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ABSTRACT In order to extract more detailed features, many recent practical applications work with
3-D models instead of 2-D images. However, 3-D reconstruction usually requires either multiple cameras or a
depth sensor and a turntable. This paper proposes an approach for performing a 3-D reconstruction using
only one depth camera together with two or more mirrors. Mirrors are employed as virtual depth cameras
placed at different positions. All measured depth data are provided in only one frame at each time. Significant
depth distortion behind a mirror, which occurred with a standard time-of-flight depth sensor, is reduced by
removing unreliable points and/or re-estimating better positions for these points. The experiments on easy-
to-evaluate geometric objects show that the proposed approach could play a basic role in reconstructing
intermediate 3-D object models in practical applications using only cheap devices.

INDEX TERMS Depth camera, depth distortion, mirror, reflection, space carving, time-of-flight.

I. INTRODUCTION
Reconstructing 3D models is an important process in a
wide variety of fields including computer animation, med-
ical imaging, computer graphics, etc. A typical strategy
for that matter is using a depth camera combined with a
turntable where the object is placed on (e.g. [1]). An obvi-
ous limitation is that such system is not appropriate to
work on dynamic objects (e.g. a walking person) as well
as requires prior knowledge such as rotation speed of the
turntable. Other studies perform the shape-from-silhouette
approach with the support of multiple cameras to retrieve the
object visual hull. To overcome the main drawback of this
method, i.e. missing concave regions in reconstructed model,
other researchers employ a collection of depth sensors [2]
and/or stereo cameras [3]. Considering the good accura-
cies obtained in these experiments, this paper proposes an
approach which reduces the cost of devices as well as
avoids unnecessary resource redundancies. In detail, only
one depth sensor is required while the others are replaced
by mirrors. This work guarantees obtaining depth informa-
tion from different view points and does not need a syn-
chronization solution as when using multiple depth sensors
(e.g. a time server using NTP protocol in [2]). In addi-
tion, using multiple depth cameras may cause severe IR
interferences.

There are wide varieties of depth sensors together with
different estimation techniques such as stereo matching and
ToF. In this work, a Microsoft Kinect 2, which uses ToF,
is employed because of its cheap cost, good manufactured
calibration, and good depth estimation. An approach for 3D
reconstruction using mirrors has been performed in [4] with
the previous generation of Kinect. The depthmap provided by
a Kinect 1 is measured based on a structured light technique.
Such depth map thus contains less details compared with
the one obtained by ToF [5]. Therefore, the Kinect 2 with
ToF depth estimation is considered in our work. However,
with ToF camera, we need to solve depth measurement ambi-
guities which occur from unwanted multiple reflections [6].
Such solutions usually require prior knowledge of the ToF
camera characteristics (e.g. modulation frequency [7]) or per-
forming low-level modifications as well as using additional
devices (e.g. a projector [8]). This paper presents a simple
solution for reducing such ambiguities based on some basic
assumptions. Although this method may not solve all depth
distortions, it still provides an obvious improvement versus
the raw initialized model. It is important to recall that our
approach focuses on providing an acceptable 3D model for
practical applications instead of reconstructing a detailed
object or absolutely removing all depth distortions. Using
mirror for 3D reconstruction has been introduced in related
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works such as [9] and [10]. Unlike our work, these studies
focused on alternative implementations of silhouette-based
reconstruction using multiple cameras.

Let us introduce briefly the way a ToF sensor measures
depth information to provide an overview of possible depth
distortions. A ToF depth sensor contains two important parts
that are infrared (IR) emitter and receiver. A signal is emitted
by the former device and is then received by the latter one.
There are two common types of such signal: high-speed pulse
and continuous wave. Distance between the sensor and an
object point is approximated as a half of traveled length based
on time delay of the pulse or the phase shift between retrieved
and emitted waves. Because of this measurement way, if such
signal travels in a multipath trajectory, the obtained depth
may be significantly changed. This scenario occurs in our
configuration with mirrors under several conditions. The
details of such depth distortion and our solution are presented
in next two sections. Because the Kinect 2 employs a contin-
uous wave modulation, the remaining content of this paper
only mentions this technique.

II. DEPTH DISTORTION BEHIND A MIRROR
Let us consider a scenario using only one mirror without any
environment reflection (e.g. a white wall), an overview of
possible returned signals corresponding to a pixel in the depth
image is illustrated in Fig. 1, in which C and Cm are the real
and mirrored camera centers, P and Pm are the considered
point and its reflection behind the mirror, PK is the estimated
result of the Kinect, and M is the point where the emitted
signal touches the mirror. The term mirrored point indicates
the image (behind a mirror) of a real point.

