-based approach
has potential for substantial savings. In addition,
the computational complexity of FMM-based method is
O(N log(N )), making it applicable to cables of realistic
length, for which the methods of [8] may not be appli-
cable.

The remainder of the paper is organized as follows. The
state-of-the-art and related work are discussed in Section II.
The models of laying cost and cable repair are introduced in
Section III. In Section IV, we formulate the problem of min-
imising laying cost and expected total number of repairs for
cable design considering path planning and multiple design
levels, and we propose our algorithm leveraging on FMM.
We apply our proposed algorithm to real-world 3D data,
present the corresponding simulation results and compare
it numerically to the discrete algorithms [8] in Section V.
Finally, conclusions are drawn in Section VI.

II. STATE-OF-THE-ART AND RELATED WORK
Most current approaches to path planning or route selection
for cables assume only one design level; that is, cables are
homogenous. Two types of approaches, a traditional man-
ual approach based on expert experience [6], [15] and a
Geographic Information System (GIS) based path selection
approach, are commonly used in the path planning procedures
of cables in practice. In fact, the second approach is currently
only known to be used for path planning of pipelines [16], but
it is potentially applicable also to optical fiber cables.

In the traditional manual approach, planners use data avail-
able on the relevant region, for example: detailed maps,

charts, aerial photographs, and/or satellite gravity bathymet-
ric data, and produce alternative paths on a large-scale topo-
graphical map that connects a starting point and an end point.
Then, for a given path, a preliminary survey is conducted
along its route to verify its availability and its rationality.
If practical obstacles cannot be removed, then the planners
consider and explore alternative routes. Finally, the cable
path planning is determined by carefully checking all relevant
details along the path and comparing between the various
alternatives. Such a manual approach depends on subjective
analysis based on expert judgment, and since a human cannot
check all possible alternatives in realistic time, it cannot
guarantee to provide an optimal path. A fast path planning
algorithm can help automate at least part of the manual
approach.

GIS based path selection approaches digitize geographic
data and represent the surface of the Earth by a graph. Mul-
tiple factors affecting cable path planning are considered
through a summary cost which is a sum of the weighted costs
of each of the factors. Then the least-cost path is derived by
utilizing Dijkstra’s algorithm [17].

In [18], Saito provided a node/link replacement strategy
for a given planar physical cable network. In [19], Tran
and Saito used seismic hazard information to develop an
approach to find a set of geographical routes from candidate
routes for a given cost constraint. Their objective was to
maximize network robustness. Then, in [20], they consid-
ered how to add links and routes to an existing network so
that the end-to-end disconnection probability is minimized
for a given cost/budget limitation. This problem was solved
using dynamic programming in [20]. In [21], a method for
path selection from a set of candidate routes is provided.
The method is based on Integer Linear Programming and
minimizes expected cost for the cable owners as well as
for the society when disaster strikes, where multiple cable
breaks simultaneously in a given area are included. The work
of [18]–[21] did not consider the shape of the cable (namely
path planning) which is the focus of this paper.

More closely related publications are [9] and [22]–[26].
In [22], [24], and [25], a resilient path design for cables is
proposed, but it is limited to cables that lie on a plane. In [26],
a raster-based path analysis to find the least accumulative
cost path using Dijkstra’s algorithm for cable route selection,
taking into account cost minimization and earthquake surviv-
ability, is given. A major limitation of the raster-based path
approach is that a path is restricted to use either a lateral link
or a diagonal link when moving from a cell to adjacent cells.
In [9], we considered the fundamental problem of optimizing
cable path planning between two points on the Earth’s surface
as a multiobjective optimization problem. We first converted
the multiobjective optimization problem to a single objective
optimization problem using the weighted sum method, and
then transformed it to an Eikonal equation and solved it
by FMM.