FIGURE 1. Depth estimation of a point in front of a mirror and distortion
of corresponding mirrored point depth.

Asmentioned in the previous section, the distance between
the depth sensor and a point is approximated by half of the
traveled distance of the signal, i.e.

distance(C,P) =
1
2
(‖
−→
CP‖ + ‖

−→
PC‖) = l1 (1)

With the reflected point Pm, the trajectory of the correspond-
ing signal is

−→
CM +

−→
MP +

−→
PM +

−→
MC, thus the expected

distance is l2 + l3. The value measured by the Kinect,

however, is significantly decreased, and a unreliable point
PK is obtained instead of the true point Pm. This distortion
occurs because of another signal, which travels along the
following way

−→
CP +

−→
PM +

−→
MC. We empirically found that

if there is a significant difference of length between these
two trajectories, the obtained depth value is approximated
by the shorter one. This is indicated by the term geometrical
distortion in this paper. In the other case, i.e. if the difference
is small, the measured depth is affected by multipath ambi-
guity. We use the term phase distortion to denote this effect.
In Fig. 1, the estimated distance between C and Pm becomes

distance(C,Pm) =
1
2
(l1 + l2 + l3) (2)

Due to this distortion, a shape behind a mirror could be very
different compared with the original one (e.g. a planar surface
becomes curved, see Fig. 2 and Appendix). Thanks to the
relation between the camera and the mirror, the estimated
distance between C and PK can be used to approximate a
better position of Pm.

FIGURE 2. Practical situation of two reflections with mirrors
m1 and m2: (a) physical reflection of an object in two mirrors, (b) depth
information measured by a ToF sensor. The camera is placed in front of
the object and the 3 illustrated object parts (i.e. the 3 surfaces sl , sm,
and sr ) are not directly seen by the depth sensor (e.g. occluded by front
parts (not shown) of the object). The mirrored surfaces of sr in m1 as well
as sl in m2 do not appear in the figure because the depth camera cannot
see them due to occlusions.

First, the equation of the mirror surface is determined
using some markers placed on it, with their 3D coordinates
measured by the Kinect. The position of M is then localized
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by intersecting the direction
−−→
CPK with the mirror plane to get

the length l2. Let us consider the triangle 4CMP. The angle
θ is determined based on the two vectors

−→
MC and

−−→
CmM.With

the estimated depth of PK , we have:

l1 + l2 + l3 = 2‖
−−→
CPK‖ (3)

⇔ l1 + l3 = 2‖
−−→
CPK‖ − l2 = k (4)

The law of cosines in the triangle4CMP leads to the relation

l21 = l22 + l
2
3 − 2l2l3cosθ (5)

By combining eq. (4) and (5), the length l3 is obtained as

l3 =
1
2
·

l22 − k
2

l2cosθ − k
(6)

Finally, the point Pm along the straight line CM can be local-
ized together with its real point P. This solution will be tested
in Section IV-A.

In practical situations, e.g. reconstructing an object with
several mirrors, the depth measurement is slightly different.
The described depth distortion, however, is useful for remov-
ing unreliable measured points. The details of our practical
configuration together with the reconstruction of object’s
point cloud are presented in the next section.

III. UNRELIABLE POINT REMOVAL
Let us consider a practical scenariowith aKinect and twomir-
rors as in Fig. 2. According to geometrical optics, the object
model can be formed by combining the front part, which is
directly seen by the depth sensor, and reflected parts of the
back through corresponding mirrors. The 3D cloud measured
by a ToF depth sensor, however, contains a lot of unreliable
points due to the geometrical and phase distortions defined
in Section II.

A. GEOMETRICAL DISTORTION
With a given 3D point P on the back of the object and two
mirrors m1 and m2 as in Fig. 3, the camera provides depth
measurements of two mirrored points P1 and P2. Because the
depth camera C does not directly see the point P, themeasured
distances of P1 and P2 are expected to be l1 + l2 and l3 + l4,
respectively. The obtained values, however, are only exact for
the point P1, while the corresponding depth of P2 decreases
to PK2 with a significant deviation. This distortion occurs
because there are two returned signals in the direction

−→
P2C

with traveled length 2l3 + 2l4 and l1 + l2 + l3 + l4. The
depth information is thus estimated based on the shorter
way. In summary, a 3D point P, which is not seen by the
depth camera, can create two mirrored points P1 and P2
containing at least one reliable point (e.g. P1 in Fig. 3 because
l1 + l2 < l3 + l4).

B. PHASE DISTORTION
We empirically found that most mirrored points were
affected by geometrical distortion, thus our restoration
approach for the other distortion is presented as an additional
post-processing (see Section III-D and Appendix).

FIGURE 3. Depth measurement of a 3D point P in two mirrors m1 and m2.
Let us note that P is not seen by the depth camera C. Two points PK1 and
PK2 are Kinect measured points of P1 and P2, respectively.

C. RECONSTRUCTING RAW POINT CLOUD
In the scenario illustrated in Fig. 2, the raw estimated point
cloud of the object is obtained by combining two components:
• Points (in front of the object) which are directly seen by
the depth camera (not shown in the figure)

• Points (on the back of the object) which are reflected
through corresponding mirrors m1 and m2

First, a 3D region of the reconstructed object is defined.
Let us consider a point P in the cloud mentioned above. If P
comes from the first component, i.e. P can be directly seen
by the depth sensor, it is a reliable point lying on the object
surface. If the camera sees a mirrored point Pm of P in an
arbitrary mirror, the measured depth of Pm is significantly
reduced, but Pm is always behind the mirror. The reflection
of Pm is thus in front of this mirror. Our experiments (see
Section IV-A) show that the distance between this reflected
point and the corresponding mirror is very small, thus Pm can
be easily removed by checking if its reflection is outside of
the defined 3D object region. Therefore, there remains two
cases which need to be focused on: a 3D point can be seen in
only onemirror (e.g. point on surfaces sl and sr in Fig. 2) or in
both mirrors (e.g. point on sm).

In the first case, the signal corresponding to such point
always travels along the shortest way, thus the reflected point
is reliable. In the second one, it is important to recall that we
have proved that a 3D point, which is not seen by the depth
camera, can create twomirrored points containing at least one
reliable point. Our goal thus becomes simpler since we just
need to remove these false-estimated points.

Our idea for deciding a point in the raw reflected cloud to
be removed or be kept is quite simple. Assume that a point P
in cloud is recovered (i.e. reflected) from a mirrored point Pi
through a mirror mi with i ∈ {1, 2}, the corresponding mir-
rored point Pj of P in the other mirror is localized. According
to the given coordinates of the camera center C, the point P
is kept in the cloud if distance(C,Pi) ≤ distance(C,Pj),
and otherwise is removed. This idea can be proved with the
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FIGURE 4. Reconstruction of a bad-measured Kinect point and its images
corresponding to the two mirrors.

illustration of Fig. 4 (extended from Fig. 3). Let us assume
that P

′

is the reflected point of PK2 through m2, and P
′

1 is the
image of P

′

in m1. As presented in Section II, the distance
between camera center C and estimated point PK2 satisfies
the following condition:

2‖CPK2‖ = ‖CP1‖ + ‖CP2‖

⇒ ‖CPK2‖ = ‖CP1‖ + ‖P2PK2‖ (7)

The three segments P2PK2, PP
′

, and P1P
′

1 have the same
length, thus eq. (7) is equivalent to

‖CPK2‖ = ‖CP1‖ + ‖P1P
′

1‖ (8)

According to the triangle inequality [11] in4CP1P
′

1, we have

‖CP1‖ + ‖P1P
′

1‖ > ‖CP
′

1‖ (9)

By combining eq. (8) and (9), the length of CPK2 is always
greater than the distance between C and P

′

1. In other words,
a point in the raw reflected cloud can be considered to be a
reliable or unreliable one by checking distances between the
camera center to mirrored points behind the two mirrors.
In summary, given a 2D array pts (depth image) of 3D

points measured by the Kinect, two mirror plane equations
mir1 and mir2, position of camera center C , and a predefined
3D object region of interest reg, our algorithm for reconstruct-
ing a point cloud representing an object is as the Algorithm 1.