All the abovementioned publications, focused on design of
homogenous cables. To the best of our knowledge, the only
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work that has considered non-homogenous cables was
in [27], [28], and [8]. In [27] and [28], Zhang et al. con-
sidered the problem of how to select submarine cables that
require shielding in an existing cable network. Again, this
work does not consider the shape of the cable. In [8], we
considered the same problem of optimizing both the path
planning and proper design levels, as in this paper. However,
as discussed above, the algorithms proposed in [8] are raster-
based and may not able to obtain solutions of acceptable
quality in a reasonable running time for realistic large scale
problems.

III. MODELS
Our aim is to design the path and select the design level
of each point on the path of a cable γ between the starting
node and the destination along the Earth’s surface or buried
in shallow ground. In this section, we describe the models
we introduce for the landforms, laying cost, and the breakage
risk, measured by the potential number of required repairs.

A. EARTH’s SURFACE MODEL
As in [9], we use a triangulated piecewise-linear
two-dimensional manifold M in R3 to approximate the
Earth’s surface. Each point on M is denoted by a three-
dimensional coordinates (x, y, z), where z = ξ (x, y) is the
altitude of geographic location (x, y). For details of this
representation, the reader can refer to [9].

B. LAYING COST MODEL
For a point X = (x, y, z) ∈ M, z = ξ (x, y), we use u :
M → U to represent the design level at X . Without loss
of generality, the design level variable u is assumed to take
values of positive integers and U = {1, 2, . . . ,L} is assumed
to be same for all the points on M. The set of design levels
for a cable is defined as U = {u(·) : M → U}. We define
a function h(X , u) to represent the unit length laying cost of
design level u ∈ U at X . The definition of h(X , u) enables
it to incorporate parameters associated with the location and
the design level as dependent factors influencing laying cost.
Examples for such parameters are the local site attributes
(e.g. soil type, elevation, earth surface topography, etc.),
which may affect cable survivability and ease of laying,
as well as labor, licenses (e.g. right of way) and protection
level.

As discussed, we aim to construct a cable (Lipschitz con-
tinuous [29]) γ to connect two nodesA andB inM. The laying
cost of the cable γ with design levels u(·) ∈ U is represented
by H(γ, u(·)). By the additive assumption of laying cost as
in [9], H(γ, u(·)) can be represented as,

H(γ, u(·)) =
∫
γ

h
(
X , u(X )

)
ds. (1)

Assigning appropriately high positive real numbers to the
function h (X , u) will enable avoidance of problematic
areas [9].

C. CABLE REPAIR MODEL
In [9], the term repair rate is used to indicate the predicted
number of repairs per unit length of the cable over a fixed time
period into the future. In this paper, we extend the definition
of repair rate function in [9] to include the design level
variable u. The repair rate at location X = (x, y, z) ∈ M, z =
ξ (x, y) is defined as g(X , u), u ∈ U, where u is the design
level at X . For the same location X on a cable, the repair
rate caused by an earthquake is lower if higher design level is
adopted, and vice versa. As discussed, a higher design level
indicates higher laying cost and reduced number of repairs.
In other words, h(X , u1) ≤ h(X , u2) and g(X , u1) ≥ g(X , u2)
if u1 < u2 for any X ∈M.
As in [9], we accommodate the well-known high corre-

lation between the repair rate and the ground motion inten-
sity measure (e.g., Peak Ground Velocity). This is widely
accepted in civil engineering [12]–[14]. LetG(γ, u(·)) denote
the total number of repairs of a cable γ . Again, we assume
thatG(γ, u(·)) is additive. That is,G(γ, u(·)) can be rewritten
as

G(γ, u(·)) =
∫
γ

g (X , u(X )) ds, (2)

where g (X , u(X )) ∈ R1
+ is the repair rate with a particular

design level u at location X .

IV. PROBLEM FORMULATION AND SOLUTIONS
The laying cost model and the repair model above, lead
to a formulation of a multiobjective optimization problem;
minimization of both the laying cost and the total number of
repairs as follows:

min
γ,u(·)

8(γ, u(·)) = (H(γ, u(·)), G(γ, u(·))) , (Problem 1)

s.t. γ (A) = A, γ (B) = B,

where γ is the cable that connects Start Node A and Destina-
tion Point B and u(·) ∈ U is the set of design levels for the
cable γ .
For computing the two objectives of the cable γ , here we

introduce the natural parametrization of a curve [30]: the
curve γ is parameterized by a function of arc length denoted
by s, and each point X on the cable γ can be represented by a
function of s, i.e.X = X (s). Using the natural parametrization
of γ and redefine u : R+ ∪ {0} → U, we can rewrite (1) and
(2) as

H(γ, u(·)) =
∫ l(γ )

0
h
(
γ (s), u(s)

)
ds,

G(γ, u(·)) =
∫ l(γ )

0
g
(
γ (s), u(s)

)
ds, (3)

where h
(
γ (s), u(s)

)
, g
(
γ (s), u(s)

)
are the unit laying cost and

the repair rate at location γ (s) with a specified seismic design
level u(s), respectively, and l(γ ) represents the total length of
the cable γ .

As discussed above, the two objectives, laying cost and the
total number of repairs are conflicted, so that it is generally
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impossible to simultaneously minimize both. A set of Pareto
optimal solutions has to be sought. Note that if only one
seismic design level is considered, i.e. L = 1, this problem
is reduced to a multiobjective variational problem, studied in
our previous work [9].

We convert Problem 1 into a single-objective optimization
problem by weighting the two objectives as follows.

min
γ,u

8′(γ, u(·)) =
∫ l(γ )

0
f (γ (s), u(s)) ds, (Problem 2)

s.t. γ (0) = A, γ (l(γ )) = B,

where f (γ (s), u(s)) = h (γ (s), u(s)) + c · g (γ (s), u(s)) and
c ∈ R1

+ ∪ {0}.
The following theorem shows that a set of Pareto optimal

solutions of Problem 1 can be obtained by solving Problem 2.
Theorem 1: If (γ ∗, u∗(·)) is an optimal solution for Prob-

lem 2, then it is Pareto optimal for the laying cost H and the
total number of repairs G.

Proof: See Appendix.
For any point S ∈ M, we define a cost function φ(S) that

represents the minimal cumulative weighted cost to travel
from End Point B of the cable to point S as

φ(S) = min
β,u(·)

∫ l(β)

0
f
(
β(s), u(s)

)
ds, (4)

where β ∈ Lip([0,+∞);M) is a Lipschitz continuous
path parameterized by its length, ‖β ′(s)‖ = ‖ dβ(s)ds ‖ = 1,
β(0) = B, and β(l(β)) = S. By (4) and the definition
of f , and applying the fundamental theorem of the cal-
culus of variations, we next show that the optimal paths
are the gradient descent contours of a specific Eikonal
equation.
Theorem 2: φ(S) is the viscosity solution of the following

Eikonal equation,

‖∇φ(S)‖ = min
u
f (S, u), φ(B) = 0, (5)

where ∇ is the gradient operator and ‖ · ‖ is the 2-norm.
Proof: See Appendix.

For any point S, φ(S) is called the level set function; that
is, {S ∈ M : φ(S) = a} is a curve composed of all the
points that can be reached from point B with minimal cost
equal to a. The optimal path (s) is (are) along the gradient
of φ(S); i.e., orthogonal to the level curves. Note that (5)
is an extension to the Eikonal equation in [31].
From Problem 2 and (5), it can be observed that the joint
optimization of the path γ and the design levels u(·) has
been decomposed into two separate stages, of which the first
stage is to calculate the minimum weighted cost value over
all design levels for each point S ∈ M, and the second stage
is to solve the Eikonal equation.