D. INCREASING POINT DENSITY BY SPACE CARVING
An obvious limitation of the reconstructed object point cloud
in Section III-C is that the farther the object is from a mirror,
the larger is the distance between two neighbor 3D points cor-
responding to this mirror in the obtained cloud. To increase
the density of such points, the space carving approach can be
applied together with the algorithm described in the previous
section. Given a voxel volume V and input components of the
algorithm of unreliable point removal, the overall processing
is performed as the Algorithm 2.
In practical applications as well as when working on spe-

cific objects, some additional operations can be integrated

Algorithm 1 Unreliable Point Removal
1: procedure GetCloud(pts, mir1, mir2, C , reg)
2: cloud ← null
3: for each point P in pts do
4: if P inside reg then
5: cloud ← push(P)
6: else if P behind mir1 then
7: Pr ← reflect(P, mir1)
8: if Pr not inside reg then
9: continue F check another point
10: end if
11: P2← reflect(Pr , mir2)
12: if CP < CP2 then
13: cloud ← push(Pr ) F reliable point
14: end if
15: else if P behind mir2 then
16: Pr ← reflect(P, mir2)
17: if Pr not inside reg then
18: continue F check another point
19: end if
20: P1← reflect(Pr , mir1)
21: if CP < CP1 then
22: cloud ← push(Pr ) F reliable point
23: end if
24: end if
25: end for
26: return cloud F Return object point cloud
27: end procedure

into the two presented algorithms to improve reconstruction
accuracy such as color filtering and defining object boundary.

Asmentioned in the end of Section III-B, a post-processing
could be applied to improve the model quality. This process-
ing requires a correspondence of two mirrored points which
are created based on one real 3D point, thus it is appropriate
to apply the post-processing in the presented space carving
approach. This stage can be easily performed based on the
eq. (13) (see Appendix). However, let us recall that most
estimated points are not affected by this distortion, thus this
post-processing is not necessary if our goal is to provide
an acceptable intermediate model for practical applications.
Moreover, the method in Section III-C could be integrated
into real-time systems while it takes much time to perform
the space carving technique.

IV. EXPERIMENTAL RESULTS
This section demonstrates the results of solving depth distor-
tion in the cases of using one and two mirrors. The former
experiment was performed by comparing distances between
a real 3D point and its raw reflected point as well as the
one relocated by our proposed approach [Section II, eq. (6)].
In order to obtain a high generalization, a set of points,
which consists of markers located on a small flat board, was
employed to calculate the distance deviation instead of using
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FIGURE 5. From left to right: tested scenes with top view and side view. The top row shows result of solving one-mirror distortion on a
set of 8 markers lying on a flat board of size 30 cm × 30 cm while the second row is the result of recovering all points in the board.
In each sub-figure, the mirror is represented by a straight segment, and each marker position is shown as a point bounded by a
cube-shape-wireframe for better visualization. The red points are real 3D markers and the black ones are their mirrored points
determined in the captured depth map. The blue and green markers respectively indicate the reflection of mirrored points and our
recovered ones. Notice that in the bottom-left sub-figure, the board contains some holes because there was a chessboard on the surface,
and processing of black pixels was avoided due to low-reflection of black regions.

Algorithm 2 Space-Carving-Based Reconstruction
1: procedure SpaceCarving(V , pts, mir1, mir2, C)
2: th← th0 F define a threshold of distance deviation
3: for each voxel P in V do
4: pixel ← project(P) F 3D to 2D projection
5: PK ← get3Dpoint(pts, pixel) F 3D Kinect point
6: if ‖CPK − CP‖ < th then
7: V ← keep(P)
8: continue F check next voxel
9: else
10: P1← reflect(P, mir1)
11: P2← reflect(P, mir2)
12: pixel1← project(P1)
13: pixel2← project(P2)
14: PK1← get3Dpoint(pts, pixel1)
15: PK2← get3Dpoint(pts, pixel2)
16: if CP1 < CP2 and ‖CPK1 − CP1‖ < th then
17: V ← keep(P)
18: continue F check next voxel
19: end if
20: if CP2 < CP1 and ‖CPK2 − CP2‖ < th then
21: V ← keep(P)
22: continue F check next voxel
23: end if
24: end if
25: V ← remove(P)
26: end for
27: return V F Return voxel volume
28: end procedure

only one point at a time, and the board was also placed in front
of the mirror at different tilt angles. The latter experiment
was evaluated by fitting a surface based on raw reconstructed
point cloud as well as voxel volume and then estimating

FIGURE 6. Measured reflection errors before and after applying our
solution, in which deviation values were decreased about 53 times
(0.959 and 0.018 on average, respectively).

the corresponding error according to prior knowledge of the
object shape. In order to simplify the calculation, this work
employed two simple objects including a flat board and a
cylinder. The testing process was also performed with differ-
ent distances between the object and the two mirrors.