In [9], we use FMM [10], [11], [31], [32], a computation-
ally efficient and convergent algorithm, to solve the Eikonal
equation without considering multiple design levels. Theo-
rem 2 shows that FMMcan be applied to solve Problem 2. The
difference is that, for each point S ∈M, an additional step of

calculating the minimum weighted cost value over all design
levels; that is, minu∈U f (S, u), has to be executed before
running FMM. This means for a fixed weight value c, once
the minimum weighted cost value f ′(S) = minu∈U f (S, u) for
each S ∈ M is derived, we can input f ′(S) into the FMM, as
in [9], and obtain the corresponding Pareto optimal solutions.
By varying the weight value c in the calculation of the single
combined objective function in Problem 2, a Pareto optimal
set of Problem 1 is obtained. For the sake of completeness,
we provide here the revised Algorithm 1 of [9] and to this
end we present the full listing of the FMM-based method for
Problem 2 as follows.

Algorithm 1 Algorithm for Optimization of Both the Path
Planning and Design Levels in the Region of Interest D
Require: Region D (modeled as M), spatially distributed

PGV data and laying cost data for each design level u
on D, mesh size 1x ,1y, Start Point A, End Point B, c,
step size τ ;

Ensure: Path γ and design level u(γ ) with minimum
weighted cost;

1: Discretize D rectangularly with1x in x and1y in y, and
denote the set of points on the grid by 0;

2: Based on the PGV data on D, calculate the repair rate
g(i, j, u) for each grid point (i, j) ∈ 0 and design level u;

3: For each grid point (i, j) ∈ 0, let f ′(i, j) =

minu(h(i, j, u)+ c ·g(i, j, u)), where h(i, j, u) is the laying
cost at grid point (i, j) with design level u;

4: Create edges, faces and obtain a complete triangulation
(i.e.,M) of D based on 0;

5: Denote the approximate value of φ by φ̄ satisfying
φ̄(i, j) ' φ(i1x + xB, j1y + yB). Let φ̄(0, 0) = 0 and
set End Point B to Near. Define the neighbors of a grid
element (i, j) to be the set 0(i,j).

6: while Near list is not empty do
7: Find a point (i, j) with the minimum value φ̄ in Near

list, and set it to be Frozen.
8: For each point (i′, j′) ∈ 0(i,j), if (i′, j′) is not Frozen,

for each face ς ∈ 6, 6 = {ς, (i′, j′) ∈ ς}, calculate
φ̄(i′, j′) and update its value with the minimum one
using (10) or (11) in [9].

9: If (i′, j′) is Far, update its value by φ̄(i′, j′) and add it in
the Near list; otherwise update its value by minimum
of φ̄(i′, j′) and its current value.

10: end while
11: Let γ0 = A and k = 0.
12: while ||γk − B||2 > ε do
13: Compute the gradient G(γk ) using finite-difference

based on (6) in [9].
14: Compute γk+1 = γk − τG(γk ), where γk is an approx-

imation of γ (t) at time t = kτ .
15: Let u(γk+1) be the design level of the grid point nearest

to γk+1.
16: end while
17: return γ and u(γ ).
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Comparing with the multiobjective variational optimiza-
tion problem without multiple design levels in [9], the
only additional computational cost is caused by calculating
f ′(S). Note that the computational complexity of FMM is
O(N log(N )), where N is the number of nodes inM, enabling
applicability to large scale problems. For details, the reader is
referred to [9], [32], and [31].

V. APPLICATIONS AND NUMERICAL RESULTS
In this section, we apply the FMM-based method to two
3D realistic scenarios, Scenario B and Scenario C in [8].
Without loss of generality, we assume that there are two
seismic design levels in these two scenarios; Levels 1 and 2
with low and high level protection, respectively. Considering
the trade-off between the laying cost and the total number
of repairs, the Pareto optimal solutions are obtained and
the corresponding (approximate) Pareto front is generated.
In addition, we compare the FMM-based method to the
LS-based algorithm (Algorithm 1) and LS-IP algorithm
in [8]. We run the codes in Matlab R2016b on a Lenovo
ThinkCenter M900 Tower desktop (64 GB RAM, 3.4 GHz
Intel(R) Core(TM) i7-6700 CPU).

A. THE FIRST SCENARIO
In this scenario, the objective regionD is shown by Fig. 1; it is
located in California from northwest (35.00◦ N,−118.00◦ E)
to southeast (33.00◦ N, −116.00◦ E). The famous San
Andreas fault line indicated by a red line in Fig. 1 cuts
through the region D. Our aim is to lay a cable con-
necting Start Point (33.55◦ N, −117.65◦ E) to End Point
(35.00◦ N, −116.00◦ E) as shown in Fig. 1.

FIGURE 1. Region D. Source: Google Earth.

The elevation data were downloaded from the General
Bathymetric Chart of the Oceans (GEBCO) and the Peak
Ground Acceleration (PGA) data were from USGS. The
spatial resolution of the elevation data and the PGA data
are 30 arc-second and 180 arc-second, respectively. For the
specifications of the PGA data, the reader can refer to [8].
As in [8], the equation from Wald [33] is adopted to convert
PGA to Peak Ground Velocity (PGV) for calculating repair
rate of the cable as follows,

log10(v) = 1.0548 · log10(PGA)− 1.5566, (6)

where v (cm/s) represents the PGV value. Fig. 2 shows the
obtained shaded PGV map of the region D. [8, eqs. (6a)

and (6b) and (7a) and (7b)] are used to calculate the repair
rate and the laying cost measured by US dollars for the two
design levels, respectively. Specifically, we assume that the
laying costs per km for Level 1 and Level 2 are 1 × 104 US
dollars and 2.22× 104 US dollars, respectively. Note that the
PGA statistics provided by USGS have been measured over a
period of 50 years, so the estimated repair rate is over 50 years
as well.

Observing Fig. 1 and Fig. 2, if we lay a cable from Start
Point to End Point, it has to pass through a high risk area due
to the existence of the San Andreas fault line. Since the spatial
resolution of the PGA data is lower than that of the elevation
data, and the computational complexity of the FMM-based
method is lower than that of the LS-based algorithm, we first
downsample the elevation data to the level of the resolution
of the PGA data (i.e., 180 arc-second) in order to compare the
FMM-based method with the LS-based algorithm. We there-
fore use two sets of data: the original PGA data and the
downsampled elevation data, which we call the low-precision
data. To show the benefit of deriving a better approximation
to the Pareto front using high resolution data and to take
advantage of the computational efficiency of the FMM-based
method, we then generate the so-called high-precision data by
interpolating the PGA data (i.e., complementing missing data
by interpolation) to make it have the same spatial resolution
as the original elevation data (i.e., 30 arc-second). Then,
we apply the FMM-based method to both the low-precision
data and the high-precision data. Recall that, the LS-based
algorithm is applied to the low-precision data only since it can
not be used to obtain the Pareto front in a reasonable time for
the high-precision data. Thereafter, we compare the LS-based
algorithm using the low-precision data with the FMM-based
method.

FIGURE 2. Logarithmic PGV map of the objective region D.

Several Pareto optimal paths using high-precision data
are shown in Fig. 3 and the corresponding laying cost
H(γ ∗, u∗(·)) and the total number of repairs G(γ ∗, u∗(·)) are
shown in Table 1. In Fig. 3, the 3D topographic landform
shown is on the left and the corresponding 2D logarithmic
PGV from top view is on the right, where magenta lines
indicate the cable or cable segments adopting Level 1 and
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FIGURE 3. Selected Pareto optimal paths (obtained by FMM-based method) of the first scenario. The magenta lines represent the
path or path segments adopting Level 1 and the black lines represent the path or path segments adopting Level 2.

the black lines indicate the cable or cable segments adopting
Level 2.