A. SOLVING DEPTH DISTORTION WITH ONE MIRROR
For each real marker P on a flat pattern placed in front of
the mirror, our processing flow in this experiment consists of
the following steps (see Fig. 1): (a) reflecting P to get the true
position of its image Pm behind themirror, (b) determining the
corresponding measured Kinect point PK , (c) re-estimating
a corrected point PC of PK (PC ≡ Pm in the ideal case),
and (d) calculating distance(P,PCm) and distance(P,PKm)
where PCm and PKm are reflections of PC and PK through the
mirror, respectively. In summary, a set of n corners provides n
pairs of such values. Finally, average distances are compared
together to evaluate the proposed solution.
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FIGURE 7. Reconstruction errors of three types of clouds: raw, distortion removal, and space carving. The cylinder radius, which was manually
measured, was 150 mm and the average radius of the reconstructed clouds was 147.4 mm.

FIGURE 8. From left to right: raw cloud, cloud after removing unreliable points, and space carving. Points directly seen
by the Kinect are not shown in this figure since they are not affected by any of mentioned distortions.

Processing a set of markers as well as all points on the flat
board are illustrated in Fig. 5. In the top row, the recovered
points were almost at their corresponding true points though
there were significant distance deviations in the Kinect mea-
surement. In the bottom row, the points provided by our
solution and the true points also fit a plane. The small position
deviations of our recovered points in Fig. 5 come from the
following reasons. First, the mirror was not an absolute planar
surface, a point displacement might thus occur. Besides, this
experiment was performed on raw captured data without
any improvement (e.g. depth smoothing or enhancement).
In addition, different 3D positions could be mixed into one
point by Kinect due to the low resolution of the IR camera
(512 × 424 pixels). To overcome these limitations, a depth
improvement procedure could be applied (e.g. [12]), and a
high-resolution camera could also be employed as an addi-
tional view (e.g. mapping between color and depth cam-
eras of Kinect to investigate a higher density of recovered
points).

Figure 6 shows experimental results corresponding to
12 different pattern poses in front of the mirror. It is obvi-
ous to see that distance deviations between true points and
reflected ones were significantly reduced by our proposed
solution.

B. REDUCING DISTORTION IN THE CASE
OF TWO MIRRORS
In this experiment, the angle between two mirrors was about
120 degrees. The distance from a tested object to mir-
rors was defined as the mean of all distances between the
final reconstructed object points and the two mirrors. Given
knowledge about the object shape (either plane or cylin-
der), the evaluation was performed by fitting a surface
based on RANSAC [13] and estimating root-mean-square
errors (RMSE). Our experimental results when testing these
two objects are shown in Fig. 7. Fitting errors were reduced
after applying our approach on raw reconstructed point cloud.
Notice that the error corresponding to the space carving
method was always larger than the two others because of
object’s thicker borders. Measured errors were less than 1 cm.
The cylinder radius was 150 mm.
A visual comparison of reconstructed point clouds of a

cylinder before and after performing our method is also pre-
sented in Fig. 8. The proposed approach removed a large
number of noisy points from the raw reconstructed models.

A visualization of point clouds representing a human
body with different postures is also presented in Fig. 9.
These clouds are reconstructed by the algorithm of
unreliable point removal presented in Section III-C.

VOLUME 6, 2018 38111



T.-N. Nguyen et al.: 3-D Reconstruction With ToF Depth Camera and Multiple Mirrors

FIGURE 9. Left: our realistic setup of a 3D reconstruction system for the task of gait analysis including a treadmill and two mirrors (highlighted by dotted
red rectangles). Right: reconstructed point clouds corresponding to 4 nearby poses of a walking gait, and the last cloud is the 4th one seen from side view.
These point clouds were acquired at 13 fps using the computer mentioned in Section IV-C. These clouds are extracted from our huge dataset (nearly
100,000 postures) of human walking gaits that is available at http://www.iro.umontreal.ca/~labimage/GaitDataset. Details of data acquisition is clearly
described in [14].

The figure shows that it is reasonable to expect that our
approach could be used to provide intermediate (real-time)
models in systems which process 3D information. A huge
dataset (nearly 100,000 samples) of such point clouds repre-
senting human walking gaits performed on a treadmill is also
available online.1

FIGURE 10. Reconstruction errors corresponding to our work and the
study [4]. The comparison is performed on three types of clouds: raw
reflection, distortion removal (only our work), and space carving.