From Table 1, we can see the trade-off between the laying
cost and the total number of repairs. In order to generate
the (approximate) Pareto front, we vary the weight value c

TABLE 1. Laying cost (in units of 104 US dollars) and total number of
repairs of selected Pareto optimal paths of the first scenario.

from 0 to 1000. As the weight value c increases, the laying
cost increases and the total number of repairs decreases. In
other words, the higher the laying cost, the lower the total
number of repairs. It is observed that, to reduce risk (lower
number of repairs), we can either add segments with high
level protection (see the black lines in Fig. 3(c)) or increase
the length of the cable to avoid the high risk areas shown by
Fig. 3(b). We can also observe that the laying cost increases
and the total number of repairs decreases when some parts
of the cable have high level protection. From Fig. 3(a) and
Fig. 3(b), the cable is designed to keep away from the high
PGV areas to reduce the total number of repairs. However,
it appears from Table 1 that avoiding the high PGV areas is
not very effective in decreasing the total number of repairs
of the cable. In this scenario, the San Andreas fault line
cuts through the objective region D. This implies that the
designed path has to pass through the high PGV areas and a
higher design level should be adopted for the cable deployed
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FIGURE 4. Pareto front for the two objectives: (1) laying cost (in units of
104 US dollars), and (2) total number of repairs of the first scenario.

TABLE 2. Laying cost (in units of 104 US dollars) and the total number of
repairs of selected paths of the FMM-based method and the LS-based
algorithm.

FIGURE 5. Two paths obtained by the FMM-based method using the
high-precision data and the LS-based algorithm. (a) LS-based algorithm.
(b) FMM-based method.

in such high risk areas. Adopting a higher design level for
some parts of the cable is noticeable, and these higher level
protected segments become longer around the high PGV
areas as shown by Fig. 3(c) and Fig. 3(d). The reduction of
the total number of repairs is significant but with an increased
laying cost by the deployment of a higher design level for the
cable.

The (approximate) Pareto fronts obtained by the FMM-
based method using the low-precision data and the high-
precision data, consisting of 451 points and 841 points,
respectively, are shown by the brown dash line and the black
solid line in Fig. 4. The FMM-based method that uses data
with higher precision generates more accurate path plan-
ning and a better approximation for the Pareto front. The
blue dotted line in Fig. 4 shows the Pareto front (consisting
of 1381 points) obtained by the LS-based algorithm using the

FIGURE 6. Region D′ . Source: Google Earth.

FIGURE 7. Logarithmic PGV map of the objective region D′ .

FIGURE 8. Pareto front for the two objectives: (1) laying cost (in units of
104 US dollars), and (2) total number of repairs of the second scenario.

low-precision data. It is seen that, for the same total number of
repairs, the laying costs obtained by the FMM-based method
using both the low-precision data and the high-precision data
are smaller than that obtained by the LS-based algorithm.
From Fig. 4, if we set the total number of repairs the same
and larger than 15, commonly the laying cost obtained by
the FMM-based method using high-precision data will be
reduced approximately by 4% comparing with the LS-based
algorithm. This reduction increases to about 6.5% if the total
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FIGURE 9. Selected Pareto optimal paths (obtained by FMM-based method) of the second scenario. The magenta lines represent the
path or path segments adopting Level 1 and the black lines represent the path or path segments adopting Level 2.

number of repairs is set in the range of 25 to 30. As an
example, Fig. 5 shows two paths, one obtained by the FMM-
based method using the high-precision data and the other
by the LS-based algorithm, respectively, with very similar
total number of repairs as shown in Table 2. The laying
cost reduction is up to 6.61%. This difference is significant
considering the billions of dollars spent around the world on
telecommunications cabling. Although the total number of
repairs of the two cables are very close, their corresponding
paths are quite different.

In terms of the computational cost, it takes 251s and
5,192s for the FMM-based method to obtain the (approx-
imate) Pareto fronts using the low-precision data and the
high-precision data, respectively. The running time of the LS-
based algorithm is 2,409s for the low-precision data. As a
result, bearing in mind the higher quality solution from the
FMM-based method, it is difficult to make a case for the
LS-based algorithm.

B. THE SECOND SCENARIO
In this scenario, we consider a large scale realistic landform
in central USA. The objective region D′, shown by Fig. 6,
is from the southwest corner (33.00◦ N,−93.00◦ E) to north-
east corner (39.00◦ N, −87.00◦ E). The New Madrid fault
line, represented by the black lines in Fig. 6, is located in
the central of D′. The logarithmic PGV map of region D′ is
shown by Fig. 7. Our aim is to design the path for a cable from
the southwest corner (33.00◦ N,−93.00◦ E) to the northeast
corner (39.00◦ N, −87.00◦ E).
Again, we downsample the elevation data or interpolating

the PGA data to generate the low-precision data (i.e., 120 arc-
second spatial resolution) and the high-precision data (i.e.,
30 arc-second spatial resolution). The (approximate) Pareto
fronts (consisting of 754 points and 823 points), obtained by
the FMM-based method using the low-precision data and the
high precision data through varying the weight value c from
0 to 1200, are shown by the brown dotted line and the black
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solid line in Fig. 8, respectively. From Fig. 8, the (approx-
imate) Pareto fronts obtained using the low-precision data
and the high-precision data are very close. Several selected
optimal paths obtained by the FMM-based method using the
high-precision data are shown in Fig. 9 and the correspond-
ing laying cost and the total number of repairs are shown
in Table 3. Unlike in the first scenario, to reduce the total
number of repairs of the cable in this scenario, avoiding the
high PGV areas is muchmore effective than adopting a higher
design level since the designed path can totally avoid the high
PGV areas through deploying a longer cable as shown by
Fig. 9(c) and Fig. 9(d).

TABLE 3. Laying cost (in units of 104 US dollars) and total number of
repairs of selected Pareto optimal paths of the second scenario.

The raster-based LS-based algorithm is not applicable for
such a large scale landform even when the low-precision data
are used. Instead, by setting ε = 0.8, we run the LS-IP
algorithm of [8] using the low-precision data, obtaining the
Pareto front (consists of 336 points) shown by the blue dash
line in Fig. 8. Note that the number of nodes of the generated
graph is too large to obtain the Pareto front for LS-IP if the
high-precision data are used. From Fig. 8, it is observed that
the FMM-based method performs at least as well as the LS-IP
algorithm. If we set the total number of repairs in the range
of 25 to 100, typically a more than 3.5% laying cost reduction
is obtained by applying the FMM-basedmethod. Considering
that over 100,000 km of optical fiber cables are laid every
year at a cost of billions of dollars, this improvement is still
significant.

Regarding computational cost, the running time for the
FMM-based method using the low-precision data, the high-
precision data and LS-IP, are 1,308s, 62,526s and 15,334s,
respectively. It is seen, again, that the FMM-based method
has much better performance than LS-IP on computational
cost if we use the same data.

Based on the two above mentioned scenarios, we conclude
that the FMM-basedmethod not only performs better on find-
ing the approximate Pareto front, but also runs much faster
than the LS-based algorithm and the LS-IP algorithm. For
Problem 1 with a very large scale landform, the FMM-based
method can be adopted because of its efficiency and solution
quality.

VI. CONCLUSION
We have considered the path optimization and non-
homogenous construction problem for a cable connecting two
points on Earth’s surface with high risk areas when multiple
design levels are available. Taking account of laying cost
and total number of repairs of the cable as the two objec-
tives, we have formulated the problem as a variant of the
multiobjective variational optimization problem. The Earth’s
surface has been modeled by a triangulated piecewise-linear
two-dimensional manifold in R3 and the repair rate has been
calculated by ground motion intensity measures of earth-
quake events. We have solved the multiobjective variational
optimization problem leveraging FMM, and have obtained
(approximate) Pareto fronts for the two objectives for a
range of numerical experiments. Comparing with the existing
raster-based algorithms, namely, the LS-based algorithm and
the LS-IP algorithm in [8], the FMM-based method has better
performance both on the approximation of Pareto fronts and
the computational cost.