Figure 10 shows a comparison of reconstruction
error (RMSE) between our system and the similar setup
in [4], where a Kinect 1 with structured-light depth estimation
was employed instead of a Kinect 2. Both reconstructions
were performed on the same cylinder, and the statistical
information presented in Fig. 10 was calculated on different
distances between the cylinder and mirrors. The study [4]
also provided point clouds corresponding to raw reflection
and space carving. Notice that the depth distortion, which
has been dealt with in our study, does not occur in the
setup [4]. This comparison shows that our system with a
Kinect 2 provided better point clouds. This is because the

1http://www.iro.umontreal.ca/~labimage/GaitDataset

depth map of Kinect 1 is noisier and has less details compared
with the next generation [5].

Finally, let us note that our algorithm makes a trade off
between the simplicity of processing flow and a constraint
in scene configuration. For example, in the case where the
object in Fig. 2(b) is placed nearer the mirror m1 (large
deviation of distances between the object and each mirror),
the proposed algorithm might fail to reconstruct the surface
sr from sr2. In detail, the idea of checking point reliability in
Section III-C is sometimes not appropriate for object points
which are seen in only one mirror. This drawback, how-
ever, could be easily avoided by placing the object near the
center of a balanced (approximately) configuration. All our
experiments satisfy this constraint without any complicated
additional processing. In addition, we should notice that if
the setup contains more than 2 mirrors, the depth distortion
would be more complicated due to the increasing number of
unwanted reflections. Such setup may even reduce the quality
of reconstructed 3D point clouds.

C. IMPLEMENTATION
Our system was built on a medium-strength laptop using
C++ (non-optimized code) and the two open source libraries
OpenCV [15] and Point Cloud Library [16]. All Kinect depth
images in our experiments were captured with a resolution of
512 × 424 pixels. The process of reconstructing raw point
cloud (as in Section III-C) was performed with an average
speed of 0.07 seconds per frame. This processing time could
be significantly reduced with the support of parallel (and
multi-threading) programming. The proposed approach thus
could be expected to be appropriate for creating a real-time
reconstruction system.

V. CONCLUSION
Throughout this paper, a new approach for reconstructing a
3D object using only one ToF depth sensor together with
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mirrors has been presented. An overview of depth distor-
tion occurring with one and two mirrors and corresponding
solutions are also mentioned. Beside avoiding the problem
of synchronization (i.e. all depth data from different viewing
directions are provided by only one Kinect) and possible
severe IR interferences caused bymultiple depth cameras, our
method can be applied on dynamic objects (e.g. a walking
person). The experiments and evaluations show that the pro-
posed approach improves significantly the quality of Kinect
depth estimation. In summary, ourmethod can serve as a basic
system for cheap 3D reconstruction as well as for providing
intermediate object models in practical applications. In future
work, we intend to use the reconstructed data for various
applications, such as human gait analysis and assessment.

APPENDIX
ANALYSIS OF PHASE DISTORTION
According to [8], the depth of a point is measured based on
the phase delay of optical trajectories as

d =
cϕ
4π f

(10)

where the constant c is the speed of light, f is the modulation
frequency of the IR emitter, and ϕ is the phase shift. The
measured phase shift in the case of multipath interference is

ϕ̃ = tan−1
( α0sinϕ0 +∑K

i=1 αisinϕi
α0cosϕ0 +

∑K
i=1 αicosϕi

)
(11)

where K is the number of signals returning to the corre-
sponding pixel of the considering point, and α denotes the
amplitude.

In our setup, there are only two signal paths: the direct
way which provides a true depth and the indirect one which
affects this value (e.g. the two mentioned trajectories in
Section III-A). Besides, we also assume that these two signal
amplitudes are similar because they touch the object only
once. Eq. (11) thus could be simply approximated as

ϕ̃ = tan−1
( sinϕD + sinϕI
cosϕD + cosϕI

)
(12)

where the subscripts D and I denote parameters of the direct
and indirect signals, respectively.

By combining eq. (10) and (12), the relation between the
measured depth dK and the two elementary traveled ways
dD and dI is

dK =
1
2

(
dD + dI

)
+ k

c
4f

(13)

where k is an integer. By performing some experiments,
we found that 0 is the most appropriate value of k . It means
that in the case of phase distortion, the measured depth could
be approximated as a quarter of the total traveled lengths of
the two elementary signals.
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