APPENDIX
Proof of Theorem 1: Suppose (γ ∗, u∗(·)) is not Pareto opti-
mal for the laying cost H and the total number of repairs
G. This means that there exists a feasible solution (γ, u(·))
such that H(γ, u(·)) < H(γ ∗, u∗(·)) and G(γ, u(·)) ≤
G(γ ∗, u∗(·)), or H(γ, u(·)) ≤ H(γ ∗, u∗(·)) and G(γ, u(·)) <
G(γ ∗, u∗(·)). Since the weight c > 0, we haveH(γ, u(·))+c ·
G(γ, u(·)) < H(γ ∗, u∗(·))+ c ·G(γ ∗, u∗(·)). This contradicts
the assumption that (γ ∗, u∗(·)) is a solution of Problem 2 and,
thus, (γ ∗, u∗(·)) must be Pareto optimal for Problem 1. �
Proof of Theorem 2: Note that we assume the cable is

laid on a two-dimensional manifold M in three-dimensional
Euclidean space R3. We have∫ l(β)

0
f (β(s), u(s))ds

=

∫ 1

0
f (x(t), y(t), u(t))(x ′2(t)+ y′2(t))

1
2 dt, (7)

where ds = (x ′2(t)+ y′2(t))
1
2 dt , ds is an arbitrarily small arc

length, and t is an arbitrary parameterization of the curve β.
By fundamental calculus of variations, we obtain the follow-
ing three Euler-Lagrange equations.

∂f
∂x

(x ′2 + y′2)
1
2 −

d
ds

(
f ·

x ′

(x ′2 + y′2)
1
2

)
= 0,

=
∂f
∂y

(x ′2 + y′2)
1
2 −

d
ds

(
f ·

y′

(x ′2 + y′2)
1
2

)
= 0,

=
∂f
∂u
= 0. (8)

The curvature κ of the curve β is given by [34]

κ =
x ′y′′ − x ′′y′

(x ′2 + y′2)
3
2

(9)
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with x ′′ = d2x
dt2
, y′′ = d2y

dt2
. Therefore,

d
dt

( x ′

(x ′2 + y′2)
1
2

)
= −κy′,

d
dt

( y′

(x ′2 + y′2)
1
2

)
= κx ′. (10)

Substituting the two equations in (10) into the first two equa-
tions of (8), respectively, yields,

∂f
∂x

(x ′2 + y′2)
1
2 −

df
dt

x ′

(x ′2 + y′2)
1
2

+ f κy′ = 0,

∂f
∂y

(x ′2 + y′2)
1
2 −

df
dt

y′

(x ′2 + y′2)
1
2

− f κx ′ = 0. (11)

Multiplying the first equation of (11) by y′, and then subtract-
ing by the multiplication of second equation of (11) with x ′,
yields(∂f
∂x

(x ′2 + y′2)
1
2 + f κy′

)
y′ =

(∂f
∂y

(x ′2 + y′2)
1
2 − f κx ′

)
x ′.

(12)

Combining with the third equation of (8), we obtain the
following Euler-Lagrange geometric equation,

κf |u=umin =< ∇f |u=umin ,n >, (13)

where n = (− y′
√
x ′2+y′2

, x ′√
x ′2+y′2

) is the unit normal of β,

∇ is the gradient operator, and f |u=umin = minu∈U f (S, u)
is the minimum value function of f with respect
to u ∈ U.

Based on the Euler-Lagrange geometric equation (13), our
subsequent proof follows [35, Lemma 1] by replacing the
function g with f |u=umin . �
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